Biochemical networks related to carbon accumulation in sugarcane Marcos Buckeridge Department of Botany, Laboratory of Plant Physiological Ecology IB USP How are we approaching the sugarcane metabolic network? Types of experiments 1) Growing sugarcane under elevated CO2 2) Applying inhibitors of secondary metabolism to change the cell wall 3) Studying the role of gibberellin in sugarcane seedling growth and development Technical approaches 1) Photosynthesis and Growth 2) Carbohydrate metabolism (sucrose and cell walls) 3) Gene expression 4) Cell Biology 5) Metabolic profiling towards a system approach Growing sugarcane under elevated CO2 N Assimilation and micorrizal association Starch, leaf area, biomass, root growth, stress tolerance, defence and fertility - + Plant Water and carbohydrate status in leaves Photosynthetic protein - + + e- transport Transpiration C assimilation + Conductance Leaf Respiration - PEPc & RUBISCO ABI4 MITOCHONDRIA NUCLEUS Cell STOMATA Photosynthesis Carbonic anhydrase and RUBISCO Buckeridge et al. 2008. Biologia & Mudanças Climáticas no Brasil. Rima Editora, São Carlos Sugarcane leaves performe C4 photosynthesis CO2 Mesophyll cells CO2 Bundle Sheath CO2 CO2 Débora Leite, Wanderley dos Santos, Amanda Souza & Marcos Buckeridge – Res. não publicados De Souza et al. 2008 Plant Cell & Environment, Volume 31, pg 1116 30% less transpiration 60% higher WUE Productivity Ambient Ambient Elevated Elevated 2005 1 year in elevated CO2 50% more Biomass Microarray analysis of the CO2 experiments 3 months Categories Gene description Ratio (elevated/am bient) Development light-induced protein 1,194 Photosynthesis photosystem II protein K; psbK 1,315 Photosynthesis Ferredoxin I; chloroplast precursor 1,26 Photosynthesis photosystem I reaction centre subunit n, chloroplast precursor 1,583 Cell wall metabolism xyloglucan endotransglycosylase/hydrolase 2,582 Photosynthesis Chlorophyll A-B binding protein 1,508 Stress response ASR-like 1,735 Lipid, fatty-acid and isoprenoid metabolism AE9 stearoyl-ACP desaturase 3,59 Carbohydrate metabolism beta-glucosidase isozyme 2 precursor -2,189 Carbohydrate metabolism putative glucose-6-phosphate dehydrogenase -1,232 Protein metabolism translational initiation factor eIF-4A -1,606 De Souza et al. (2008) Plant Cell & Environment, Volume 31, pg 1116 50 Elevated CO2 62,82% CO2 Ambient 40 A umol m-2 s-1 30 20 10 0 0 500 1000 -10 1500 2000 2500 3000 PAR 250 Elevated CO2 CO2 Ambient 200 43,52% CO2 assimilation and electron transport rate (ETR) of sugarcane under elevated CO2. A=CO2 assimilation ETR 150 100 50 0 0 500 1000 1500 PAR 2000 Amanda Pereira de Souza, PhD thesis 2500 3000 5 months Protein metabolism large ribosomal protein 2 1,454 Carbohydr. metabolism/Photosynthesis phosphoenolpyruvate carboxylase 1,245 Cell wall metabolism Alpha-L-arabinofuranosidase 1,37 Protein metabolism cathepsin B-like cysteine protease 1,349 Development dormancy-associated protein 2,299 Transporters Sugar transporter 1,252 Receptors serine/threonine-protein kinase NAK 1,706 unknow 1,271 Protein metabolism putative glutamate-tRNA ligase 1,504 Protein metabolism cathepsin B-like cysteine protease 1,395 Protein metabolism Aldo/keto reductase; Sigma-54 factor 1,229 putative nucleostemin (GTPase of unknown function) 1,397 Development putative auxin-independent growth promoter 1,909 Transcription pre-mRNA splicing factor 1,541 Nucleic acid metabolism chromodomain-helicase-DNA-binding protein 0,17 Stress response dehydrin -1,42 unknow -1,398 Secondary metabolism caffeoyl-CoA 3-O-methyltransferase 1 -1,354 Carbohydrate metabolism cell wall invertase -1,615 Stress response ferritin -2,768 Protein metabolism C2 domain-containing protein-like -1,342 Pathogenicity Thaumatin -1,367 Transcription auxin response factor 2 -1,352 Development Lateral organ boudaries protein -1,494 Cell cycle kelch repeat-containing F-box family protein -1,541 Cell cycle cyclin H-1 -1,632 Leaves of sugarcane stained with iodine Débora Leite, Wanderley dos Santos, Amanda Souza & Marcos Buckeridge – Res. não publicados Sugarcane culm No starch is present in culms Leite, Wanderley dos Santos, Amanda Souza & Marcos Buckeridge – Res. não publicados Sugarcane Cell Wall (Glucurono?) and mixed linkabe beta-glucan 200 Oxg Xylogluan-ArabinoXylan #10 nC 1 - 3,783 180 Cana 0,5U 24H HPAEC Arabinoxylan 160 ECD_1 140 140 125 120 113 Oxg Xylogluan-ArabinoXylan #42 nC Lichen. hem icel ECD_1 11 - 16,175 2 - 5,908 100 100 80 88 8 - 20,092 75 60 40 63 3 - 9,200 5 - 13,017 7 - 16,608 6 - 15,142 20 9 - 21,092 11 - 22,025 12 - 29,200 50 13 - 18,442 10 - 21,492 4 - 11,542 38 0 25 -20 0,0 10,0 20,0 30,0 40,0 13 Augusto Crivellari & Marcos Buckeridge – Res. não publicados HPAEC Beta-glucan m in 55,0 3 - 3,958 14 - 20,308 4 - 5,367 1 - 2,667 6 - 8,192 8 - 912,517 2 - 3,433 5 - 5,992 7 - 10,058 - 14,592 -10 13,700 12 - 17,34215 - 21,908 0 m in -20 0,0 10,0 20,0 30,0 40,0 55,0 Glucuronic acid Sugarcane parenchyma autofluorescence dos Santos et al. 2009 Free ferulic acid Free diferulic acid Ferulic acid residue esterified to an arabinofuranose residue Ferulic acid bridge between two polysaccharides Cross-linked Glucuronoarabinoxylans dos Santos et al. 2008 Polysaccharides Feruloyl residues Feruloyl residues dos Santos et al. 2009 Limit digest AX sugarcane oligosaccharides Elevated CO2 Ambient CO2 At 5 months, alpha arabinofuranoside gene was differencially expressed (+37). This is consistent with a decrease in arabinosylated oligosaccharides Amanda, Souza, Augusto Crivellari & Marcos Buckeridge – Res. não publicados Applying inhibitors of secondary metabolism to change the cell wall Phenylpropanoids Pathway dos Santos et al. Functional Plant Science and Biotechnology, 2008 Light microscopy with polarization Control MDCA PIP 10X 20X A, B, C = 10×; D, E, F = 20×; A, D = control, B, E = MDCA 500 uM; C, F = PIP 100 uM dos Santos & Buckeridge, res. não publicados Xylanase activity on bagasse of treated culms Xylanase activity (mg free sugar min-1) C u l m ( b a sa l p a r t ) 2 1. 8 1. 6 1. 4 1. 2 1 0. 8 0. 6 0. 4 0. 2 0 c ont r ol e [ 80] [ 100] [ 120] T r a t me nt s ( M D C A uM ) dos Santos & Buckeridge, res. não publicados Studying the role of gibberellin in sugarcane seedling growth and development Andrea Brandão, PhD thesis 2d Andrea Brandão, PhD thesis 4d 6d 7d Biomass incorporation in sugarcane plants over time of the presence of gibberellic acid ( M) Total Plant Weight (mg) 5 a 4 b bc 3 c d d 2 d d e Control Ga33 M 1 e 0 1 2 3 4 5 treatment time (days) Andrea Brandão, PhD thesis 6 7 Sugarcane cell wall and elongation control Andrea Brandão, PhD thesis 3uM 30 uM 60 uM 0,5 cm control Vacuoles in meristematic cells of sugarcane seedlings 6 days old Andrea Brandão, PhD thesis GA Effect of GA3 on sucrose content of sugarcane seedlings Andrea Brandão, PhD thesis Expression of 100 genes of sugarcane by Real Time PCR Hormones Transcription Factors C metabolism Cell Cycle Cell Wall Transcription Network Hormones Vacuole Cell Cycle Transcription Network Mitochnodria Transcription factors Sucrose SPP INV Sucrose-P SPS Glc & Fru HK UDP-GPP UDPGlc Cell Wall GROWTH STORAGE cytoplasm Hexose-P ADP-GPP Triose-P Photosynthesis Starch ADP-Glc CO2 SUGARCANE Chloroplast cytoplasm Sucrose INV Sucrose-P SPS Glc & Fru HK UDP-GPP UDPGlc Cell Wall GROWTH SPP ADP-GPP Triose-P Photosynthesis Starch ADP-Glc CO2 STORAGE Hexose-P SUGARCANE Chloroplast Elevated CO2 What have we got up to now We “attacked” three nodes within the metabolic network 1) C pathway - elevated CO2 changes photosynthesis and carbohydrate metabolism and this can be seen through gene expression and cell wall changes 2) Secondary metabolism - Inhibition of ferulic acid production, induces changes in cell walls that are apparently useful for applications in second generation bioethanol 3) Hormone signalling - Gibberellin is one of the controllers of carbohydrate metabolism, increasing cell expansion (related gene expression) and vacuole formation Now wee need the metaolomics to advance intro a systems approach so that we can change carbon allocation and increase productivity for sugar, biofuel and biorefinary products Thank You [email protected] Students: Amanda P. de Souza, Andréa Brandão, Augusto Crivellari, Débora Leite, Wanderley Dantas dos Santos Collaborators: Gregório Ceccantini, Gilberto Kerbauy (IB-USP) Gaucia Souza (IQ-USP) http://msbuckeridge.wordpress.com % of shoots in the seedlings of sugarcane Control 3 M GA 7 61,25±0,03 c 83,33±0,17 b % in relation to control +36 14 60,78±0,07 c 87,84±0,17 b +44 21 50,17±0,17 c 82,22±0,44 b +64 28 53,97±0,09 b 83,93±0,6 a +55 Days