Aerobic training induces LVH involving microRNAs Edilamar Menezes de Oliveira [email protected] Grant FAPESP (2009/18370-3) Grant CNPq/MCT-2009 Laboratory of Biochemistry and Molecular Biology of the Exercise School of Physical Education and Sport University of Sao Paulo - Brazil Adaptações Fisiológicas ao Treinamento Físico Aeróbio Hemodinâmicas PA de repouso Fluxo Sanguíneo Volume plasmático Cardiovasculares FC repouso Rno-mir-1 Morfológicas/Funcionais Metabólicas VO2max Estrutura miofibrilar Síntese e atividade enzimática Melhor Função Ventricular (VS) Angiogênese HIPERTROFIA CARDÍACA FISIOLÓGICA Diretriz de Reabilitação Cardíaca, SBC, 2005 Oliveira & Krieger, 2002 Physiological Cardiac Hypertrophy AEROBIC TRAINING RV LV SEDENTARY RV Eccentric Hypertrophy Volume overload Chamber dilation Myocyte length >> Myocyte width No fibrosis No cardiac dysfunction Fernandes T et al. BJMBR, Sep, 2011 Heineke & Molkentin Nat Rev, 2006. Nadal-Ginard & Madavi, J Clin Invest, 1989. LV RESISTANCE TRAINING RV LV sarcomeres Concentric Hypertrophy Pressure overload Without chamber dilation Myocyte width >> Myocyte length No fibrosis No cardiac dysfunction HIPERTROFIA DE CARDIOMIÓCITOS METABOLISMO OXIDATIVO BIOGÊNESE MITOCONDRIA CAPILARIZAÇÃO APOPTOSE INFLAMAÇÃO SÍNTESE DE PROTEÍNA GLICÓLISE MATRIX EXTRACELULAR GENES FETAIS DORN, Hypertension, 2007. MicroRNAs MicroRNAs are short sequences non coding protein regulate specific target genes by inhibiting translation Some miRNAs are specifically expressed in specific tissues, such as heart Descoberta Victor Ambros Rosalind Lee Lee RC, Feinbaum RL, Ambros V. Cell,1993. Descoberta Lin-14 Lin-28 Lin-41 Lin-42 Daf-12 Reinhart, B. et al. Nature , 2000. Descoberta em Humano Pasquinelli, AE. et al. Nature , 2000. 2002 – Correlation between miRNAs e Câncer 2005 – Dicer deletion indicating miRNA relevance in diferent model systems - Antagomir inhibition of mRNAs in vivo - First miRNA transgênic mouse 2006 - Correlation between miRNAs and CV disease MicroRNAs e HC Eva van Rooij Eric Olson Van Rooij E. et al. Proc Natl Acad Sci U S A. 2006 . Constrição aórtica Humano Knock in Caucineurina A 21 7 Van Rooij E. et al. Proc Natl Acad Sci U S A. 2006 Gianluigi Condorelli Care A. et al. Nature Medicine, 2007. Van Rooij E. et al. Science, 2007. O Exercício Físico poderia influenciar na expressão de microRNAs no remodelamento cardíaco? We investigate the role of microRNAs regulating LV hypertrophy induced by aerobic training in normotensive rats: - Classic and the novel cardiac renin angiotensin system (RAS); - Angiogenesis; - Collagen. Training Protocols Swimming training 1 (T1): 60 min/day; 1x day; 5x/week; during 10 weeks Swimming training 2 (T2): 60 min/day; 1x/ day; 5x/week; during 8 weeks 9a week: 60 min; 5x/week; 2x/ day 10a week: 60 min; 5x/week; 3x/ day Oliveira et al., JRAAS, 2009. Training Protocols Swimming training 1 (T1): 60 min/day; 1x day; Moderate-volume training Moderate Cardiac Hypertrophy 5x/week; during 10 weeks Swimming training 2 (T2): 60 min/day; 1x/ day; 5x/week; during 8 weeks 9a week: 60 min; 5x/week; 2x/ day 10a week: 60 min; 5x/week; 3x/ day Oliveira et al., JRAAS, 2009. Training Protocols Swimming training 1 (T1): 60 min/day; 1x day; Moderate-volume training Moderate Cardiac Hypertrophy 5x/week; during 10 weeks Swimming training 2 (T2): 60 min/day; 1x/ day; High-volume training Robust Cardiac Hypertrophy 5x/week; High performance, like an atleta during 8 weeks 9a week: 60 min; 5x/week; 2x/ day 10a week: 60 min; 5x/week; 3x/ day Oliveira et al., JRAAS, 2009. Swimming training System Workload: caudal dumbbells weighting 5% of corresponding body weight Oliveira et al., JRAAS, 2009. Exercise training markers Heart rate Cardiovascular Marker CS activity (µmol/ml/mg protein) SC 600 T2 T1 Citrate synthase activity 450 * * 300 * * SC T1 T2 150 * p<0.05, vs SC. Metabolic Marker 0 SC S T1 T1 T2 T2 Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 Fernandes, et al., Hypertension, 58: 182-189, 2011 Cardiac Hypertrophy † Cardiac Hypertrophy (% of control) 150 120 * ** * ** * * S T1 T2 90 60 30 0 ECO (mg/g) A C LV/BW (mg/g) Myocyte Diameter (µm) B T1 C T2 Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 Positive Correlation VO2max X Cardiac Hypertrophy VO2max (ml.kg-1.min-1 ) 95 85 75 y = 17,26x + 25,48 65 R = 0.680018 P<0.05 55 2.3 2.5 2.7 2.9 3.1 3.3 3.5 Cardiac Hypertrophy (mg/g) Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 Pathological Cardiac Hypertrophy Markers p<0.05 vs SC Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 miRNA miRNA microRNA Array T2 P2 T1 P1 SC SC (349 miRNAs) 87 microRNAs were differentially expressed with exercise training * p<0.01 vs SC. - - 10.000 20.000 30.000 40.000 50.000 60.000 2.000 4.000 6.000 8.000 10.000 miRNAs differentially expressed in the LV with Exercise training. SC Increased by T1 Largest increased by T2 Decreased by T1 Largest decreased by T2 (U.A.) Levels de miRNAs expressão gênica arbitrárias Unidades miRs, 1, 133a e 133b Expression 70000 60000 SC 50000 P1 T1 40000 P2 T2 30000 20000 10000 0 miR-1 * p<0.01 vs SC. 1 miR-133a miR-133b Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 We investigate the role of microRNAs regulating LV hypertrophy induced by aerobic training in normotensive rats: - Classic and the novel cardiac renin angiotensin system (RAS); - Angiogenesis; - Collagen. Fernandes, et al., Hypertension, 58: 182-189, 2011 Fernandes, et al., Hypertension, 58: 182-189, 2011 Cardiac ACE - Ang II axis Fernandes, et al., Hypertension, 58: 182-189, 2011 Cardiac ACE-2 - Ang (1-7) axis Fernandes, et al., Hypertension, 58: 182-189, 2011 Cardiac ACE-2 - Ang (1-7) axis These results suggest that this nonclassic cardiac RAS counteracts the classic RAS Fernandes, et al., Hypertension, 58: 182-189, 2011 Fernandes, et al., Hypertension, 58: 182-189, 2011 microRNA and Physiological Hypertrophy miR-143 miR-27a miR-27b ACE-2 ACE VASODILATION VASOCONSTRICTION Ang (1-7) CH Ang II This modulation might increase blood and oxygen transport to the exercising cardiac muscle to facilitate high performance We investigate the role of microRNAs regulating LV hypertrophy induced by aerobic training in normotensive rats: - Classic and the novel cardiac renin angiotensin system (RAS); - Angiogenesis; - Collagen. microRNAs Angiogênicos rno-miR-214 rno-miR-378 rno-miR-27b SC P1 P2 rno-miR-222 rno-miR-221 rno-let-7b rno-miR-126 rno-let-7f - 5.000 10.000 15.000 20.000 25.000 Expressão gênica (Unidades Arbitrárias) Silva-Jr ND et al., Medicine & Science in Sports & Exercise (em revisão) Representação esquemática da ação do miR-126 em vias angiogênicas mediadas por VEGF Silva-Jr ND et al., Medicine & Science in Sports & Exercise (em revisão) Expressão relativa do VEGF no VE por western blotting (% do controle) microRNA e Angiogênese Cardíaca † 250 * 200 SC P1 * P2 150 100 50 0 SC P1 P2 Silva-Jr ND et al., Medicine & Science in Sports & Exercise (em revisão) microRNA-126 no VE ** 160 * 140 1,6 SC 100 P1 P2 80 60 Ct ) 1,4 120 miR-126 (2 - Expressão relativa do miR-126 no VE por real-time PCR (% do controle) B 1,2 1,0 R = 0,63 0,8 P < 0,05 0,6 40 0,4 20 0,0 0 SC P1 P2 0,5 1,0 1,5 2,0 2,5 Razão capilar / fibra no VE (no capilares / fibra) Silva-Jr ND et al., Medicine & Science in Sports & Exercise (em revisão) 120 120 100 * 80 SC P1 60 P2 † 40 *** 20 0 SC P1 P2 Expressão relativa do Spred-1 no VE por western blotting (% do controle) Expressão relativa do PI3KR2 no VE por real time – PCR (% do controle) Representação esquemática da ação do miR-126 em vias angiogênicas mediadas por VEGF 100 80 * * SC P1 60 P2 40 20 0 SC P1 P2 Silva-Jr ND et al., Medicine & Science in Sports & Exercise (em revisão) VEGF Treinamento de Natação VEGFR2 miR-126 PI3KR2 miR-126 PI3K Raf-1 Akt MEK 1/2 eNOS ERK 1/2 ANGIOGÊNESE CARDÍACA Spred -1 We investigate the role of microRNAs regulating LV hypertrophy induced by aerobic training in normotensive rats: - Classic and the novel cardiac renin angiotensin system (RAS); - Angiogenesis; - Collagen. miR-29 Family Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 MicroRNAs 29a, b e c: Cardiac Fibrosis Target Genes Target Genes Validated MicroRNA 29 COL1 A1 COL1 A2 COL3 A1 ELN Collagen Fibrilin Elastin FBN1 Van Rooij et al, PNAS, 2008 miRNAs Expression by Real Time-PCR Relative LV miRNAs levels by real-time PCR (% of control) 300 250 S T1 T2 * 200 * 150 100 50 * * * * * * 0 miRNA-1 miRNA-133a miRNA-133b miRNA-29c * p<0.05, vs. S Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 Collagen Expression Relative Expression of LV Collagen (% of control) 125 S T1 100 T2 75 * 50 25 * * 49% 40% * 61% 52% 0 COLIAI COLIIIAI * p<0.05 vs. S Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 Cardiac Collagen Concentration and miRNA-29 MiRNA29c LV microRNA-29c levels (% of control) 280 * 210 * 140 70 0 S 150 T1 T2 Colágeno cardíaco Cardiac Collagen Cardiac OH-Prolin (mg/g) (% of control) 120 * 90 * 60 30 0 S T1 T2 Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 miRNA-29 Expression was inversaly correlated to OH-Proline concentration in the heart 300 OH-proline (mg/g) R = -0.61 P<0.05 200 100 0 0 1 MiRNA- 29c (2 2 3 -ΔΔCT) Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 The collagen concentration decreased was associated with improvement of ventricular compliance and function Echocardiography Systolic Function EFj (%) EFn (%) VEC (circ/s) SC (n=7) T1 (n=6) 77±5 39±4 75±2 38±3 0.005±0.02 0.004±0.2 0.004±0.04 T2 (n=6) 73±2 36±2 Diastolic Fuction Peak E (m/s) Peak A (m/s) 0.451±0.05 0.499±0.05 0.458±0.03 0.328±0.06 0.333±0.03 0.279±0.01 Ratio E/A 1.396±0.16 1.504±0.19 1.644±0.11* IVRT(ms) 30.7±1.9 30.2±1.7 27.0±1.8* DTPE (ms) 2.2±0.2 1.8±0.1* 1.9±0.2* 0.35±0.09* 0.38±0.07* Global Function MPI 0.51±0.06 IVRT: isovolumetric relaxation time; DTPE: deceleration time of peak E; MPI: Myocardial Performance Index * p<0.05, vs. S Physiological Genomics 43: 665-673, 2011 Summary ET miR-29c COLI and COLIII Expression Cardiac COL Concentration Pathological Cardiac Markers Physiological Cardiac Hypertrophy Diastolic Function Soci, UPR et al., Physiological Genomics 43: 665-673, 2011 AEROBIC TRAINING miR-1, 133a and 133b Rhoa/ CDC42 NELFA/ Whsc2 Differentiation and growth cell miR-29a, 29b and 29c miR-27a and 27b miR-143 ACE ACE2 COLIAI COLIIIAI Ventricle Compliance LV Vasodilation Anti-fibrosis Vasodilation Anti-fibrosis PHYSIOLOGICAL CARDIAC HYPERTROPHY Fernandes T et al. BJMBR, 2011. Together these effects induce regulation of cardioprotector genes, improve ventricular compliance, and might provide the additional aerobic capacity required by the exercised heart. These results suggests that a basis for treatment to prevent of the development of pathological LVH might be to inhibit specific miRNAs, using antisense or siRNA. Perspectivas Futuras Estudos com Animais Experimentais: -SHR - Bolsa de Mestrado (FAPESP (Projeto 2009/03264-3) -Insuficiência cardíaca – Bolsa de Doutorado (FAPESP (Projeto 2010/09438-0) Estudo com Humanos: (Colaboração com Prof. Carlos Eduardo Negrão e Profa. Maria Urbana Rondon). -Pacientes Hipertensos -Pacientes Resincronizados Acknowledgments Pos-graduation Students Tiago Fernandes Ursula Soci Marco Amadeu Nara Hashimoto Flávio Magalhães Kaleizu Rosa -InCor Laboratory Technician Glória Motta Colaborations: Prof. Maria Cláudia Irigoyen and José Eduardo Krieger – InCor Prof. Adriana Carmona and Dulce Casarini - UNIFESP Dr. M Ian Phillips – KGI –California – USA. Laboratory of Biochemistry and Molecular Biology of the Exercise Thank you for your attention