Bibliografia
Anderson, N. and Bjorck, A. (1973). A new high order method of regula falsi
type for computing a root of an equation. BIT Numerical Mathematics,
13, 253–264.
Boyce, W. E. and DiPrima, R. C. (2001). Elementary Differential Equations
and Boundary Value Problems. John Wiley & Sons, Inc., New York, 7th
edition.
Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Prentice – Hall, Englewood Cliffs, New Jersey.
Burden, R. L. and Faires, J. D., editors (2000). Numerical Analysis. Brooks
Cole, United Kingdom.
Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Inc., England.
Cole, J. D. (1968). Perturbation Methods in Applied Mathematics. Blaisdell
Publishing Company, Waltham, Massachusetts.
Cotta, R. M., de B. Alves, L. S., and Mikhailov, M. D. (2001). Applied Nuc
merical Analysis with Mathematica. MATHEMATICA°
Technical Center, COPPE/UFRJ. E-papers Serviços Editoriais, Rio de Janeiro, Brazil.
Dowell, M. and Jarratt, P. (1971). A modified regula falsi method for computing the root of an equation. BIT Numerical Mathematics, 11, 168–174.
Dowell, M. and Jarratt, P. (1972). The pegasus method for computing the
root of an equation. BIT Numerical Mathematics, 12, 503–508.
Dyke, M. V. (1964). Perturbation Methods in Fluid Mechanics. Academic
Press Inc., New York, United States.
Golub, G. H. and Loan, C. F. V. (1996). Matrix Computations. The Johns
Hopkins University Press, Baltimore, 3rd edition.
Jordan, D. W. and Smith, P. (1987). Nonlinear Ordinary Differential Equations. Clarendon Press, Oxford, 2nd edition.
78
BIBLIOGRAFIA
79
Kincaid, D. and Cheney, W. (1991). Numerical Analysis. Brooks/Cole
Publishing Company, Pacific Grove, CA.
Laney, C. B., editor (1998). Computational Gas Dynamics. Cambridge
University Press, United Kingdom.
Lewis, R. W., Nithiarasu, P., and Seetharamu, K. N. (1993). Fundamentals
of the Finite Element Method for Heat and Fluid Flow. John Wiley &
Sons, New York.
Lomax, H., Pulliam, T. H., and Zingg, D. W. (2001). Fudamentals od Computational Fluid Dynamics. Scientific Computation. Springer & Verlag,
Berlin.
Maliska, C. R. (1995). Transferência de Calor e Mecânica dos Fluidos Computacional . Livros Técnicos e Cientı́ficos Editora S.A., Rio de Janeiro, 1st
edition.
Moin, P. (2001). Fundamentals of Engineering Numerical Analysis. Cambridge University Press, United Kingdom.
Nicolis, G. (1995). Introduction to NonLinear Science. Cambridge University Press, Great Britain.
Nyhoff, L. and Leestma, S. (1996). Fortran 90 for Engineers and Scientists.
Prentice Hall, United States.
Patankar, S., editor (1980). Numerical Heat Transfer and Fluid Flow . MacGraw Hill, Inc., New York.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992).
Numerical Recipes in FORTRAN 77: The Art of Scientific Computing.
Cambridge University Press, Cambridge, 2nd edition.
Shuster, H. G. (1995). Deterministic Chaos: An introduction. VCH, New
York, 3rd edition.
c
Spahier, L. A. (2001). Introdução ao Mathematica. MATHEMATICA°
Technical Center, COPPE/UFRJ. E-papers Serviços Editoriais, Rio de
Janeiro, Brazil.
Tannehill, J. C., Anderson, D. A., and Pletcher, R. H. (1997). Computational
Fluid Mechanics and Heat Transfer . Taylot & Francis, Philadelphia.
Versteeg, H. K. and Malalasekera, W. (1995). An introduction to Computational Fluid Dynamics. The Finite Volume Method. Prentice Hall,
London.
80
BIBLIOGRAFIA
Wesseling, P. (1991). An Introduction to Multigrid Methods. Pure and
Applied Mathematics. John Wiley & Sons, New York.
Wolfram, S. (1991). Mathematica: A System for Doing Mathematics by
Computer . Addison – Wesley, Redwood City, CA.
Wolfram, S. (1999). The Mathematica Book . Wolfram Media, Cambridge,
4th edition.
Yanenko, N. N. (1971). The Method of Fractional Steps. Springer – Verlag,
New York/Berlin.
Download

Bibliografia