A New Instance of FIOT to solve problems of the group “Quantified Things”, a new Trend of Internet of Things Nathalia Moraes do Nascimento [email protected] Quantified Me...Quantified Self Quantified Self Quantified Us Self-Tracking + Collective Data Sharing Quantified Us What can people learn when they pool data across them? 23/09/2014 @LES/PUC-Rio 5 Quantified Things What can people learn when they pool data across them? What can things learn when they pool data across them? 23/09/2014 @LES/PUC-Rio 6 Quantified Things What can people learn when they pool data across them? What can things learn when they pool data across them? Quantified Things as a branch of the Quantified Us movement 23/09/2014 @LES/PUC-Rio 7 Quantified Things Things can be... 23/09/2014 @LES/PUC-Rio 8 Quantified Things Things can be... 23/09/2014 @LES/PUC-Rio 9 Quantified Things Things can be... 23/09/2014 @LES/PUC-Rio 10 Quantified Things Things can be... 23/09/2014 @LES/PUC-Rio 11 Quantified Things Things can be... 23/09/2014 @LES/PUC-Rio 12 Quantified Things Things can be... 23/09/2014 @LES/PUC-Rio 13 Proposed Solution Make an instance of the Framework for Internet of Things (FIOT) to create a Product Line for Quantified Things Applications To adapt Communication Layer of FIOT: To communicate physical things with JADE Agents To develop an other adaptive process based on previous experiments (supervised learning) To develop an application scenario • Create Database (Previous experience) • Execution 23/09/2014 @LES/PUC-Rio 14 Application Scenario Quantified Food Device Problem: * (SEBRAE, BB) • Spoiled Fruits -> Sick people • Tropical Fruits like banana: 50% loss – 60% of this after fruit picking • Food Waste Price 23/09/2014 @LES/PUC-Rio 15 Application Scenario Quantified Food Device To collect data about food storage Make inferences about real expiration date of fruits and vegetables • Predictions based on data polled across storages 23/09/2014 @LES/PUC-Rio 16 FIOT 23/09/2014 @LES/PUC-Rio 17 Physical Layer 23/09/2014 @LES/PUC-Rio 18 Application Monitoring quantified data Alarm for poor environment conditions 23/09/2014 @LES/PUC-Rio 19 Proposed Scenario 23/09/2014 Evaluates the adaptation process Adaptive Agents Data collected from machines’ sensors @LES/PUC-Rio 20 Contributions To reduce waste of foods Make possible in the future, the creation of an ideal box for conservation of fruits Not only the prediction, but also to act, changing the temperature and the humidity inside the box, for example. To solve a group of problems based on Quantified Things using FIOT 23/09/2014 @LES/PUC-Rio 21 References Fundação Banco do Brasil. Frulticultura – Banana. Disponível em http://www.bb.com.br/docs/pub/inst/dwn /Vol3FruticBanana.pdf, 2010. Sebrae. Estudo de Mercados Sebrae: Banana. Disponível em http://201.2.114.147/bds/bds.nsf/0D8AE2 879FDAB331832574DC004521C1/$File/NT 0003904E.pdf, 2008. 23/09/2014 @LES/PUC-Rio 22 References Accenture. Digital Industry 4.0. Disponível em http://www.accenture.com/us-en/landingpages/products/Pages/digital-industry.aspx. Acesso em março de 2014. Annes, R. APLICAÇÕES DE SISTEMAS MULTIAGENTES E APRENDIZAGEM AUTOMÁTICA NO PROCESSAMENTO DA LINGUAGEM NATURAL. Disponível em http://sedici.unlp.edu.ar/bitstream/handle/10915/23458/Documento_completo.pdf?sequence=1. Acesso em março de 2014. Costa, A.D., Nunes, C., Silva, V.T., Fonseca, B., Lucena, C.J.P., 2010. Jaaf+t: a framework to implement self-adaptive agents that apply selftest, in: Proceedings of the 2010 ACM Symposium on Applied Computing, ACM, New York, NY, USA. pp. 928-935. D. Floreano, P. Du¨rr, C. Mattiussi. Neuroevolution: from architectures to learning, in proceeding of the Evolutionary Intelligence, 2008. F. Bellifemine, A. Poggi, G. Rimassa. JADE – A FIPA-compliant agent framework. Available on< http://www.dia.fi.upm.es/~phernan/AgentesInteligentes/referencias/bellifemine99.pdf>. Access in September 2013. FARSA. Framework for Autonomous Robotics Simulation and Analysis. Available on < http://laral.istc.cnr.it/farsa/>. Access in September 2013. Frevo. FRamework for EVOlutionary design. Available on < I. Fehérvári and W. Elmenreich. Evolutionary Methods in Self-organizing System Design. International Conference on Genetic and Evolutionary Methods. 2009. A. Sobe, I. Fehervari, W. Elmenreich. FREVO: A Tool for Evolving and Evaluating Selforganizing Systems. In the proceedings of the Internacional Conference on Self-Adaptive and Self-Organizing Systems, 2012. Gardelli, L. Designing Self-Organising environments with agents and artifacts: A simulation-driven approach. International Journal of Agent-Oriented Software Engineering, 2(2). In Press. 2007. Gardelli, L.; Mirko, V.; Casadei, M.; Omicini, A. Designing Self-organising MAS Environments: The Collective Sort Case. International Workshop on Environments for MultiAgent System (E4MAS), 2007.a. G. Di Marzo Serugendo, M.-P. Gleizes, A. Karageorgos. Self-Organisation in MAS, Knowledge Engineering Review 20(2):165-189, Cambridge University Press, 2005. G. Di Marzo Serugendo, J. Fitzgerald, N. Guelfi. A Generic Framework for Designing and Implementing Self-Adaptive and Self-Organising Systems. COMPUTING SCIENCE, University of Newcastle, 2007. References G. Di Marzo Serugendo, M. Kelly. Decentralised Car Traffic Control using Message Propagation Optimized with a Genetic Algorithm, in: Proceeding of the Evolutionary Computation, 2007. IBM. Internet of Things. Available on http://www-01.ibm.com/software/info/internet-of-things/. Access in December 2013. Jakob, M. AgentPolis: Towards a Platform for Fully Agent-based Modeling of Multi-Modal Transportation(Demonstration), in Proceedings of the AAMAS, 2012. Nolfi S., Floreano D. Evolutionary Robotics: The Biology, Intelligence, and Technology of SelfOrganizing Machines. Cambridge, MA: MIT Press/Bradford Books, 2000. JADE HomePage. Integrating JADE and Jess. Available on <http://jade.cselt.it/doc/tutorials/jadejess/jade_jess.html#Figure_1.> Access in September 2013. JNEAT HomePahe. Framework for NeuroEvolution (NEAT JAVA). Available on < http://nn.cs.utexas.edu/soft-view.php?SoftID=5>. Access in September 2013. Neto, B.F.S. JAAF: Implementando Agentes Auto-Adaptativos Orientados a Serviços. Dissertação de Mestrado – Departamento de Informática – PUC-RIO, 2010. Neural Network Research Group. NeuroEvolution. Available on http://nn.cs.utexas.edu/?neuroevolution. Access in September 2013. R. Miikkulainen, E. Feasley, L. Johnson, I. Karpov, P. Rajagopalan, A. Rawal, W. Tansey. Multiagent Learning through Neuroevolution, in Proceedings of IEEE WCCI, 2012. SIMON S. HAYKIN. Redes Neurais. ReadWrite. How The Internet Of Things Will Transform Everything - According To IT Experts. Available on http://readwrite.com/2013/04/30/how-the-internet-of-things-will-transform-everything-according-toit-experts#feed=/tag/internet-of-things&awesm=~ooYoe1nVhRqrsI. Spril 2013. Telefonica. Smart Cities for a better world. Available on https://m2m.telefonica.com/discoverm2m/smart-cities. Access in December 2013. V. I. Gorodetskii. SelfOrganization and Multiagent Systems: II. Applications and the Development Technology. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 51 No. 3 2012. Velloso, E.; Raposo, A.; Fuks, H. Web of Things: The Collaborative Interaction Designer Point of View. Proceedings of Web Science Brasil 2010, | Workshop of the Brazilian Institute for Web Science Research . Read more: http://groupware.les.inf.puc-rio.br/domotica.jsf#ixzz2t2GYTnPt WEIß, G. ; SEN, S. Adaptation and Learning in Multi-Agent. Springer, 1995.