!
"
#
$%
(
&
' & (
&
) (
&
#
'
!
* !+
' ,!
" #"
,/
' !
0 ' "1 2'
! !
3
&
+.
$% 2 4 '
#
) &
" "
$5
#/
") &
)
6
#/
'
&)
"!
3 * ) 8
* !+
&
6
'
! #,!
"%
6
# "
" " !
: 2"
#'
" 6
& )
# "7#
"!, !
'
"
"
"!
'
.+.
24
# ! #,!
9 /
. !
9
/ "9 " " 9 7
. #
"!, !
" ! # "!
!/ 3
!,.
"
#
0
#
#
"
&
) : &
"*
!,.
#* # #
2" #7
" # ! #,!
&
1
,& &
&
+.
!#4!
,& &
" #"
") "$%
' " '
! !
&
! " #
"
" ! # "!
"! " # "!
! / &
*
'
#
#
,& &
!,.
2
#
&
*
# !
&/
&
! # "! #-!
&
. .
6
!) 6
# "
' !
&
# ! #,!
2;!
4 "7#
<=
> 2?@@A2'
BAC?
&
D
#
' ! .+
#
& ' ! .+
2
E
D
/
#
' " '
&.
6
!%
6
' )
"*
# "!
$5 2
#
!
2
)
# &
!'& $%
# "! ' "
'!
' . E
E # "
0!
2
" #
"%
# !
6
' ! .+
!,.
.
0 '
,& & '
# "!
$5
#
!,.
) &
!
' #
& $%
*"1 2'
" #
"!
"! " /
"
' & )
# "!
7
"7#
!
"
"!
" 1"
'
$5
. !
=
4!
&:
!,.
2 ") &
!
. #
=
/%
# &"
> 2?@@ACB
"
6
,/
*" 2 ' 4#
#
2
2'
:
" # " $%
"! " /
(. ? LD /
> 2
& "0 # "
&
: (
#
&
M * 2?@NA
2
SINGH, Simon. O último teorema de Fermat. Rio de Janeiro: Record, 1998
3
Idem.
*"1
%
*"
"%
'
" #"
&8
#
,/
? LC
?
'
F2?@@GCH2
& +
"
&
4#
# " ! # "! &
+.
#-!
,'
#
& ' ! .+
$%
.
#
0 $% 2 &
!
& IJ K #' ! "! & #/
!&:
,& &
#
. #
2
/
2
" "* #
#
* !+
,& &
"
!
' " # "! 2'
7&
!#
'
/
!) #'
'
4.
' " ,)
! "*
. !
4
' &
& 6
' ! .+
# &
*
' ),) &6
) &
!
!"
+
/ "
"7#
E
# #/
#
#/ &
#
"
%
!
# ! E6
# ! #,!
2
' "
"%
2! "
' ! .+
&
) :
'
!
# ' " '
4
#
" !-
2#
!
6
' "$%
"!
' & ") 0
2#
#6
!,.
* !
'
D
!,.
# " ! $5
& "2 ! #
. '
" #
#
2!"*
!"*
#
# &
* "!
" ! "!
!,.
# ! #,!
'
#' ! "!
'
# "
.
! "#!
!
.
=.
F,
! !'
,/
=! * !OC
"!
"$
'
"
# ! '
/,
2
!, "
# #
!
(. HL D /
"% *, '
"!
"
0' "
' - "
! "
"*
4'
"!
"
'
6
!
1"
"$
#
,/
)+
"!
2 ! * !O
"
! / ) 6
# * ! * : "! &
2#
*,
"
6
) #
'
#
&)
# "
"!
2
. H L8
. "
# $5 8'
#
'
" #
'
" 3&
& 2
'
'
2
# 2 &
!
! "
#
#
"
#
= . B LC
(. B L D /
0 ' "1
" #"
"7#
"! " ' ! "
46
"!
'
#'
"*
(. A L D
!
" '
"
"
" # "!
& # "! =(. A LC
& # "!
!
6
/ ) 6
*, ' "
#
4 "
,
F,
"
' "!
1"
6
!#
"$%
)
&
"!
(. A ? D
)5
4 #
&
+.
!#
: "
'
2 :3
#
# &
2
!
"! "
(. P LD "7#
#'
!1
(. P A D "7#
6
"
&6
:" 9
!
"
!&:
!
#
' " '
?L # ?L
# &"
:
0 "!
: " 2!
"!
(. P Q D "7#
#
(. P B D "7#
#
1"
&
# "
02 ! #
'
(. P ? D "7#
(. P P D "7#
& &
"!
1"
=P R ?C
(. P N D "7#
! =P R HC
(. P GD "7#
! =P R BC
(. P @ D "7#
" ) =P R AC
(. P ?LD "7#
:
"
:D #
:"
3
' !
. ! #
&
.
#
2'
#
& 4 '
#'& 2
& !)
"7#
4#2
H LPN '
& ) "! H
"!
'
#
"!
"
"!
'
"7#
/
'!
6
# "! &
# "!
'
. ! '
#&
* 2BS* !
'5
:
#
! '
6
8H2L2
& !) 2 *,
#2'
. !
9'
. !
!2
PL2/
. ! 2' &
2
/
!
"! " 2
"!
J 0
#
#&
&
.
"!
#
# &
.
#
: " 9 " &: "
1"
# ! / &
*
H LLL R PL R N
#
'
"7#
!# 6
#
'
&
6
0 ! / &
*
6M1"
4 ! / &
*
#'
. !
6
6
3
&
*
&
*
"
. !
H LPN2'
/ &!
/ & ! 24 #' ! "! & #/
P2 N
) &
"
&
!
. ! "
(. P ??
'
") &
)
. ! 2
,& &
" &: $% "
6
&
6
# 6
6
") &
* 0
&
6
4 #' " '
,& & 2 4 "
7)
" !
#/
:2 '
#
,
#"
"
"!
) "$
' " '
0 '
!.
) &
! ". ,
'
&:
$%
$%
&
+.
#/
#
"*
4
* 0
4
&
. #
" )
# "!
' " '
; .
# "*
&
+.
6
.
< "
2
. "
T #
3# ! #,!
4
# "
# '
" ! # "!
'
# "!
=?@@L2 ' B@CA ; #
"! -
' &
!
" )
) :6
"$
KAMII, Constance. A criança e o número: implicações educacionais da teoria de Piaget para a atuação junto a
escolares de 4 a 6 anos. Trad.: Regina A. de Assis. 31ª ed. Campinas, SP: Papirus, 1990.
&
#
#
/0 ! " #
'4
& $5 <
'
& $% 2"% 4
# "!
# "! 2! #/4# &
+.
&
+.
"
"
&
7
# "! &
"$
' :
&
!
6
&
"!,
6
'
!
'
"
#
"!
&
! '
,
# " "* #
#6
&
# "!
6
'
&
#
5
"
6
!
/
)
#'
'
V
.
& ".
*,
! 26
!5
'
#
: #
# "! 2
#
;! #
$%
2 .
' "
4
2
" "
"%
) #
&)
2
2#
!# !:
'
! :
"! 7
&.
# "!
&
<
=?@NN2' N?CQ
"
#
)
&
+.
"%
#
!% 48"%
2
#
" !
'
&)
#
"
" &
<4 ' !
) "$
&:
#'
&
! :
6
!#4!
'
/
&"
)1 # ! $5
'
&
!
/ &
*
#
,) &'
#' !
6
! #'
.
!#4!
!# & #
' $%
# # "!
/0 !)
' " '
" "
)
' "
' . #
! $5
! # "!
&"
#
' $%
/ #
:
E #
!)
'
=?@@?2 ' ?QNCP ;
"$
'
/0 !)
"
2
#
"!
'
' " # "!
) :
#
# "!
T #
&
U
" )
") &
)
2 &
4#
"$
") &
) "
'
'& $5
#
!'
' #
#
)
&
7
"!
. ! 2! #/4#
"
!)
" &
7
! !4.
#
'5 #
$%
# # '
'
!)
# '
F, # '
!
& 6
!
" ! # "! 20 .
#
#
&
! # "! '
%
6
6
## !
&
!#
#
."!)
/ &
*
&
!
&
+.
'
! "
&
& "$
;
'
"! 6
$ #
K# !
"6
#
"
& $% ! #/4#
! "! 2'
" "
'
#
# "!
& $%
" &
' !
# "! &
+.
2 " &
#'
2
!
.
# !
<
;)
#<
'
$%
!' ?@ R P "
"
. !
:3& 8 #
/ ' !
/ "4 "
& ". 2
!
#
,
. !
&
!"
(. Q L
Idem. Reinventando a Aritmética: implicações da Teoria de Piaget. Trad.: Elenice Curt, Marina Célia Morais
Dias, Maria do Carmo Domith Mendonça. 4ª ed. Campinas, SP: Papirus, 1991.
6
BRASIL, Luiz Alberto dos Santos. Aplicações da teoria de Piaget ao ensino da matemática. Rio de Janeiro:
Florense-Universitária, 1977.
"
(. Q L
Superior = 5
Superior = 5
Inferior = 4
5+4=9
1 dezena = 10
10 + 9 = 19
/
# #
#
) 6
!
' $ # "!
##
"
! "6M& # "!
"
. !
' #
. !
#
2
'
"7#
& 8P R @ W ?A
"7#
?A2
#
# &3
!
# &
'
& 2
,
:"
"!
&
&
'
!&:
'
'
"!
. !
# "
"! 6
'
' $
!
#
"%
6
! / &
*
"!
'
. "!
:"
P = . "
#
# 8 # 3
#
-
2 /
&C
"
"! "
:"
#
#
& '
'
'
2' ! "! 2HA
"!
"
!3
=(. Q ?C
(. Q ?
&: $%
' " '
. "
&
+.
'
#
'
& " #
"
2 '
#
"! 3
"% " # #
,& & "
'
! !#
" &: $% 2' 4# "% "
! #"
"
" #" #
#
&
? HG@ R A BH@2
#
: $%
:2'
!"
#
#
. !
,/
' " '
$
& ". 2
%
"
#
"
#
/
)
(. Q H
. !
'
& 8
Fig. 6.2
&
.
#
&
.
#
. ":
#!
4 # ".
2
#
#'& 8
"! "
"
?LLL HLLGL@
?
H G@
ALLLBLLHL@
A
B H @
#
"!
"! "
4
"
"
'
$%
"! @
/
@0
,
#
"!
! "! 2
"
4
# #
2
!
'
'
2
# "! &
"! 2
'
"
' " ,) &" # ! #,!
#
# '
' !
! ' & # "!
"!
' " '
# #
#
"! "
6
-
"%
'
:"
! !4 "
$%
#
'
* 0
4
:" 2
$%
"
2@ R @ W ?G9 /
: " =) 0 6
#
)
%
3
#
#
6
#
/) &
C =(. Q H ?C
Fig. 6.2.1.
unidades somadas
com unidades.
9 + 9 = 18
.
"!
#
'
#
"
"!
,& &
:"
"! "
/
=(. Q H HC
1 dezena + 8 unidades
: " 8HL R @L W ??L9 /
#
"!
'
:"
!1
& ) "!
Fig. 6.2.2. dezenas
somadas com
dezenas.
20 + 90 = 110
'
. "! 4
,& & GL R HL2
HLL 6
/!
&
!
#
#
P
2'
) #
"
6
' #
?LL2
"7#
(. Q H H C
6
!%
"! " 8BLL R BLL9" # # "!
&
!
"! "
"! " =HLLC2& #/ "
,/
#
# BLL =J
"!
1 centena + 1 dezena
=PLLC
/
#
!%
. ": $%
'
'
"! QLL =BLL R BLLC2
"!
"
"
!
#2
' !
"!
" &
!
"!
#
6
&
!
'
" (. Q H B8
Fig. 6.2.3. centenas
somadas com
centenas.
Superior = 500
Inferior = 100
500 + 100 = 600
300 + 300 = 600 6 centenas
1 contagem superior = 500
1 contagem inferior = 100
" &
"7#
6
'
ALLL
,& & 2/ !
6
#
$% 2/ !
! 6
"
:
&!
#
"7#
#&
*
. ! "
?LLL R ALLL W PLLL9 /
?LLL '
PLLL 6
/
=(. Q H AC
"
&
!
#
" &
4
Fig. 6.2.4
milhar com milhar. Quando
as contas da esquerda acabam,
isso indica o final da
operação.
4000 + 1000 = 5000 5 unidades de milhar
1 contagem superior na unidade de milhar.
#
&"
!
# $
2
"-
'
6
!
&"
" 2#
#/
6
&
+.
. .
" ) #/
&:
#
4
?@AP2
'
6
#
#
#
,'
" !
6
!
" !
#
0 " & #
"! #2 "
#
#
' " '
"
#
" 2 !
! !
"
&"*
?H
"
' #
" !4
#
#
!' 2
'
)
XO C2
/0 !)
0 ' "1
!&: "
! "!
& &
&
/
#
&
4!
0 ' "1 6
"!
#
8; #,6 "
,/
#
#
' ! "!
0 ! 2'
HS &
" Y '% 2
2
&
2
0 ' "1 TO *
9
' ! !"*
!&: "
O& = #
! "
#
&
"
# ! #,!
' !
"
#
& ' -
# &
*
&
" # " & "!
. "
,& &
"
%
HS
!* " Z
$
6
! !"
"! / &
V
& &
! "
2"
* #
" Y '%
&!
,& &
,
# !
#
!+
" "
#
#
,
' !
"
#' %
$%
#
"7"
#
# " ! $%
/ #2#
" $% 4 "
/
'+
" !
,) &
,'
.
# +X 2" Y '% 2 #
! :X
.
#
*,/ !
# "! "%
#
! " 3
' "
# & : $%
#
"
# 6
" ! # "!
!
' !!) 2#
!
HALS
,
4 6
' " # "! 6
# # "!
, &
" ! # "! &: $% ! &
$5
' !
! " #
! " #
)
#'
2
2
,& &
! # ;! " < '
'
#'&
# "! " )
" 6M "! # "! 2
!
4
#' .
' !
# '
*, 4
2
&
# .
=(
#,6 "
&
4!
'
!&:
4
&
" !
"
&
6
Idem.
#
#
4# !
"
. ) "
/ . !+
"
!
"
<
"! 2/ " ,
,& &
' !
!
Y '%
'
#
'
$5
# "7#
! "!
!
) &! / &
* 2 &
4#
"7#
#
) &
. $%
# &
7
2
&
'
") &
) "
,& &
#
" ! # "!
"
& 4 '
#
# #
#
4' 6
2 ,& &
,
"!
#
'&"
"
7
#
F2?@@P2 QLLCN
' -
6
#
# "!
.
,) &
' :
&
:3
'
" &:
> 2
& "0 # "
.
&
M * 2?@NA
2
: &
/ !
Y "
T
2
&
: (
"!
8(&
" 3 ")
!,
#
%
&8
2?@NN
"!"
8
B?S
#' " 2 8
'
[[[[[[ ! "
#
&"
!2
"
4&
#' " 2 8 ' 2?@@?
F2 # " %
."
2?@@L
2
&
$
#
Y "
# !*
8
"
2?@@G
"$
8
AS
Download

O uso do Sorobã como princípio lógico no ensino da matemática