Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro Clelton A. Santos, Marcelo A. S. Toledo, Daniela B. B. Trivella, Lilian L. Beloti, Dilaine R. S. Schneider, Antonio M. Saraiva, Aline Crucello, Adriano R. Azzoni, Alessandra A. Souza, Ricardo Aparicio and Anete P. Souza DOI: 10.1111/j.1742-4658.2012.08743.x Functional and Structural Studies of the Disulfide Isomerase XfDsbC from the Plant Pathogen Xylella fastidiosa Reveals a Redox-dependent Oligomeric Modulation in vitro Clelton A. Santos1, Marcelo A.S. Toledo1, Daniela B.B. Trivella2, Lilian L. Beloti1, Dilaine R.S. Schneider1, Antonio M. Saraiva1, Aline Crucello1, Adriano R. Azzoni1,3, Alessandra A. Souza4, Ricardo Aparicio2 and Anete P. Souza1,5,* 1 Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil 2 Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil 3 Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil 4 Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, Brazil 5 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil Supplementary Figures S1-S3 *Address correspondence to: Anete P. Souza, Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Rua Candido Rondon 400, Cidade Universitária “Zeferino Vaz”, CP 6010, 13083-875, Campinas, São Paulo, Brazil, Tel. and Fax: +55 19 3521-1089; E-mail: [email protected] Supplemental Figure S1. ClustalW2 alignment of DsbC sequences from Xylella fastidiosa strain 9a5c (XfDsbC), Xanthomonas campestris pv. campestris (XcDsbC), Erwinia chrysanthemi (ErcDsbC) and Escherichia coli (EcDsbC). The regions that are fully conserved in the four sequences (black) and the residues that are strongly similar between the sequences (gray) are highlighted. The oxi-redox switch, which is composed of the CGYC motif, is indicated in red in all sequences. Supplemental Figure S2. The inverted XfDsbCRed dimer. Three-dimensional atomic model for XfDsbC dimer was generated as an output from BUNCH software. The low-resolution data obtained limits the interpretation of the correct XfDsbCRed dimeric structure. Therefore, a second possible XfDsbCRed dimer is also provided. The same low-resolution protein envelope constructed for the XfDsbCRed dimer displayed in Fig. 5A is shown here as semitransparent whitish spheres superimposed onto the inverted XfDsbCRed dimer atomic model. The middle and bottom views are rotated clockwise by 90° around the x- and y-axes, respectively. The figure was generated with PyMOL software (Schrodinger, LLC). A B Supplemental Figure S3. Possible tetrameric assemblies of (A) EcDsbC (PDB ID 1EEJ) and (B) HiDsbC (PDB ID 1TDJ). These oligomers were observed n the crystal structures by applying symmetric operations. The symmetric molecules and figures were generated with PyMOL software (Schrodinger, LLC).