9a Lista de Exercı́cios - Cálculo 1 Profa. Júlia Silva Silveira Borges 1. Calcule: R (a) x + 15 cos(3x) dx R (b) cos4 (x) dx R (c) (sin x + cos x)2 dx 2 R 1 1 (d) 2 + 2 cos(2x) R 5 (e) √1−x dx 2 R (f) sin5 x cos x dx R sin x (g) cos 2 x dx x dx 16+x4 5 √ dx 1−4x2 √ 1 dx 4−x2 (o) R (ln x)2 dx (p) R e−2x sin x dx (q) R x3 ex dx R x ln x dx (r) R e−x cos 2x dx (l) R ln x dx (m) R x2 ln x dx (n) R x(ln x)2 dx x2 sin x dx R√ 3 − 4x2 dx (t) R√ (u) x2 + 9 dx (h) R (i) R (j) R (k) (s) 2. Calcule: R 2π √ 1 + cos x dx (a) 0 R0 2 1 √ (b) 1 t (t 3 − t) dt R1 x (c) 0 1+x 4 dx 3. Calcule: R (a) x21−4 dx R (b) x2x−4 dx R x dx (c) x2 −5x+6 R x2 +3x+1 (d) x2 −2x−3 dx R x2 +1 (e) (x−2) 3 dx (d) R2 (e) R1 (f) R1 (f) R x2 +x+1 x2 −x (g) R x3 +x+1 x2 −4x+3 (h) R 2x−3 (x−1)3 (i) R x+1 x(x−2)(x+3) 0 0 0 3 √x x2 +1 2 R dx x2 ex dx (sin x)cos x +1 dx dx dx dx dx (j) R x+3 x3 −2x2 −x+2 (k) R x5 +3 x3 −4x (l) R 3x2 +5x+4 x3 +x2 +x−3 (m) R 2x2 +4 x3 −8 dx dx dx dx 4. Suponha que g tenha derivada contı́nua em [0, +∞) e que g(0) = 0. Verifique que Z x Z x 0 −st −sx g (t)e dt = g(x)e +s g(t)e−st dt 0 0 1