Índice de saturação topográfico Walter Collischonn Indicador • • • • • wetness index topographic index saturation index índice de saturação índice de saturação do modelo TopModel Processos de geração de escoamento From http://snobear.colorado.edu/IntroHydro/geog_hydro.html Processos de geração de escoamento Infiltration excess overland flow aka Horton overland flow P qo P f P f Partial area infiltration excess overland flow P qo P P f Saturation excess overland flow P qo P qs qr P Mapa de áreas saturadas numa bacia mostrando a expansão da região saturada durante um evento de chuva. A região escura é a região saturada no início da chuva. A região cinza claro está saturada no final da chuva. Nesta região o lençol freático atingiu o nível da superfície do terreno. [Dunne and Leopold, 1978] Região saturada de acordo com a época do ano: •preto: verão •cinza claro: outono •cinza escuro: inverno [Dunne and Leopold, 1978] Runoff generation at a point depends on • • • • • Rainfall intensity or amount Antecedent conditions Soils and vegetation Depth to water table (topography) Time scale of interest These vary spatially which suggests a spatial geographic approach to runoff estimation Índice de saturação Digital Elevation Model based Hydrologic Modeling Outline • Topography and Physical runoff generation processes (TOPMODEL) • Raster calculation of wetness index • Raster calculation of TOPMODEL runoff • Extendability of ArcGIS using Visual Basic Programming TOPMODEL Beven, K., R. Lamb, P. Quinn, R. Romanowicz and J. Freer, (1995), "TOPMODEL," Chapter 18 in Computer Models of Watershed Hydrology, Edited by V. P. Singh, Water Resources Publications, Highlands Ranch, Colorado, p.627668. “TOPMODEL is not a hydrological modeling package. It is rather a set of conceptual tools that can be used to reproduce the hydrological behaviour of catchments in a distributed or semidistributed way, in particular the dynamics of surface or subsurface contributing areas.” TOPMODEL and GIS • Surface saturation and soil moisture deficits based on topography – Slope – Specific Catchment Area – Topographic Convergence • Partial contributing area concept • Saturation from below (Dunne) runoff generation mechanism Saturation in zones of convergent topography Uso do índice topográfico • A esperança é que usando o índice de saturação se obtenha melhores resultados de simulação, porque apenas a região saturada contribui efetivamente para a geração de escoamento. Outros usos do índice topográfico • relacionar com ndvi • relacionar com evapotranspiração • relacionar com início de um rio Obtenção do índice topográfico • equação • variáveis • passos partindo do mnt filtrado TOPMODEL a = runoff do idrisi teoricamente a = A/c e é dado em metros não parece ser importante declividade em percentual dividindo por 100 chegamos a tg(b) a/tgb ln(a/tgb) Histograma do índice ln(a/tgb) Specific catchment area a is the Numerical Evaluation upslope area per unit contour with the D Algorithm 2 length [m /m m] Steepest direction Proportion downslope Topographic Definition flowing to neighboring grid cell 4 is 1/(1+2) Stream line Proportion flowing to neighboring grid cell 3 is 2/(1+2) 3 Contour line 4 2 1 2 Flow direction. 5 1 6 8 7 Tarboton, D. G., (1997), "A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital Elevation Models," Water Resources Research, 33(2): 309-319.) (http://www.engineering.usu.edu/cee/faculty/dtarb/dinf.pdf) Hydrological processes within a catchment are complex, involving: • • • • Macropores Heterogeneity Fingering flow Local pockets of saturation The general tendency of water to flow downhill is however subject to macroscale conceptualization TOPMODEL assumptions • The dynamics of the saturated zone can be approximated by successive steady state representations. • The hydraulic gradient of the saturated zone can be approximated by the local surface topographic slope, tanb. • The distribution of downslope transmissivity with depth is an exponential function of storage deficit or depth to the water table T Toe - S / m T Toe fz To is lateral transmissivity [m2/h] S is local storage deficit [m] z is local water table depth [m] (=S/ne) ne is effective porosity m is a storage-discharge sensitivity parameter [m] f =ne/m is an alternative storage-discharge sensitivity parameter [m-1] Topmodel - Assumptions • The soil profile at each point has a finite capacity to transport water laterally downslope. q cap T S where T K dz e.g. T KD or D S Dw T K oe 0 Units D m z m K m/hr f m-1 T S q fz Ko dz f m2/hr dimensionless m2/hr = m3/hr/m Topmodel - Assumptions Specific catchment area a [m2/m m] (per unit contour length) • The actual lateral discharge is proportional to specific catchment area. q act R a • R is – Proportionality constant – may be interpreted as “steady state” recharge rate, or “steady state” per unit area contribution to baseflow. D S Dw Units a m R m/hr qact m2/hr = m3/hr/m Topmodel - Assumptions Specific catchment area a [m2/m m] (per unit coutour length) • Relative wetness at a point and depth to water table is determined by comparing qact and qcap q Ra w act q cap T S D S • Saturation when w > 1. a 1 i.e. TS R Dw Topmodel Specific catchment area a [m2/m m] (per unit coutour length) a/TS or a/S or ln(a/S) or ln(a/tanb) [tanb=S] is a wetness index that determines the locations of saturation from below and soil moisture deficit. With uniform K and finite D assumption Ra a /S 1 w w where ' a / S dA TS ' A z D (1 w ) z D S Dw With exponential K assumption 1 aR 1 a z ln z ln where f TS f S 1 1 R lna / S dA and z ( ln ) A f T Soil moisture deficit = z times porosity Slope Specific Catchment Area Wetness Index ln(a/S) from Raster Calculator. Average, = 6.91 Numerical Example Given • Ko=10 m/hr • f=5 m-1 • Qb = 0.8 m3/s • A (from GIS) • ne = 0.2 Compute • R=0.0002 m/h • =6.90 • T=2 m2/hr z 0.46 m 1 a z z ln f S Raster calculator -( [ln(sca/S)] - 6.90)/5+0.46 Depth to saturation z Flat (0.5%) -3 - 0 (7.8%) 0 - 0.1 (2.5%) 0.1 - 0.2 (4.0%) 0.2 - 0.5 (29%) 0.5 - 1 (56%) 1 - 1.5 (0.2%) Calculating Runoff from 25 mm Rainstorm • Flat area’s and z <= 0 – Area fraction (81 + 1246)/15893=8.3% – All rainfall ( 25 mm) is runoff • 0 < z rainfall/effective porosity = 0.025/0.2 = 0.125 m – Area fraction 546/15893 = 3.4% – Runoff is P-z*0.2 – (1 / [Sat_during_rain ]) * (0.025 - (0.2 * [z])) – Mean runoff 0.0113 m =11.3 mm • z > 0.125 m – Area fraction 14020/15893 = 88.2 % – All rainfall infiltrates • Area Average runoff – 11.3 * 0.025 + 25 * 0.083 = 2.47 mm – Volume = 0.00247 * 15893 * 30 * 30 = 35410 m3 Why Programming GIS estimation of hydrologic response function • Amount of runoff generated • Travel time to outlet • Distance from each grid cell to outlet along flow path (write program to do this) • Distance from each point on contributing area – overlay grid to outlet distances with contributing area. Steps for distance to outlet program • Read the outlet coordinates • Read the DEM flow direction grid. This is a set of integer values 1 to 8 indicating flow direction • Initialize a distance to outlet grid with a no data value • Convert outlet to row and column references • Start from the outlet point. Set the distance to 0. • Examine each neighboring grid cell and if it drains to the current cell set its distance to the outlet as the distance from it to the current cell plus the distance from the current cell to the outlet. 4 Programming the calculation of distance to the outlet 3 5 6 2 1 7 8 Direction encoding 1 1 2 30 3 0 2 3 72.4 102.4 7 6 5 42.4 72.4 7 6 5 6 7 7 Distances to outlet Recursive Procedure DISTANCE(i,j) do for each neighbor (location in, jn) If neighbor (in, jn) drains to cell (i,j) Distance from (in, jn) is distance from (i,j) + distance between cells (accounting for possible diagonals) Call recursive procedure on the neighbor, DISTANCE(in, jn) endif end do Visual Basic Programming in ArcMAP References ESRI, (1999), ArcObjects Developers Guide: ArcInfo 8, ESRI Press, Redlands, California. Zeiler, M., (2001), Exploring ArcObjects. Vol 1. Applications and Cartography. Vol 2. Geographic Data Management, ESRI, Redlands, CA. Are there any questions ? AREA 2 3 AREA 1 12 Idéia para trabalho Relacionar índice de saturação com índice de vegetação de imagem de satélite importante georeferenciamento! Exercício O modelo hidrológico TOPMODEL utiliza como base a distribuição estatística do índice de saturação em uma bacia hidrográfica. O índice de saturação do TOPMODEL é calculado pela equação abaixo. Calcule Isat.