EPIDEMIOLOGIA E ONCOLOGIA: UMA RELAÇÃO ÍNTIMA Moysés Szklo Professor de Epidemiologia e Medicina Universidade Johns Hopkins Editor-Chefe, American Journal of Epidemiology Things have to be as simple as possible, but not simpler. (Einstein) Conceito Fundamental Para o Controle de Câncer: História Natural Início da exposição a fatores de risco Início da enfermidade Detecção precoce (se possível), Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, “Tempo de antecipação” (Baseado em Gordis L. Epidemiology, 3rd edition) Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva As áreas de pesquisa em câncer se “encaixam” na história natural Início da exposição a fatores de risco Início da enfermidade Detecção precoce (se possível), Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva “Tempo de antecipação” Estudos de avaliação de programas de detecção precoce (rastreamento/ prevenção secundária) Estudos de fatores determinantes de atraso diagnóstico Avaliação de programas de atenção a pacientes terminais Estudos de fatores prognósticos biológicos, ambientais e terapêuticos Estudos de qualidade de vida Estudos de processo e estrutura do sistema de atenção à saúde Correspondência entre as diferentes fases da história natural do câncer e níveis de controle Início da exposição a fatores de risco Início da enfermidade Detecção precoce (se possível), Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva “Tempo de antecipação” Prevenção primária: • Prevenção de exposição a fatores de risco • Cessação de exposição Prevenção secundária (rastreamento) Prevenção terciária Estudos epidemiológicos • Estudos experimentais (ensaios clinicos) e estudos observacionais Correspondência entre as diferentes fases da história natural do câncer e níveis de controle Início da exposição a fatores de risco Início “da enfermidade Detecção precoce (se possível), Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva “Tempo de antecipação” Prevenção primária: • Prevenção de exposição a fatores de risco • Cessação de exposição Prevenção Preven ção secundá secund ária Prevenção Preven ção terci terciá ária O GRANDE SUCESSO DA PREVENÇÃO PRIMÁRIA Prevalência de tabagismo entre adultos de 18 anos ou mais de idade e estratégias nacionais de controle de tabaco implementadas entre 1986 e 2008 (Adaptado de Figueiredo VC [Tese de Doutorado]. RJ: Instituto de Medicina Social, UERJ, 2007) Primary Prevention of Cancer Is Based on the Epidemiologic Triad of Risk Factors Environment Vector Human host Agent Primary Prevention of Cancer Is Based on the Epidemiologic Triad of Risk Factors Three basic strategies in primary prevention Environment Vector Human host - Kill the agent and/or the vector - Make the environment hostile to the agent - Increase human host’s resistance Agent Primary Prevention of Cancer Is Based on the Epidemiologic Triad of Risk Factors – Example: Tobacco Exposure Environment: air Example: Prohibition of indoor smoking Example: lobby against tobacco industry Example: Decrease in tobacco cultivation Vector: tobacco industry Agent: tobacco Human Host: behavior Example: Health education, smoking cessation therapy Risk Factors (Causes) for Cancer Established by Epidemiologic Research: Some Examples • Estrogen replacement therapy and breast and endometrial cancers • Asbestos and respiratory cancer • Smoking and cancers • Ionizing radiation and cancers • Down’s syndrome and leukemia • Helicobacter pylori and gastric cancer • HPV and cervical cancer • Obesity and post-menopausal breast cancer • Diet low in fibers and colon cancer COMO SÃO GERADAS AS HIPÓTESES SOBRE FATORES DE RISCO (ETIOLOGIA) DE CÂNCER? Epidemiologia é a arte de olhar A melhor estratégia de análise de dados é olhar os dados e pensar no que se está vendo. (G. W. Comstock) Generating Hypothesis from Descriptive (Available) Population Data: Average Annual Breast Cancer Age-specific Incidence Rates per 100,000, USA 19972001 (based on SEER data) 100 Incidence Rates/ 100,000 90 80 70 60 3-D Column 1 3-D Column 2 3-D Column 3 50 40 30 20 10 0 Age 30-34 50-54 75+ The decrease in the slope at around menopause led to the hypothesis that breast cancer is estrogen-dependent, which was subsequently confirmed in analytic epidemiologic studies O MODELO DE ROTHMAN EXPLICA DOIS FENÔMENOS RELACIONADOS -POPULAÇÕES COM PREVALÊNCIA ELEVADA DE UM COMPONENTE CAUSAL OU UMA CAUSA NECESSÁRIA (FATOR DE RISCO) TÊM RISCO BAIXO DA ENFERMIDADE FALTAM COMPONENTES CAUSAIS QUE COMPLETEM AS CAUSAS SUFICIENTES; - ELIMINAÇÃO DE UM FATOR DE RISCO (COMPONENTE CAUSAL) DIMINUI O RISCO DA ENFERMIDADE TODOS AS CAUSAS SUFICIENTES QUE CONTÊM O COMPONENTE CAUSAL SÃO ELIMINADAS Modelo de causalidade de Rothman High Salt Intake High intake of processed foods Smoking H. Pylori Taxas por 100 000 Causa suficiente Constelação de componentes causais que, quando presente, causa inevitavelmente a doença Causa necessária, mas não suficiente High Salt Intake Taxas de mortalidade por câncer, ajustadas por idade, sexo feminino, Estados Unidos 1930-2001 Smoking (American Cancer Society, 2005) (American Cancer Society, 2005) High intake of processed foods H. Pylori* O MODELO DE ROTHMAN EXPLICA DOIS FENÔMENOS RELACIONADOS -POPULAÇÕES COM PREVALÊNCIA ELEVADA DE UM COMPONENTE CAUSAL OU UMA CAUSA NECESSÁRIA (FATOR DE RISCO) TÊM RISCO BAIXO DA ENFERMIDADE FALTAM COMPONENTES CAUSAIS QUE COMPLETEM AS CAUSAS SUFICIENTES; - ELIMINAÇÃO DE UM FATOR DE RISCO (COMPONENTE CAUSAL) DIMINUI O RISCO DA ENFERMIDADE TODOS AS CAUSAS SUFICIENTES QUE CONTÊM O COMPONENTE CAUSAL SÃO ELIMINADAS Modelo de causalidade de Rothman High Salt Intake High intake of processed foods Smoking H. Pylori Taxas por 100 000 Causa suficiente Constelação de componentes causais que, quando presente, causa inevitavelmente a doença Causa necessária, mas não suficiente High Salt Intake Taxas de mortalidade por câncer, ajustadas por idade, sexo feminino, Estados Unidos 1930-2001 Smoking (American Cancer Society, 2005) (American Cancer Society, 2005) High intake of processed foods H. Pylori* Correspondência entre as diferentes fases da história natural do câncer e níveis de controle Início da exposição a fatores de risco Momento em que a detecção precoce se torna possivel Início da enfermidade Detecção precoce é feita, Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva Tempo de antecipação Fase pré-clínica detectável (FPCD) Prevenção primária: • Prevenção da exposição a fatores de risco • Cessação de exposição Prevenção secundária (rastreamento) Prevenção Preven ção terci terciá ária Correspondência entre as diferentes fases da história natural do câncer e níveis de controle Início da exposição a fatores de risco Momento em que a detecção precoce se torna possivel Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Início da enfermidade Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva “Tempo de antecipação” Fase pré-clínica detectável (FPCD) Prevenção primária: • Prevenção da exposição a fatores de risco • Cessação de exposição Prevenção secundária (rastreamento) Prevenção Preven ção terci terciá ária Correspondência entre as diferentes fases da história natural do câncer e níveis de controle Início da exposição a fatores de risco Momento em que a detecção precoce se torna possivel Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Início da enfermidade Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva “Tempo de antecipação” Fase pré-clínica detectável (FPCD) Prevenção primária: • Prevenção da exposição a fatores de risco • Cessação de exposição Prevenção secundária (rastreamento) Prevenção Preven ção terci terciá ária ANOTHER CRITICAL CONCEPT IN CANCER CONTROL: THE CRITICAL POINT Critical Point: A point in the natural history of the disease before which therapy may be less difficult and/or more effective (If this disease is potentially curable, cure may be possible before this point, but not after) (Baseado em Gordis L. Epidemiology, 3rd edition) Biologic onset A Earliest point when diagnosis is possible Usual diagnosis based on symptoms Effective early diagnosis B D Detectable Preclinical Phase Critical point When should early diagnosis be made? NATURAL HISTORY OF A DISEASE (Adapted from Gordis, Epidemiology, 1996) Biologic onset A Earliest point when diagnosis is possible Usual diagnosis based on symptoms B D Detectable Preclinical Phase Critical point When should early diagnosis be made? NATURAL HISTORY OF A DISEASE (Adapted from Gordis, Epidemiology, 1996) Biologic onset A Earliest point when diagnosis is possible Usual diagnosis based on symptoms B D Detectable Preclinical Phase Critical point When should early diagnosis be made? NOT NECESSARY! NATURAL HISTORY OF A DISEASE (Adapted from Gordis, Epidemiology, 1996) Earliest point when diagnosis is Biologic possible onset A Usual diagnosis based on symptoms Effective early diagnosis B D Detectable Preclinical Phase Critical point IN CERVICAL CANCER, THE DPCP PRIOR TO THE CRITICAL POINT IS LONG: SCREENING EVERY 3 YEARS IS FAIRLY CONSERVATIVE NATURAL HISTORY OF A DISEASE (Adapted from Gordis, Epidemiology, 1996) Earliest point when diagnosis is Biologic possible onset Effective early diagnosis A B Usual diagnosis based on symptoms D Detectable Preclinical Phase IN BREAST CANCER, THE DPCP PRIOR TO THE CRITICAL POINT IS RELATIVELY SHORT: SCREENING EVERY TWO YEARS IS REASONABLE (DPCP ∼3.3 years for postmenopausal women; ∼1.7 years for <50 years old) (Tabar,HISTORY et al, Cancer Tabar et al, Int NATURAL OF A1995;75:2507-17; DISEASE J Cancer 1996;66:413-9) (Adapted from Gordis, Critical point Epidemiology, 1996) Usual diagnosis based on symptoms Earliest point when diagnosis is Biologic possible onset A B D Detectable Preclinical Phase Critical point IN LUNG CANCER, THE DPCP PRIOR TO THE CRITICAL POINT IS SO SHORT THAT SCREENING IS NOT EFFECTIVE NATURAL HISTORY OF A DISEASE (Adapted from Gordis, Epidemiology, 1996) Biologic onset A Usual diagnosis based on symptoms Earliest point when diagnosis is possible Survival* Survival* Screening is 2 yrs 5 yrs ineffective cure B 1 2 3 D Detectable Preclinical Phase *corrected for lead time Critical point Most diseases have multiple critical points; thus, the earlier the diagnosis, the better the prognosis NATURAL HISTORY OF A DISEASE (Adapted from Gordis, Epidemiology, 1996) A KEY NOTION WHEN EVALUATING SURVIVAL OF PATIENTS WITH CANCER: LEAD TIME BIAS NATURAL HISTORY OF CANCER IN PATIENTS A AND B IS THE SAME Patient A Disease onset Diagnosis based on symptoms Death 1995 2004 2010 Survival= 6 years Patient B Lead time Disease onset Early diagnosis Death 1995 2002 2010 Survival= 8 years Survival B = Survival A + lead time Conclusion: Screening was not effective A KEY NOTION WHEN EVALUATING SURVIVAL OF PATIENTS WITH CANCER: LEAD TIME BIAS NATURAL HISTORY OF CANCER IN PATIENTS A AND B IS DIFFERENT Patient A Disease onset Diagnosis based on symptoms Death 1995 2004 2010 Survival= 6 years Patient B Net gain Lead time Disease onset Early diagnosis Death 1995 2002 2010 Survival= 10 years Survival B > Survival A + lead time Conclusion: Screening was effective 2012 Natural History of a Disease: Lead Time Bias in Survival Analysis (Adapted from Frank, Am J Prev 1985;1:3-9) Cumulative Survival 100% 70% Lead time bias 40% Lead Time -2 Usual diagnosis Early diagnosis 3 5 10 12 5 years after usual diagnosis 5 years after early diagnosis (Baseado em Gordis L. Epidemiology, 3rd edition) Lead-Time- Adjusted Five-Year Survival Among Breast Cancer Patients in Shapiro et al’s Randomized Clinical Trial (Shapiro et al, JNCI 1982;69:349-55) 80 70 60 50 40 30 20 10 0 Control 2nd Qtr Total Allocated to Screening Overdiagnosis Bias: Bleyer AB & Welch HG. Effect of Three Decades of Screening Mammography on Breast Cancer Incidence. New Eng J Med 2012;367:1998-2005. • Effective cancer screening should increase the incidence of disease detected at an early stage and decrease late stage disease • Examination of breast cancer incidence trends from 1976 through 2008, taking into account the transient excess incidence associated with hormone replacement therapy and adjusting for trends in the incidence of women younger than 40 years (that is, women without screening) • During this period, incidence of early stage breast cancer doubled (an absolute increase of 122 cases per 100 000 women) • The rate of late stage breast cancer decreased by 8% (from 102 to 94 cases per 100 000 women), corresponding to 8 cases. • Thus, only 8 of the 122 cases were thus expected to progress to advanced disease • It is estimated that in 2008 breast cancer was overdiagnosed in more than 70 000 women (31% of all breast cancers diagnosed) Assumptions Justifying a Screening Program • All or most clinical cases of a disease first go through a detectable pre-clinical phase prior to the last critical point, and • In the absence of intervention, all or most cases in a pre-clinical phase progress to the clinical phase. • Prognosis (recurrence free survival and survival) improve with early diagnosis Causas de baixa efetividade de um programa de rastreamento Início da exposição a fatores de risco Início da enfermidade Detecção precoce (se possível), Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva “Tempo de antecipação” • Tempo de antecipação é curto (ex: câncer de pulmão) • O tempo de antecipação é longo, mas a terapia não é eficaz • A terapia é eficaz, mas o sistema de atenção à saúde é falho Correspondência entre as diferentes fases da história natural do câncer e níveis de controle Início da exposição a fatores de risco Momento em que a detecção precoce se torna possivel Início da enfermidade Detecção precoce é feita, Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Detecção baseada em sintomas e sinais, que ocorre com atraso depois do início da fase Morte, clínica cura ou recidiva “Tempo de antecipação” Fase pré-clínica detectável (FPCD) Prevenção primária primária:: • Prevenção da exposição a fatores de risco • Cessação de exposição Prevenção secundária:: secundária rastreamento Prevenção Preven ção terci terciá ária Designs Used in Clinical Research (Clinical Epidemiology) EXPERIMENTAL (RANDOMIZED CLINICAL TRIAL) Study Sample Random Allocation Intervention Control Follow-up Outcome Efficacy = Outcome ( Incidence in Control Group ) − ( Incidence in Active Intervention Group ) × 100 ( Incidence in Control Group ) Experimental Epidemiology: the Randomized Clinical Trial Randomized Clinical Trials of Screening for Prostate Cancer Cumulative mortality. Schroder FH, et al. New Eng J Med 2009;360:1320-8 (USA) Cumulative number of deaths. Andriole GL et al, New Eng J Med 2009;360:1310-9 (Europe) Randomized Clinical Trial: Recurrence and Breast Cancer Mortality in 6846 Women with ER-positive Disease Recurrence Mortality (Davies C, Pan H, Godwin J, et al. Long term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer:ATLAS, a randomised trial. Lancet 2012 [Electronic publication]) Two Designs Used in Clinical Research (Clinical Epidemiology) EXPERIMENTAL (RANDOMIZED CLINICAL TRIAL) NON-EXPERIMENTAL (OBSERVATIONAL) Study Sample Study Sample Random Allocation Non-Random Allocation Intervention Control Follow-up Outcome Outcome Factor (+) Factor (-) Follow-up Outcome Outcome Observational Study: Kaplan-Meier curves of survival after diagnosis of breast cancer. HER2 human epidermal growth factor receptor-2-positive; HR hormone receptor (estrogen and/or progesterone); TN triple negative (estrogen, progesterone and HER2 negative) Stearoyl-CoA desaturase 1 (SCD1): essential regulator of fatty acid synthesis. Overexpression increases the growth of breast cancer cell line. All HR+ TN HER2+ (Holder AM, Gonzalez-Angulo AM, Chen H, et al. High stearoyl-CoA desaturase 1 expression is associated with shorter survival in breast cancer patients. Breast Cancer Res Treat [epubl, Dec 2012]) Detour: A USEFUL STATISTIC: THE NUMBER OF PEOPLE WHO HAVE TO BE TREATED TO PREVENT ONE EVENT How is the number that needs to be screened/treated to prevent one death calculated? It is the inverse of the difference in mortality between the control and the active intervention groups. For example, if the mortality rate in the control group is 30% and in the active intervention group it is 10%, the difference is 20% Thus, if for every 100 individuals, 20 deaths are prevented, to prevent 1 death, 1/0.2= 5. FOR EVERY 100 TREATED/SCREENED PERSONS 20 DEATHS ARE AVOIDED 1 AVOIDED DEATH x? X= (100 × 1) ÷ 20= 5 Some Key Objectives of Epidemiology (All Relevant to Cancer Control) • Investigate the etiology (risk factors) of disease; • Assess effectiveness of preventive and curative strategies; • Translate epidemiologic findings into public health policies. Some Key Objectives of Epidemiology (All Relevant to Cancer Control) • Investigate the etiology (risk factors) of disease; • Assess effectiveness of preventive and curative strategies; • Translate epidemiologic findings into public health policies. TRANSLATIONAL EPIDEMIOLOGY Processo de Implementação de Politicas de Controle do Câncer Baseadas em Evidências Políticas baseadas em evidências Aquisição de evidências científicas • Ensaios aleatorizados • Estudos de coorte • Estudos de casos e controles • Estudos de séries temporais • Estudos de processo e estrutura • Estudos conduzidos de novo (Modificado de Dickersin K) Revisões sistemáticas • Colaboração Cochrane • Outras fontes (meta-análises publicadas em revistas) • Revisões Sistemáticas e meta-análises realizadas de novo Custoefetividade Análise de sensibilidade Aplicação da politica: planejamento • Evidências • Obstáculos • Avaliação de níveis de evidência • Seleção de opções programáticas (análise de decisão) • Recomendações Tradução de conhecimentos Levels of Evidence on Effectiveness better • Meta-analysis of randomized trials • Individual randomized trial of high quality • Dramatic changes in the incidence/mortality after introduction of a given program (e.g., St Jude protocol and survival of acute lymphocytic leukemia in children) • Meta-analysis of cohort studies • Individual cohort study of high quality • Meta-analysis of case-control studies • Individual case-control study of high quality worse • Expert opinion not based on the above Forest plot of the effect of group counselling on the incidence of smoking abstinence. Use of nicotine patch, bupropion, and notriptyline varied among studies (Motillo S, et al. Eur Heart J 2008 [Epub ahead of print Dec 24] Interface between epidemiology and the decision-making process • Meta-Analysis Evaluation of effectiveness • Decision Analysis • Cost-Effectiveness Analysis (Pettiti DB. Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis. New York, Oxford, Oxford University Press, 1994) Interface between epidemiology and the decision-making process • Meta-Analysis Evaluation of effectiveness • Decision Analysis • Cost-Effectiveness Analysis (Pettiti DB. Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis. New York, Oxford, Oxford University Press, 1994 Relations between meta-analysis, decision analysis and costeffectiveness analysis Decision Analysis Meta-Analysis Summary of the efficacy/effectiveness of the intervention Assessment of the relative value of the programmatic options, based on their community effectiveness (ideally determined by meta-analysis) Cost-effectiveness Analysis Assessment of the cost of the program, based on the relative value of the options Decision Analysis: uses a quantitative approach to evaluate the relative value (effectiveness) of one or more interventions, programs or services. Steps in Decision Analysis • Identification and description of the problem • Collection of the information needed to construct the decision tree (ideally by means of meta-analysis) • Construction of a decision tree • Analysis of the decision tree High Social Class (0.10) Mortality (0.10) Yes (0.70) SC Mortality(0.20) Tolerance to intervention Low Social Class (0.90) High Social Class (0.10) No (0.30) Mortality (0.50) SC Mortality (0.50) Decision Node Low Social Class (0.90) High Social Class (0.10) Mortality (0.05) Yes (0.30) SC Mortality (0.10) Low Social Class (0.90) Tolerance to intervention No (0.70) High Social Class (0.10) Mortality (0.50) SC Mortality (0.50) Low Social Class (0.90) Example of decision tree with two chance nodes For those who tolerate the intervention, D has a lower mortality than C High Social Class (0.10) Mortality (0.10) Yes (0.70) SC Mortality(0.20) Tolerance to intervention Low Social Class (0.90) High Social Class (0.10) No (0.30) Mortality (0.50) SC Mortality (0.50) Decision Node Low Social Class (0.90) High Social Class (0.10) Mortality (0.05) Yes (0.30) SC Mortality (0.10) Low Social Class (0.90) Tolerance to intervention No (0.70) High Social Class (0.10) Mortality (0.50) SC Mortality (0.50) Low Social Class (0.90) Example of decision tree with two chance nodes For those who tolerate the interventions, D has a lower mortality than C High Social Class (0.10) Mortality (0.10) Yes (0.70) SC Mortality(0.20) Tolerance to intervention Low Social Class (0.90) High Social Class (0.10) No (0.30) Mortality (0.50) SC Mortality (0.50) Decision Node Low Social Class (0.90) High Social Class (0.10) Mortality (0.05) Yes (0.30) SC Mortality (0.10) Low Social Class (0.90) Tolerance to intervention High Social Class (0.10) Mortality (0.50) SC No Thus, (0.70)higher mortality C: better tolerance, Low Social Class (0.90) D: worse tolerance, lower mortality Mortality (0.50) Example of decision tree with two chance nodes However, tolerance is better for Program C Table 2a – Program C: less efficacious but better drug tolerance (70%) Table 2b – Program D: more efficacious, but less drug tolerance (only 30%) Tolerance? Joint probability of death Tolerance? Joint probability of death Yes 0.70 × 0.10 × 0.10= 0.007 Yes 0.30 × 0.10 × 0.05= 0.0015 0.70 × 0.90 × 0.20= 0.126 No 0.30 × 0.10 × 0.50= 0.015 0.30 × 0.90 × 0.10= 0.027 No 0.70 × 0.10 × 0.50= 0.035 0.30 x 0.90 x 0.50= 0.135 0.70 × 0.90 × 0.50= 0.315 0.007 + 0.126 + 0.015 + 0.135= 0.283 or 28.30% 0.0015+ 0.027 + 0.035 + 0.315= 0.3785 or 37.85% Conclude: Program D is more efficacious (i.e., those who tolerate the drug have a lower mortality than in Program C), but because tolerance to Program C is higher, its community effectiveness is higher. Community effectiveness of C (compared with D)= {[37.85% - 28.30%] ÷ 37.85%} × 100= 25.2% THE END Objectives of Epidemiology (All Relevant to Cancer Control) • Describe the magnitude of the disease burden in the population • Examine the distribution of the disease in the population using vital statistics data according to factors related to persons (e.g., age, gender), time and place; • Investigate the etiology (risk factors) of disease; • Assess effectiveness of preventive and curative strategies; • Translate epidemiologic findings into public health policies. Who, 2010. Global status report on noncommunicable diseases 2010 Número estimado de casos novos, por sexo, Brasil, 2012 Homens 195190 Mulheres 189150 Localização Primária Casos novos % Próstata 60180 30,8 Traqueia, Brônquios e Pulmão 17210 8,8 Cólon e reto 14180 7,3 Estômago 12670 6,5 Cavidade oral 9990 Esôfago Localização Primária Casos novos % Mama 52680 27,9 Colo do útero 17540 9,3 Cólon e reto 15960 8,4 Tireoide 10590 5,6 5,1 Traqueia, Brônquios e Pulmão 10110 5,3 7770 4,0 Estômago 7420 3,9 Bexiga 6210 3,2 Ovário 6190 3,3 Laringe 6110 3,1 Corpo do útero 4520 2,4 Linfoma Não-Hodgkin 5190 2,7 Cérebro, Sistema Nervoso 4450 2,4 Cérebro, Sistema Nervoso 4820 2,5 Linfoma Não-Hodgkin 4450 2,4 *Fonte:: MS/INCA/ Estimativa de Câncer no Brasil, 2012 MS/INCA/Conprev/Divisão de Informação Distribuição das taxas brutas por 100 000 habitantes de incidência estimadas para o ano de 2008, em homens e mulheres, segundo os principais tipos de câncer. 52,43 Próstata 50,71 Mam a Fem inina 9,72 Colo do Útero 14,88 Traquéia, Brônquio e Pulm ão 18,86 7,93 Estôm ago 14,92 13,23 19,18 Cólon e Reto 11,00 3,88 Cavidade Oral 2,72 Esôfago 8,35 5,52 4,44 Leucem ias 3,09 3,03 Pele Melanom a 60 40 Fonte: MS/INCA/Conprev/Divisão de Informação 20 0 20 40 60 Registros de Câncer de Base Populacional (RCBP) * * * * * * * * Situação atual Dos 32 implantados 27 RCBP estão ativos * * * * * * * * * * * * ** * * * * Registro Hospitalar de Câncer - RHC 40-75% das informações da bases de dados dos RHC já são transferidas automaticamente para os RCBP por meio da exportação do sistema SisRHC/importação pelo BPW Situação atual 241 RHC em atividade operacional em CACON/UNACON UNACON 87% tem RHC CACON 100% tem RHC Objectives of Epidemiology (All Relevant to Cancer Control) • Describe the magnitude of the disease burden in the population • Examine the distribution of the disease in the population using vital statistics data according to factors related to persons (e.g., age, gender), time and place; • Investigate the etiology (risk factors) of disease; • Assess effectiveness of preventive and curative strategies; • Translate epidemiologic findings into public health policies. PLACE and PERSON (MEN) Taxas de incidência estimadas (não ajustadas) para os tipos de câncer mais frequentes (exceto câncer de pele não melanoma) em homens, Brasil e regiões geográficas, 2012* Brasil Região Norte Região Nordeste Região Centro-Oeste Região Sudeste Região Sul 1º Próstata (62,54) Próstata (29,72) Próstata (43,08) Próstata (74,65) Próstata (77,89) Próstata (68,36) 2º Traqueia, Brônquio e Pulmão (17,90) Estômago (10,67) Estômago (8,99) Traqueia, Brônquio e Pulmão (16,64) Cólon e Reto (22,12) Traqueia, Brônquio e Pulmão (37,02) 3º Cólon e reto (14,75) Cólon e Reto (14,30) Traqueia, Brônquio e Pulmão (19,73) Cólon e Reto (18,07) 4º Estômago (13,20) Cólon e Reto (3,99) Cavidade Oral (6,15) Estômago (13,84) Estômago (15,52) Estômago (15,72) 5º Cavidade Oral (10,41) Leukaemia Leucemias Cólon e Reto (5,31) Cavidade Oral (8,58) Cavidade Oral (14,61) Esôfago (15,27) Traqueia, Brônquio Traqueia, Brônquio e Pulmão e Pulmão (8,11) (8,52) (3,54) *por 100.000 habitantes Fonte: MS/INCA/ Estimativa de Câncer no Brasil, 2011/2012 MS/INCA/Conprev/Divisão de Informação e Análise de Situação PLACE and PERSON (WOMEN) Taxas de incidência estimadas (não ajustadas) para os tipos de câncer mais frequentes (exceto câncer de pele não melanoma) em mulheres, Brasil e regiões geográficas, 2012* Brasil Região Norte Região Nordeste Região Centro-Oeste Região Sudeste Região Sul 1º Mama feminina (52,50) Colo do útero (23,62) Mama feminina (31,90) Mama feminina (47,56) Mama feminina (68,93) Mama feminina (64,80) 2º Colo do útero (17,49) Mama feminina (19,38) Colo do útero (17,96) Colo do útero (27,71) Cólon e Reto (23,01) Cólon e Reto (19,85) 3º Cólon e Reto (15,94) Thyroid Glândula Tireoide (7,34) Cólon e Reto (6,66) Cólon e Reto (14,71) Colo do útero (15,53) Traqueia, Brônquio e Pulmão (18,58) 4º Glândula Tireoide (10,59) Estômago (5,83) Glândula Tireoide (6,01) Traqueia, Brônquio e Pulmão (9,13) Glândula Tireoide (15,02) Colo do útero (13,88) Estômago (6,76) Traqueia, Brônquio e Pulmão (11,22) Glândula Tireoide (10,28) 5º Breast Traqueia, Brônquio Traqueia, Brônquio Traqueia, Brônquio e Pulmão e Pulmão e Pulmão (10,08) (5,12) (5,64) *por 100.000 habitantes Fonte: MS/INCA/ Estimativa de Câncer no Brasil, 2011/2012 MS/INCA/Conprev/Divisão de Informação e Análise de Situação Objectives of Epidemiology (All Relevant to Cancer Control) • Describe the magnitude of the disease burden in the population • Examine the distribution of the disease in the population using vital statistics data according to factors related to persons (e.g., age, gender), time and place; • Investigate the etiology (risk factors) of disease: • Case-control studies • Cohort studies • Assess effectiveness of preventive and curative strategies; • Translate epidemiologic findings into public health policies. Objectives of Epidemiology (All Relevant to Cancer Control) • Describe the magnitude of the disease burden in the population • Examine the distribution of the disease in the population using vital statistics data according to factors related to persons (e.g., age, gender), time and place; • Investigate the etiology (risk factors) of disease; • Assess effectiveness of preventive and curative strategies; • Translate • Pre-post studies • Quasi-experimental studies epidemiologic findings into public • Follow-up studies - Prognostic studies - Randomized Clinical Trials health policies. ESTUDOS BASEADOS EM SÉRIES TEMPORAIS UTILIZANDO DADOS DE VIGILÂNCIA Mortalidade 1. Estudo Pré-Pós Inferências causais relacionadas a esse desenho são robustas no caso de “experimentos naturais” (exemplo: insulina, estreptomicina) Tempo Introdução do programa Outros programas? Mudanças nas características da população alvo? ESTUDOS BASEADOS EM SÉRIES TEMPORAIS UTILIZANDO DADOS DE VIGILÂNCIA 2. Estudo Quasi-experimental (Pré-Pós com Controles) Mortalidade A= intervenção B= controle A B A Seguimento B (Adapted by Ibrahim M from D. Gillings et al. Am J Pub Hlth 71(1)38-46) 50 (1) (2) (3) 40 (4) 30 Taxas de mortalidade perinatal (5) 20 Antes de o programa ser implementado, a área que recebeu a intervenção tinha taxas the mortalidade perinatal mais elevadas do que a área controle, o que pode explicar porque foi selecionada para receber a intervenção 10 0 1935 1945 Intervenção Controle 1955 Year 1965 Programa 1975 1985 (Adapted by Ibrahim M from D. Gillings et al. Am J Pub Hlth 71(1)38-46) 50 (1) (2) O aspecto mais importante no estudo quasi-experimental é a comparação dos ângulos (3) 40 (4) 30 Taxas de mortalidade perinatal (5) 20 10 0 1935 1945 Intervenção Controle 1955 Year 1965 Programa 1975 1985 Follow-up Studies (Prognostic Studies and RCTs) Losses to follow-up Events (death, recurrence) Factor (+) INCIDENCEFACTOR (+) Initial sample time Final sample = RR Losses to follow-up Events (death, recurrence) Factor (-) INCIDENCEFACTOR (-) Initial sample time Final sample Age-Adjusted Death Rates/100 000, Relative Risks, and Attributable Risks for Lung Cancer— Current Cigarette Smokers Vs Nonsmokers, Cancer Prevention Study I and CPS-II* CPS-I (1959-1965) CPS-II (1982-1988) Nonsmoker Current Smoker Nonsmoker Current Smoker Rate 15.7 187.1 14.7 341.3 Relative Risk 1.0 11.9 1.0 23.2 Rate 9.6 26.1 12.0 154.6 Relative Risk 1.0 2.7 1.0 12.8 Men Women Age-Adjusted Death Rates/100 000, Relative Risks, and Attributable Risks for Lung Cancer— Current Cigarette Smokers Vs Nonsmokers, Cancer Prevention Study I and CPS-II* CPS-I (1959-1965) CPS-II (1982-1988) Nonsmoker Current Smoker Nonsmoker Current Smoker Rate 15.7 187.1 14.7 341.3 Relative Risk 1.0 11.9 1.0 23.2 Rate 9.6 26.1 12.0 154.6 Relative Risk 1.0 2.7 1.0 12.8 Men Women Age-Adjusted Death Rates/100 000, Relative Risks, and Attributable Risks for Lung Cancer— Current Cigarette Smokers Vs Nonsmokers, Cancer Prevention Study I and CPS-II* CPS-I (1959-1965) CPS-II (1982-1988) Nonsmoker Current Smoker Nonsmoker Current Smoker Rate 15.7 187.1 14.7 341.3 Relative Risk 1.0 11.9 1.0 23.2 Rate 9.6 26.1 12.0 154.6 Relative Risk 1.0 2.7 1.0 12.8 Men Women Às vezes, resultados de estudos epidemiológicos de prevenção primária desapontam... BC= beta carotene AT= alpha tocopherol Cumulative Incidence of Lung Cancer by Intervention Allocation (Albanes D, et al. JNCI 1996;88:1560-70) Forest plot of the effect of group counselling on the incidence of smoking abstinence. Use of nicotine patch, bupropion, and notriptyline varied among studies (Motillo S, et al. Eur Heart J 2008 [Epub ahead of print Dec 24] Interface between epidemiology and the decision-making process • Meta-Analysis • Decision Analysis Evaluation of community effectiveness • Cost-Effectiveness Analysis (Pettiti DB. Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis. New York, Oxford, Oxford University Press, 1994) Interface between epidemiology and the decision-making process • Meta-Analysis • Decision Analysis Evaluation of community effectiveness • Cost-Effectiveness Analysis (Pettiti DB. Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis. New York, Oxford, Oxford University Press, 1994 Relations between meta-analysis, decision analysis and costeffectiveness analysis Decision Analysis Meta-Analysis Summary of the efficacy/effectiveness of the intervention Assessment of the relative value of the programmatic options, based on their community effectiveness (ideally determined by meta-analysis) Cost-effectiveness Analysis Assessment of the cost of the program, based on the relative value of the options Decision Analysis: uses a quantitative approach to evaluate the relative value (effectiveness) of one or more interventions, programs or services. Steps in Decision Analysis • Identification and description of the problem • Collection of the information needed to construct the decision tree (ideally by means of meta-analysis) • Construction of a decision tree • Analysis of the decision tree High Social Class (0.10) Mortality (0.10) Yes (0.70) SC Mortality(0.20) Tolerance to intervention Low Social Class (0.90) High Social Class (0.10) No (0.30) Mortality (0.50) SC Mortality (0.50) Decision Node Low Social Class (0.90) High Social Class (0.10) Mortality (0.05) Yes (0.30) SC Mortality (0.10) Low Social Class (0.90) Tolerance to intervention No (0.70) High Social Class (0.10) Mortality (0.50) SC Mortality (0.50) Low Social Class (0.90) Example of decision tree with two chance nodes For those who tolerate the intervention, D has a lower mortality than C High Social Class (0.10) Mortality (0.10) Yes (0.70) SC Mortality(0.20) Tolerance to intervention Low Social Class (0.90) High Social Class (0.10) No (0.30) Mortality (0.50) SC Mortality (0.50) Decision Node Low Social Class (0.90) High Social Class (0.10) Mortality (0.05) Yes (0.30) SC Mortality (0.10) Low Social Class (0.90) Tolerance to intervention No (0.70) High Social Class (0.10) Mortality (0.50) SC Mortality (0.50) Low Social Class (0.90) Example of decision tree with two chance nodes For those who tolerate the interventions, D has a lower mortality than C High Social Class (0.10) Mortality (0.10) Yes (0.70) SC Mortality(0.20) Tolerance to intervention Low Social Class (0.90) High Social Class (0.10) No (0.30) Mortality (0.50) SC Mortality (0.50) Decision Node Low Social Class (0.90) High Social Class (0.10) Mortality (0.05) Yes (0.30) SC Mortality (0.10) Low Social Class (0.90) Tolerance to intervention High Social Class (0.10) Mortality (0.50) SC No Thus, (0.70)higher mortality C: better tolerance, Low Social Class (0.90) D: worse tolerance, lower mortality Mortality (0.50) Example of decision tree with two chance nodes However, tolerance is better for Program C Table 2a – Program C: less efficacious but better drug tolerance (70%) Table 2b – Program D: more efficacious, but less drug tolerance (only 30%) Tolerance? Joint probability of death Tolerance? Joint probability of death Yes 0.70 × 0.10 × 0.10= 0.007 Yes 0.30 × 0.10 × 0.05= 0.0015 0.70 × 0.90 × 0.20= 0.126 No 0.30 × 0.10 × 0.50= 0.015 0.30 × 0.90 × 0.10= 0.027 No 0.70 × 0.10 × 0.50= 0.035 0.30 x 0.90 x 0.50= 0.135 0.70 × 0.90 × 0.50= 0.315 0.007 + 0.126 + 0.015 + 0.135= 0.283 or 28.30% 0.0015+ 0.027 + 0.035 + 0.315= 0.3785 or 37.85% Conclude: Program D is more efficacious (i.e., those who tolerate the drug have a lower mortality than in Program C), but because tolerance to Program C is higher, its community effectiveness is higher. Community effectiveness of C (compared with D)= {[37.85% - 28.30%] ÷ 37.85%} × 100= 25.2% Sensitivity Analysis: a Tool for Public Health Policy • Approach to examine the changes in the output (results) of a given model resulting from varying certain model parameters (or assumptions) over a reasonable range (Szklo & Nieto. Epidemiology: Beyond the Basics. 2nd Edition, Jones & Bartlett, 2006). Sensitivity Analysis: Assume that tolerance to the intervention in Program D is increased to 50% Table 2a – Program C: less efficacious, but with better tolerance (70%) Tolerance? Joint probability of death Yes 0.7 × 0.10 × 0.10= 0.007 0.70 × 0.90 × 0.20= 0.126 No 0.30 × 0.10 × 0.50= 0.015 0.30 x 0.90 x 0.50= 0.135 0.007 + 0.126 + 0.015 + 0.135= 0.283 or 28.30% Sensitivity Analysis: Assume that tolerance to the intervention in Program D is increased to 50% Table 2a – Program C: less efficacious, but with better tolerance (70%) Table 2c – Program D with tolerance improved to 50% Tolerance? Joint probability of death Tolerance? Joint probability of death Yes 0.7 × 0.10 × 0.10= 0.007 Yes 0.50 × 0.10 × 0.05= 0.0025 0.70 × 0.90 × 0.20= 0.126 No 0.30 × 0.10 × 0.50= 0.015 0.50 × 0.90 × 0.10= 0.045 No 0.50 × 0.10 × 0.50= 0.025 0.30 x 0.90 x 0.50= 0.135 0. 50 × 0.90 × 0.50= 0.225 0.007 + 0.126 + 0.015 + 0.135= 0.283 or 28.30% 0.0025 + 0.045 + 0.025 + 0.225= 0.2975 or 29.75% (Before: 37.85%) Community effectiveness of C (vis-a-vis D)= {[29.75% - 28.30%] ÷ 29.75%} × 100= 4.9% Program C is still a bit more effective than Program D, but if the cost of D is lower, it may be cost-effective to implement Program D FIM Risk Factors for Brain Tumors in Subjects Aged <20 years: A Case-Control Study (Gold et al, Am J Epidemiol 1979;109:309-19) • Exploratory study of risk factors for brain tumors • Subjects < 20 yrs old • Cases: primary malignant brain tumors in Baltimore in 1965-75 • Normal controls: chosen from birth certificates on file, and matched on cases by sex, date of birth (±1 year) and race • Interviews with parents of children • Exposed: children with birthweight equal or above the median (3629 g) • Unexposed: children with birthweight below the median • Odds ratio= 2.6 Cohort (prospective) study 2009 = RR INCIDENCEUNEXP Unexposed (2) Follow-up from present to future INCIDENCEEXP (1) Investigator selects Exposed 2029 Non-concurrent cohort (prospective) study (also known as historical cohort study Follow-up from past to present: Unexposed 1989 “Follow-up” from ’89-’09 INCUNEXP Exposed INCEXP (2) Investigator reconstructs cohort: (1) At present investigator has access to database created in 1988 2009 Unexposed 2009 Follow-up from present to future 2029 1989 INCUNEXP Unexposed Follow-up from ’89-’09 INCEXP NON-CONCURRENT Exposed 2009 INCUNEXP Exposed INCEXP CONCURRENT Both studies start in year 2009 Unexposed 2009 Follow-up from present to future INCUNEXP Exposed INCEXP CONCURRENT 2029 Unexposed 1989 Follow-up from ’89-’09 INCUNEXP Exposed INCEXP NON-CONCURRENT 2009 In both studies, the initial selection (or classification) is based on the exposure, and the outcome (unknown variable) is incidence Example of Non-concurrent Prospective Study (Yeh et al, Am J Epidemiol 2001;153:749-56) • Study subjects identified by investigators in 2000 as having been seen in a Clinic for Prevention of Deafness in Washington County, MD, from 1940-60, for elimination of nasopharyngeal lymphoid tissues. • Exposed: Individuals who had nasopharyngeal radium treatment (n=808). • Unexposed: Individuals who received other treatments (e.g., tonsillectomy) (n=1819). • Outcome: Cancer Incidence • Follow-up through 1995. Design of Study Done by Yeh et al, Am J Epidemiol 2001;153:749-56 FOLLOW-UP:35 YEARS FOLLOW-UP THROUGH 1995 Adjustment for variable follow-up times: Rate per person-years and Survival analysis FOLLOW-UP: 55 YEARS 1940 1960 Reconstruction of cohort 1995 Time Study done in 2000 Relative Risk of Cancer Incidence (95% Confidence Interval) According to Exposure to Nasopharyngeal Radium Therapy, Washington County, Maryland 1940-95 Cancer type All neoplasms, except skin Oral cavity, pharynx, and thyroid No. cases in exposed group (PY= 31,005) No. cases in unexposed group (PY= 65,502) Adjusted Relative Risk (95% CI) 41 83 1.02 (0.7, 1.5) 4 2 4.22 (0.38, 46.6) Biologically plausible (Yeh et al, Am J Epidemiol 2001;153:749-56) Confounding variable: Intervention 800 200 500 500 No. Deaths: 80 100 50 250 Mortality: Absent, mortality = 10% No intervention 180 300 18% 30% Present, mortality = 50% One of the solutions to eliminate confounding: stratify Mortality according to the intervention, stratified by the confounder Confounding variable: Present Absent Intervention: N No. of deaths Mortality Yes 200 100 50.0% No 500 250 50.0% Yes 800 80 10.0% No 500 50 10.0% CONFOUNDING EFFECT Exposure Confounder Outcome ` and not in the causality pathway between exposure and outcome: Exposure Confounder Outcome Sensitivity Analysis: a Tool for Public Health Policy • Approach to examine the changes in the output (results) of a given model resulting from varying certain model parameters (or assumptions) over a reasonable range (Szklo & Nieto. Epidemiology: Beyond the Basics. 2nd Edition, Jones & Bartlett, 2006). Sensitivity Analysis: Assume that tolerance to the intervention in Program D is increased to 50% Table 2a – Program C: less efficacious, but with better tolerance (70%) Tolerance? Joint probability of death Yes 0.7 × 0.10 × 0.10= 0.007 0.70 × 0.90 × 0.20= 0.126 No 0.30 × 0.10 × 0.50= 0.015 0.30 x 0.90 x 0.50= 0.135 0.007 + 0.126 + 0.015 + 0.135= 0.283 or 28.30% Sensitivity Analysis: Assume that tolerance to the intervention in Program D is increased to 50% Table 2a – Program C: less efficacious, but with better tolerance (70%) Table 2c – Program D with tolerance improved to 50% Tolerance? Joint probability of death Tolerance? Joint probability of death Yes 0.7 × 0.10 × 0.10= 0.007 Yes 0.50 × 0.10 × 0.05= 0.0025 0.70 × 0.90 × 0.20= 0.126 No 0.30 × 0.10 × 0.50= 0.015 0.50 × 0.90 × 0.10= 0.045 No 0.50 × 0.10 × 0.50= 0.025 0.30 x 0.90 x 0.50= 0.135 0. 50 × 0.90 × 0.50= 0.225 0.007 + 0.126 + 0.015 + 0.135= 0.283 or 28.30% 0.0025 + 0.045 + 0.025 + 0.225= 0.2975 or 29.75% (Before: 37.85%) Community effectiveness of C (vis-a-vis D)= {[29.75% - 28.30%] ÷ 29.75%} × 100= 4.9% Program C is still a bit more effective than Program D, but if the cost of D is lower, it may be cost-effective to implement Program D Decision Analysis: uses a quantitative approach to evaluate the relative value (effectiveness) of one or more interventions, programs or services. Steps in Decision Analysis • Identification and description of the problem • Collection of the information needed to construct the decision tree (ideally by means of meta-analysis) • Construction of a decision tree • Analysis of the decision tree • (Optional): Sensitivity analysis DECISION TREE • Decision node: under the investigator’s control • Chance (or probability) node: not under the investigator’s control Example of a Decision Tree High Social Class Outcome* Program A Chance node Low Social Class Decision Node High Social Class Outcome* Outcome* Chance node Program B Low Social Class *For example, mortality Outcome* Example of Decision Tree (Probabilities) Mortality (0.20) High Social Class Program A (0.10) Chance node Mortality (0.40) Low Social Class (0.90) Decision Node Mortality (0.90) High Social Class Program B (0.10) Chance node Mortality (0.90) Low Social Class (0.90) Note that the distribution of social class is same in both programs, as they are being considered for the same target population Example of Decision Tree (Probabilities) Mortality (0.20) High Social Class Program A (0.10) Chance node Decision Node Death (0.90) High Social Class Survival (0.10) Program B Chance node Death (0.90) What is the joint probability of high socialLow class (HSC) and mortality in program A? Social Class Survival (0.10) Proportion HSC × Mort. A = 0.10 × 0.20= 0.02 Example of Decision Tree (Probabilities) Program A Chance node Mortality (0.40) Low Social Class (0.90) Decision Node Death (0.90) High Social Class (0.10) Survival (0.10) Program B Chance node Death (0.90) What is the joint probability of low social Low class (LSC) and mortality in program A? Social Class (0.90) Survival (0.10) Proportion LSC × Mort. A = 0.90 × 0.40= 0.36 Example of Decision Tree (Probabilities) Mortality (0.20) High Social Class Program A (0.10) Chance node Mortality (0.40) Low Social Class (0.90) Decision Node Death (0.90) High Social Class (0.10) Survival (0.10) Program B Chance node Death (0.90) What is the joint mortality of Low all individuals A? Social Classin program (0.90) Survival (0.10) Mort. HSC + LSC= (0.10 × 0.02) + (0.90 × 0.40)= 0.02 + 0.36= 0.38 Example of Decision Tree (Probabilities) Mortality (0.20) High Social Class Program A (0.10) Chance node Mortality (0.40) Low Social Class (0.90) Decision Node Mortality (0.90) High Social Class Program B (0.10) Chance node Mortality (0.90) Low Social Class (0.90) Decision Tree: Program A versus Program B Program A Social Class Proportion in Each Social Class Mortality in Each Social Class Overall Mortality High 0.10 0.20 0.10 × 0.20 = 0.02 Low 0.90 0.40 0.90 × 0.40 = 0.36 Total 0.02 + 0.36 = 0.38 Program B Social Class Proportion in Each Social Class Mortality in Each Social Class Overall Mortality High 0.10 0.90 0.10 × 0.90 = 0.09 Low 0.90 0.90 0.90 × 0.90 = 0.81 Total 0.09 + 0.81 = 0.90 Community effectiveness of A versus B*= [(0.90 – 0.38) / 0.90] × 100 = 57.8% * That is, treating program A as the “experimental” program and program B as the “control” program INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, prevalence, incidence, years of potential life lost, etc. 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 2. ETIOLOGY Identify and assess possible causes of disease and risk factor burden 5. MONITORING OF PROGRAM Ongoing monitoring using markers selected to indicate success 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness of options within and across programs Modified from: Tugwell et al, J Chron Dis 38(4) 3. COMMUNITY EFFECTIVENESS Assess benefit/harm ratio of potentially feasible interventions and estimate reduction of burden of illness if programs are effective Odds ratio= (ad) / (bc) Other Cancer Controls Case Control Smokers 236(a) 666 (b) Nonsmokers 122(c) 722 (d) Lung, Non-tumor Controls Case Control Smokers 236 124 Nonsmokers 122 110 Other, Non-cancer Controls Case Control Smokers 236 481 Nonsmokers 122 612 OR= (236 × 722) ÷ (666 × 122)= 2.10 OR = 1.72 OR = 2.46 95% CI: 1.6-2.7 95% CI: 1.2-2.4 95% CI: 1.9-3.2 Levin ML, Goldstein H and Gerhardt PR: Cancer and Tobacco Smoking. A Preliminary Report. JAMA, 143:336-338, 1950. Objectives of Epidemiology • Describe the magnitude of the disease burden in the population • Examine the distribution of the disease in the population using vital statistics data according to factors related to persons (e.g., age, gender), time and place; • Investigate the etiology (risk factors) of disease; • Assess effectiveness of preventive strategies; • Translate epidemiologic findings into public health policies (INCA-MS Estimativas 2006 – Incidencia de Cancer no Brasil) Objectives of Epidemiology • Describe the magnitude of the disease burden in the population • Examine the distribution of the disease in the population using vital statistics data according to factors related to persons (e.g., age, gender), time and place; • Investigate the etiology (risk factors) of disease; • Assess effectiveness of preventive strategies. Decision Tree with Multiple Chance Nodes Decision tree for the treatment of high blood pressure based on 52 hypertensive patients. Values besides each outcome health state are median and inter-quartile range. CVE, cardiovascular event (newly diagnosed angina, myocardial infarction, coronary heart disease, stroke or transient ischemic attack) (Montgomery AA, et al. Shared decision making in hypertension. Family Practice 2001;18:309-313). INTERFACE BETWEEN EPIDEMIOLOGY AND CANCER CONTROL POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, incidence, etc.) 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 5. MONITORING OF PROGRAM (SURVEILLANCE) Ongoing monitoring 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness across programs Modified from: Tugwell et al, J Chron Dis 38(4) 2. ETIOLOGY AND EFFICACY Identify risk factors and assess efficacy of primary and secondary prevention strategies 3. COMMUNITY EFFECTIVENESS Assess effectiveness in the target community INTERFACE BETWEEN EPIDEMIOLOGY AND CANCER CONTROL POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, incidence, etc.) 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 5. MONITORING OF PROGRAM (SURVEILLANCE) Ongoing monitoring 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness across programs Modified from: Tugwell et al, J Chron Dis 38(4) 2. ETIOLOGY AND EFFICACY Identify risk factors and assess efficacy of primary and secondary prevention strategies 3. COMMUNITY EFFECTIVENESS Assess effectiveness in the target community INTERFACE BETWEEN EPIDEMIOLOGY AND CANCER CONTROL POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, incidence, etc.) 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 5. MONITORING OF PROGRAM (SURVEILLANCE) Ongoing monitoring 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness across programs Modified from: Tugwell et al, J Chron Dis 38(4) 2. ETIOLOGY AND EFFICACY Identify risk factors and assess efficacy of primary and secondary prevention strategies 3. COMMUNITY EFFECTIVENESS Assess effectiveness in the target community INTERFACE BETWEEN EPIDEMIOLOGY AND CANCER CONTROL POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, incidence, etc.) 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 5. MONITORING OF PROGRAM (SURVEILLANCE) Ongoing monitoring 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness across programs Modified from: Tugwell et al, J Chron Dis 38(4) 2. ETIOLOGY AND EFFICACY Identify risk factors and assess efficacy of primary and secondary prevention strategies 3. COMMUNITY EFFECTIVENESS Assess effectiveness in the target community INTERFACE BETWEEN EPIDEMIOLOGY AND CANCER CONTROL POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, incidence, etc.) 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 5. MONITORING OF PROGRAM (SURVEILLANCE) Ongoing monitoring 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness across programs Modified from: Tugwell et al, J Chron Dis 38(4) 2. ETIOLOGY AND EFFICACY Identify risk factors and assess efficacy of primary and secondary prevention strategies 3. COMMUNITY EFFECTIVENESS Assess effectiveness in the target community INTERFACE BETWEEN EPIDEMIOLOGY AND CANCER CONTROL POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, incidence, etc.) 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 5. MONITORING OF PROGRAM (SURVEILLANCE) Ongoing monitoring 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness across programs Modified from: Tugwell et al, J Chron Dis 38(4) 2. ETIOLOGY AND EFFICACY Identify risk factors and assess efficacy of primary and secondary prevention strategies 3. COMMUNITY EFFECTIVENESS Assess effectiveness in the target community INTERFACE BETWEEN EPIDEMIOLOGY AND CANCER CONTROL POLICY 1. BURDEN OF ILLNESS Determine health status (mortality, incidence, etc.) 6. REASSESSMENT Reassessment of magnitude of burden of illness or risk factor INTERFACE BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH POLICY 5. MONITORING OF PROGRAM (SURVEILLANCE) Ongoing monitoring 4. COST-EFFECTIVENESS Determine relationships between costs and effectiveness across programs Modified from: Tugwell et al, J Chron Dis 38(4) 2. ETIOLOGY AND EFFICACY Identify risk factors and assess efficacy of primary and secondary prevention strategies 3. COMMUNITY EFFECTIVENESS Assess effectiveness in the target community Processo de Implementação de Politicas de Controle do Câncer Baseadas em Evidências Magnitude das DCNT Políticas baseadas em evidências Vigilância Aquisição de evidências científicas • Ensaios aleatorizados • Estudos de coorte • Estudos de casos e controles • Estudos de séries temporais • Estudos de processo e estrutura • Estudos conduzidos de novo:: análise de tendências Revisões sistemáticas • Colaboração Cochrane • Outras fontes (meta-análises publicadas em revistas) • Revisões Sistemáticas e meta-análises realizadas de novo Custoefetividade Análise de sensibilidade • Evidências • Obstáculos • Avaliação de níveis de evidência • Seleção de opções programáticas (análise de decisão) • Recomendações • Hipóteses causais • Avaliação de intervenções, políticas e programas • Avaliação de niveis epidêmicos (inclusive “clusters) (Modificado de Dickersin K) Aplicação da politica: planejamento Tradução de conhecimentos Cumulative incidence Prostate Cancer Deaths in the European Randomized Study of Screening for Prostate Cancer (Schroder FH, et al. New Eng J Med 2009;360:1320-8) Prostate Cancer Deaths in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (Andriole GL et al, New Eng J Med 2009;360:1310-9) (Holder AM, Gonzalez-Angulo AM, Chen H, et al. High stearoyl-CoA desaturase 1 expression is associated with shorter survival in breast cancer patients. Breast Cancer Res Treat [epubl, Dec 2012]) Assumption Justifying a Screening Program • In the absence of intervention, all or most cases in a pre-clinical phase progress to the clinical phase (may not be true for certain cancers; e.g., prostate) Início da exposição a fatores de risco Momento em que a detecção precoce se torna possivel Início da enfermidade Detecção baseada em sintomas ou sinais que ocorrem no início da fase clínica, Fase pré-clínica detectável (FPCD) Cura ou Morte Fase clinica Fase pré-clínica não detectável (INSERT DATA FROM BREAST CANCER (Bleyer A, Welch HG. Effect of three decades of screening mammography on breast cancer incidence. New Eng J Med 2012;367:21) • • • • • • • • • • • • • • Algumas atividades de prevenção primária custo-efetivas sugeridas por estudos epidemiologicos (OMS) Proteção contra a fumaça do tabaco e proibição de fumo em ambientes públicos Alertas com relação aos perigos do uso de tabaco Implementação da proibição de propaganda, promoção e patrocínio de eventos por tabaco Aumento de impostos de produtos de tabaco Restrição de acesso a álcool em negócios Implementação de proibição de propaganda de bebidas alcólicas Aumento de impostos de bebidas alcólicas Redução de consumo de sal e quantidade de sal em alimentos processados Substituição de gorduras “trans” por gorduras poli-não saturadas Conscientização do público sobre importância de dieta saudável e atividade física, inclusive através de meios de comunicação Controle de glicemia em pacientes com 30 anos ou menos com diabetes se o risco de eventos agudos cardiovasculares for ≥30% nos próximos 10 anos Aspirina para prevenção de infarto agudo do miocárdio Mamografia a cada 2 anos para mulheres de 50 a 70 anos Detecção precoce de câncer colo-retal • • • • • • • • • • • • • • Algumas atividades de prevenção primária custo-efetivas sugeridas por estudos epidemiologicos (OMS) Proteção contra a fumaça do tabaco e proibição de fumo em ambientes públicos Alertas com relação aos perigos do uso de tabaco Implementação da proibição de propaganda, promoção e patrocínio de eventos por tabaco Aumento de impostos de produtos de tabaco Restrição de acesso a álcool em negócios Implementação de proibição de propaganda de bebidas alcólicas Aumento de impostos de bebidas alcólicas Redução de consumo de sal e quantidade de sal em alimentos processados Substituição de gorduras “trans” por gorduras poli-não saturadas Conscientização do público sobre importância de dieta saudável e atividade física, inclusive através de meios de comunicação Controle de glicemia em pacientes com 30 anos ou menos com diabetes se o risco de eventos agudos cardiovasculares for ≥30% nos próximos 10 anos Aspirina para prevenção de infarto agudo do miocárdio Mamografia a cada 2 anos para mulheres de 50 a 70 anos Detecção precoce de câncer colo-retal • • • • • • • • • • • • • • Algumas atividades de prevenção primária custo-efetivas sugeridas por estudos epidemiologicos (OMS) Proteção contra a fumaça do tabaco e proibição de fumo em ambientes públicos Alertas com relação aos perigos do uso de tabaco Implementação da proibição de propaganda, promoção e patrocínio de eventos por tabaco Aumento de impostos de produtos de tabaco Restrição de acesso a álcool em negócios Implementação de proibição de propaganda de bebidas alcólicas Aumento de impostos de bebidas alcólicas Redução de consumo de sal e quantidade de sal em alimentos processados Substituição de gorduras “trans” por gorduras poli-não saturadas Conscientização do público sobre importância de dieta saudável e atividade física, inclusive através de meios de comunicação Controle de glicemia em pacientes com 30 anos ou menos com diabetes se o risco de eventos agudos cardiovasculares for ≥30% nos próximos 10 anos Aspirina para prevenção de infarto agudo do miocárdio Mamografia a cada 2 anos para mulheres de 50 a 70 anos Detecção precoce de câncer colo-retal