Revista Brasileira de Física, Vol. 18, n? 1, 1988 ~e~resentations of the LorentzScrew ~ransforrnation MARCELO SAMUEL BERMAN Depto. de Ciências Exatas, F. Fil. Ci. L., fundaçso Regional Joinville, 78920, Joinville, SC, Brasil and FERNANDO DE MELLO GOMIDE Depto. de Fisica, Instituto Tecnol6gico de Aeronáutica, 12225, Súo JacP dos Campos, SP, Brasil Recebido em 22 de outubro de 1987 A Lorentz 4-screw i s a p a r t i c u l a r transformation, d e f i n e d and studied by J.L.Synge. We advance h i s t h w r y , by presenting two represent a t i o n s o f t h i s transformation, the s p i n o r i a l , and the t r i d i m e n s i o n a l (on the surface o f the u n i t sphere). Abstraot 1. INTRODUCTION ~ . ~ . ~ i ni s~ responsi e ' b l e f o r the name and study o f the Lorentz 4-screw transformation. A Lorentz 4-screw i s a Lorentz t r a n s f o r m a t i o n consisting of a r o t a t i o n i n a timel ike 2 - f l a t T, f o l lowed by ceded by) a r o t a t i o n i n a spacel i k e 2 - f l a t ?r*, the two 2 - f l a t ( o r pce- r and r* being orthogonal t o one another. I f we c a l 1 (7, 5, 2, 2) a u n i t orthogonal t e t r a d , and p o i n t i n g i n t o the f u t u r e , so t h a t 7 and .? l i e 2 t i me 1 i k e i n IT* w h i l e (E ,; ) lie i n r, we can w r i t e f o r the o v e r a l l transformation: -+ -+ = I cos 0 -+ -k J" = - I s i n 8 + + -+ J s i n 0, 3 J cos 8, 3 2 cosh x + L si = 2 s i n h x + L-+ = x cosh x sinh , 41. I) We s h a l l choose cosh senh x x = sec a , = tan a . I n our n o t a t i o n , the two angles o f r o t a t i o n a r e 0 and a. We s h a l l study two types o f r e p r e s e n t a t i o n s : Revista Brasileira de Flsica, Vol. 18, n? 1, 1988 a - Spinorial representation; b - Representation on the three-dimensional surface, or, said in other terms; Representation by transformation of triads of nu11 rays. 2. SPINORIAL REPRESENTATION OF 4-SCREW We may represent a spinor by two points 5 and V in the plane ( ~ ~ n ~ e ' ) .I f 5 and V represent the initiat spinor, let 5" Argand and V" represent the Lorentz 4-s<rrew transformat ion on thern. Synge showed that the 8 transfarmation is given by On the other hand, the x rotation is given by By combining both results, we obtain v" = Relations (2.3) give the b s c r e w spinor representation. 3. REPRESENTATION OF 4-SCREW ON THE TRIDIMENSIONAL SURFACE Any two triads of nu11 rays (M,N,P) and (M', N' , P') transform in a manner that can be associated to the transformation of the tetrad -+ + -+ -+ -b (I,J,K,L). into 31, K'-+ , L'), as they were introduced earl ier. By (I', cutting spacetirpe across by the hyperplane X , / i = 1, the section of the nu11 cone X,Xr = O is the sphere: x: + x; + x ; = 1, Revista Brasileira de Flsica, Vol. 18, n? 1, 1988 To each nu11 r a y t h e r e corresponds a p o i n t on i t s surface, so t h a t (M, of the N, P) a r e p o i n t s , from now on, on t h i s t r i d i m e n s i o n a l surface sphere.. L e t us choose the f o l l o w i n g p o i n t s f= (oI1*oI0) 3= (-1 IO,O,o) 9 , -P K = (0,0,1 ,o) -P L = (OIO$O, The x I . ( o r a) r o t a t i o n i s then given by This corresponds t o M and N f i x e d , w h i l e P runs around the meridiangreat c i r c l e throuph x,l) t e t r a d the angle o . This corresponds t o the f o l i o w i n g ( f, 3. transformations k 1 = 1 , 311= 3 , 21 = s e c d + = tan cd + 211 tan sec a2 , . So t h i s i s a t i m e l i k e r o t a t i o n through an angle a. + + Now, c a l c u l a t i n g a spacelike r o t a t i o n 0 , where t h e , t r i a d (M, N, + P) i s t r a n s f o n e d i n t o Revista Brasileira d e Ffsica, Vol. 18, no 1, 1988 , (O,O,-I,<) $1 si E ( c o s e , s e n 8 , O, i) . This corresponds t o a r o t a t i o n o f P through the angle 8 on ++++ XiX2. The t e t r a d ( I , J , K , L ) the plane transforms i n t o 11= T c o s e -?sino ?r +?sino + , + J cose, The obvious r e s u l t (we s h a l l demonstrate i t ir! next section) i s t h a t a Lorentz 4-screw i s represented by the p o i n t s (M,N,P) on the f o l - lowing transformat ion: a) M b) and N do n o t move moves on the ( ~ 1 x 3 )plane along an angle a, and thennwves along the (XiX2) plane an a n g l e 0 ( t h e r e v e r s e o r d e r i s a1 so possi b l e ) . The movement i s always on t h e t r i d i men- s i o n a l surface o f the u n i t sphere. 4. DEMONSTRATION OF THE RESULT STATED IN LAST SECTION L e t us begin w i t h the 0 r o t a t i o n (spacelike). nu1 1 v e c t o r s 3, 3, The normal i zed and 3 are 3 3' , 31, P1 nu 11 vectors are The normalized Revista Brasileira de Flsica, Vol. 18, n? 1, 1988 -+ Now, l e t us obta i n the a r o t a t i o n (time1 i k e ) , The normal ized M1, $li, 3" nu1 l v e c t o r s are = $11 J;COS The (9"31,21,ifi') (COSa cos 8, cos a, s i n a, i ) . a t e t r a d can be obtained by the following r e l a t i o n s due t o syngel whkre cPmmz i s the well-known permutation symbol. Taking eq.'(4.3) (4.4) we g e t a t l a s t 7 1 1 = (-sino, c o s e , 0, 0) 5" = (-cos 8 , - s i n e, , 0, O), , 31= (O, 21,= (O, 0, t a n a , isec a) , O, s e c a , i t a n a) into Revista Brasileira de Ffsica, Vol. 18, n(>1, 1988 I f we compare r e l a t i o n s (1 , i ) and (3.2) with (4.5) f i n d t h a t they a r e e q u i v a l e n t . So, what we constructed was we a shalt 4-screw Lorentz t r a n s f o r m a t i o n indeed! 5. CONCLUDING REMARKS As syngel remarked, the s i x parameter group o f p r o j e c t i v e trans- formations o f Euctidean 3-space i n t o i t s e l f i s e q u i v a l e n t t o the general Lorentz t r a n s f o r m a t i o n o f spacet ime. By c o n s i d e r i ng the t h r e e p o i n t s ( M, N, P) on the t r i d i m e n s i o n a l surface o f the u n i t sphere, we were able to generate the Lorentz 4-screw, which i s then easi 1y represented. The spi nor r e p r e s e n t a t i o n a l s o gives us another i n s i g h t o f a Lorentz 4-screw. REFERENCE I. J.L. synge, R e k t i v i t y : The SpeciaZ Theory, 2nd, ed., N o r t h Hol land, 1964, pages. 69-110. Um parafuso- 4 de Lorentz é una tracsformação de Lorentz p a r t i c u l a r que f o i d e f i n i d a e estudada por J.L.Synge. Desenvolvemos sua t e o r i a e x i b i n d o duas representações dessa transformação, a e s p i n o r i a l e a t r i d i mensional (na s u p e r f í c i e da e s f e r a u n i t á r i a ) . -