AUTARQUIA ASSOCIADA À UNIVERSIDADE
DE SÃO PAULO
IMPLANTAÇÃO DE UM SERVIÇO DE RADIOTERAPIA COM
ACELERADOR LINEAR (FÓTONS): TESTES DE ACEITAÇÃO,
DOSIMETRIA E CONTROLE DE QUALIDADE
MAFALDA FELICIANO BERDAKY
Dissertação apresentada como parte
dos requisitos para obtenção do Grau
de Mestre em Ciências na Área de
Tecnologia Nuclear-Aplicações
Orientadora:
Dra. Linda V. E. Caldas
São Paulo
2000
384.6.08
L
4
IMPLANTAÇÃO DE UM SERVIÇO DE RADIOTERAPIA
COM ACELERADOR LINEAR (FÓTONS):
TESTES DE ACEITAÇÃO, DOSIMETRIA E CONTROLE
DE QUALIDADE
LIVRO
MAFALDA FELICIANO BERDAKY
Dissertação apresentada como
parte
dos
requisitos
para
obtenção do Grau de Mestre em
Ciências na Área de Tecnologia
Nuclear - Aplicações
Orientadora:
Dra. Linda V.E. Caldas
São Paulo
2000
COMISSÃO NAUONAl DE ENtKGIA N U C L E A H / b f
IH»
"O futuro não é um lugar para
onde
estamos
indo, mas
um
lugar que estamos criando. O
caminho
para
ele
não
é
encontrado, mas construido, e o
ato de fazê-lo
muda tanto o
realizador quanto o destino".
J . Schaar
Este trabalho é dedicado aos
Meus pais
María Manarín Feliciano e
José A. Feliciano (in memorían)
AGRADECIMENTOS
À Prof. Dra. Linda V. Ehlin Caldas, pelo incentivo, apoio incondicional
não me deixando desistir do trabalho na reta final, pela orientação precisa e
segura, que tornou possível a realização deste trabalho;
À Maurília Feliciano Muller e Otmar Josef Muller, pelo apoio total
sempre dado, e que se tornaram dois dos principais responsáveis pela
realização deste trabalho;
Ao meu marido Fabiano Berdaky, pelo apoio, incentivo sempre presente
e pela importante ajuda na parte computacional;
Ao CEBROM, por ceder-me as instalações e os equipamentos para a
realização do trabalho nas pessoas de: Dr. Carlos Inácio de Paula, Dr. Wilmar
José Manoel, Dr. Osterno Queiroz da Silva, Dr. Sérgio Aidar, Dr. Aristóteles
de Paula e Souza; Dr. Luiz Mauro de Paula e Souza e Dr. Ricardo de Alarcão
Soares;
Aos funcionários do CEBROM que de uma alguma forma contribuíram
para a realização deste trabalho;
Ao Prof Dr. Adelino José Pereira, que foi a primeira pessoa a ensinarme os procedimentos em radioterapia e pela dedicação sempre demonstrada;
Ao Dr. Cleber Nogueira de Souza, pelo incentivo dado a minha ida para
Goiânia;
Aos engenheiros da Varian, pelas sugestões e por permitirem o uso de
algumas figuras de seus equipamentos
no trabalho, nas pessoas de:
Sr. Miguel Daniliauskas, Sr. Weslei Baltazar Machado, Sr. Armando Sbrissa
Neto, e Sr. Renato Rossetto;
Aos pacientes oncológicos, que são o motivo principal da realização
deste trabalho;
aWâtSSàü WâCüWfiL t f ENEHGIfi
NUCLEflH/SP
À Física Rosângela Novaes Costa, pelo constante apoio e incentivo;
Ao José Renato de Oliveira Rocha, físico responsável pelo Serviço de
Radioterapia do Centro de Assistência
Integral à Saúde da Mulher -
UNICAMP, liberando-me para cursar as disciplinas do programa de Mestrado
e pelo apoio sempre presente e aos demais membros do Grupo de Física de
Radioterapia - AFM/CEB e do Serviço de Radioterapia/ CAISM;
À minha família, que sempre me apoiou e tornou possível a realização
deste trabalho;
À Sra. Adriana Calixto de Almeida Lima, pelo apoio na editoração e
impressão deste trabalho;
Ao M.Sc. Alessandro Martins da Costa, pela ajuda na confecção das
figuras;
Aos professores e funcionários do IPEN-CNEN/SP que de alguma
forma contribuíram para a realização deste trabalho;
À todos os amigos que aqui não foram citados nominalmente, que
incentivaram e apoiaram a realização deste trabalho;
Ao físico, Pedro Paulo Pereira Júnior, por permitir o uso de seus dados
no trabalho;
À CAPES, financiamento parcial deste trabalho.
íOWiSSAO WfiCiCNíiL L t ENtHÜIA N U Ü L t ñ H / S P
»rt*
IV
IMPLANTAÇÃO DE UM SERVIÇO DE RADIOTERAPIA COM
ACELERADOR LINEAR (FÓTONS): TESTES DE ACEITAÇÃO,
DOSIMETRIA E CONTROLE DE QUALIDADE
Mafalda Feliciano Berdaky
RESUMO
Este trabalho apresenta a parte operacional do processo final envolvido na
implantação de um serviço de radioterapia com acelerador linear com feixes
de
fótons
(6 MeV),
incluindo
os
testes
de
aceitação,
os
testes
de
comissionamento e por fim a implementação de um programa de controle de
qualidade por meio de testes rotineiros mecânicos e de radiação. Os
resultados dos testes de aceitação mostraram-se coerentes, sempre ficando
abaixo
das
especificações
definidas
pelo
fabricante;
os
testes
de
comissionamento ficaram todos dentro das recomendações internacionais. O
programa de controle de qualidade durante 34 meses mostrou a estabilidade
excelente deste acelerador.
ESTABLISHMENT OF A RADIOTHERAPY SERVICE WITH A LINEAR
ACCELERATOR (PHOTONS): ACCEPTANCE TESTS, DOSIMETRY AND
QUALITY CONTROL
Mafalda Feliciano Berdaky
ABSTRACT
This work presents the operational part of the final process of the
establishment of a radiotherapy service with a linear accelerator (6 MeV
photon beams), including the acceptance tests, commissioning tests and the
implementation of a quality control program through routine mecanical and
radiation tests. All acceptance tests were satisfactory, showing results below
the allowed limits of the manufacturer; the commissioning tests presented
results whithin those of the international recommendations. The quality control
program was performed during 34 months, and showed an excellent stability
of this accelerator.
VI
SUMÁRIO
Página
RESUMO
'V
ABSTRACT
V
1. INTRODUÇÃO
1
2. FUNDAMENTOS TEÓRICOS
4
2.1. Produção de Raios X
4
2.2. Interação da Radiação Ionizante com a Matéria
2.2.1. Efeito Fotoelétrico
5
6
2.2.2. Efeito Compton
7
2.2.3. Produção de Pares
8
2.3. Teoria de Bragg-Gray
9
2.4. Câmaras de Ionização
10
2.5. Eletrômetros
12
2.6. Grandezas Dosimétricas
13
2.6.1. Exposição
13
2.6.2. Dose Absorvida
14
2.6.3. Kerma
15
2.7. Equilíbrio Eletrônico
16
2.8. Aceleradores Lineares
16
2.8.1. Pedestal
17
2.8.2. Tubos Aceleradores
17
2.8.2.1. Acelerador do Tipo Onda Viajante
18
2.8.2.2. Acelerador do Tipo Onda Estacionária
18
2.8.3. Coluna
19
2.8.4. Outros Complementos
19
2.9. Protocolos de Dosimetria
22
2.9.1. Protocolo AAPM (TG 21)
22
2.9.2. Protocolo lAEA (TRS 277)
26
IPt»
Vil
3. MATERIAIS E MÉTODOS
28
3.1. Acelerador Linear
28
3.2. Sistemas de Medida
30
3.3. Sistemas Auxiliares
31
3.4. Arranjo Experimental para Calibração do Monitor do Acelerador
31
4. TESTES DE ACEITAÇÃO
4 . 1 . Variação do Isocentro Mecânico com a Rotação
33
34
4.1.1. Colimador
34
4.1.2. Coluna
35
4.1.3. Mesa de Tratamento
35
4.2. Campo Luminoso e Alinhamento do Retículo
36
4.3. Rotação do Colimador e da Coluna
36
4.3.1. Colimador
37
4.3.2. Coluna
38
4.4. Movimentos Mecânicos da Mesa
38
4.4.1. Movimento de Rotação da Mesa
39
4.4.2. Movimento Lateral da Mesa
39
4.4.3. Movimento Longitudinal da Mesa
40
4.4.4. Movimento Vertical da Mesa
41
4.5. Teste de Isocentro de Radiação
42
4.5.1. Rotação da Coluna
42
4.5.2. Rotação do Colimador
43
4.5.3. Rotação da Mesa
44
4.6. Coincidência de Campo Luminoso X Campo Radioativo
45
4.7. Verificação da Espessura de Equilíbrio Eletrônico e da Energia
47
4.8. Uniformidade e Simetria do Campo
48
VIII
5. DOSIMETRIA DO SISTEMA
52
5.1. Calibração do Monitor para liberar 1 cGy/UM, no Phantom de Água
a 5 cm de Profundidade para o Campo de 10 X 10 cm^
52
5.2. Determinação da Porcentagem de Dose Profunda
53
5.3. Determinação da Relação de Tecido-Máximo
57
5.4. Determinação dos Fatores de Abertura de Colimador e de RetroDispersão
5.4.1. Fatores de Abertura de Colimadores
61
61
5.4.2. Fatores de Retro-Dispersão
61
5.5. Medida do Fator de OFF-AXIS
63
5.6. Verificação dos Fatores de Bandeja
64
5.7. Determinação dos Fatores de Filtros
65
6. PROGRAMA DE CONTROLE DE QUALIDADE
67
6.1. Determinação do Fator de Calibração
68
6.2. Determinação da Energia do Feixe
70
6.3. Coincidência de Campo Luminoso X Campo Radioativo
71
6.4. Diferença entre Retículo e Escala Óptica
72
6.5. Botões de Segurança - Botões de Emergência
73
6.6. Dimensões do Campo Luminoso
73
6.7. Indicador de Distância Foco-Superfície
74
6.8. Indicador de Ângulo da Coluna
75
6.9. Indicador de Ângulo do Colimador
76
7. CONCLUSÕES
77
REFERÊNCIAS BIBLIOGRÁFICAS
78
INTRODUÇÃO
1. INTRODUÇÃO
4K
À medida que a expectativa de vida da população aumenta, a
incidência
de
câncer aumenta
também
na mesma
proporção.
Várias
pesquisas de medicamentos e formas de tratamentos estão em andamento
para se tentar a cura da doença. Uma delas que data do início do século é a
Radioterapia, que é um tratamento bastante eficaz no controle e até mesmo
de cura da doença.
Logo após a descoberta dos raios X em 1895 por Roentgen, foi
dado início a uma série de estudos e em 1898 Pierre e Marie Curie
descobriram o Rádio. Desde então a Radioterapia começou a se desenvolver.
Em 29 de Janeiro de 1896, foi tratado o primeiro paciente com radiação e em
1899 o primeiro caso de câncer; um epitelioma de células basais foi curado
com radlação^^^
A partir de 1920 o uso dos raios X foi expandindo e começou-se a
construir máquinas que operavam na faixa de 200 a 250 kVp, podendo-se
assim tratar os tumores um pouco mais profundos sem causar tantos danos à
pele. De 1940 a 1960 o progresso foi ainda maior; nessa época já começaram
a
ser
produzidas
as unidades
de
cobalto assim
como
os
primeiros
aceleradores lineares
Em 1922, num congresso internacional de oncologia em Paris, a
Radioterapia foi aceita como especialidade médica
INTRODUÇÃO
O início da Radioterapia no Brasil foi em 1901, no Rio Grande do
Sul, com o médico Dr. Becker Pinto, que foi o primeiro a utilizar um aparelho
de raios X para tratamento de um tumor de pele^^^'. O primeiro acelerador
linear do Brasil foi instalado em 1972, no Hospital Alemão Oswaido Cruz, em
São Paulo^^^'.
No
Brasil
existem
vários
Serviços
de
Radioterapia.
Em
levantamento realizado pela CNEN em 2000, foram catalogados 156 serviços
de radioterapia, com 113 equipamentos de Cobalto e 102 aceleradores
lineares, sendo que os aceleradores lineares estão assim distribuídos por
região(^°>:
REGIÃO
Norte
Nordeste
Sudeste
Sul
Centro - Oeste
TOTAL
1B$6
1
11
44
8
4
68
1997
1
15
50
11
6
83
1998
1
18
53
15
8
95
Í999
1
18
57
16
8
100
2000
1
18
59
16
8
102
Esses equipamentos são utilizados para o tratamento de todos os
tipos de câncer.
A Radioterapia é o tratamento por meio das radiações ionizantes,
que utiliza doses de radiação altas e máquinas de energias altíssimas onde
qualquer erro no procedimento pode acarretar graves consequências ao
paciente, inclusive a sua morte. Devido ao fato de se trabalhar com energias
altas, necessita-se ter um controle da qualidade alto dessa radiação, para que
a dose absorvida no volume alvo seja realmente a necessária. O erro máximo
permitido na liberação dessa dose é de 5%'^^'.
O acelerador linear, antes de ser utilizado com pacientes, precisa
passar por uma série de testes, chamados testes de aceitação. Além disso,
ele deve ser submetido às medidas de comissionamento antes que seja
INTRODUÇÃO
i)
Utilizado
com pacientes. Estes testes devem ser
sequência lógica de maneira que os
resultados
executados
em
uma
de um teste não forcem uma
mudança nos outros parâmetros do equipamento^^^''*°\
Nos testes de comissionamento são identificados todos os dados
necessários ao cálculo de dose para pacientes e o equipamento é calibrado.
Essa calibração é a relação entre a dose (cGy) e as unidades monitoras (UM)
na profundidade de dose máxima, que para o acelerador em questão é de
1,5 cm para o campo de 10 x 10cm^ (2.4,19.21)
Depois dos testes de comissionamento, este equipamento estará
liberado para ser utilizado no tratamento de pacientes, devendo-se tomar os
devidos cuidados com os testes e a dosimetria de rotina, para a verificação da
reprodutibilidade do sistema^'*^^
O objetivo deste trabalho é de relatar todos os testes e tabelas de
dados
necessários à utilização do equipamento
implementar
um
programa
de
controle
de
com
qualidade
pacientes e
de
no
de
Serviço
Radioterapia do CEBROM, Goiânia, e acompanhar a reprodutibilidade de
resposta do acelerador em questão.
FUNDAMENTOS
TEÓRICOS
2. FUNDAMENTOS TEÓRICOS
2.1. Produção de Raios X
Raios X
são
produzidos
sempre
que
uma
substância
é
bombardeada por elétrons de velocidades altas'^^^
O tubo de raios X, apresentado na Figura 2.1, é constituído por um
catodo e um ânodo em um tubo de vidro onde há vácuo. O catodo é um
filamento de tungsténio que quando aquecido emite elétrons; o ânodo é o
alvo, que deve ser de um material de número atômico alto e ponto de fusão
alto, normalmente tungsténio.
Quando uma alta voltagem é aplicada entre o ânodo e o catodo, os
elétrons emitidos do filamento são acelerados a velocidades altas e chocamse contra o alvo. Os raios X são produzidos pela rápida desaceleração dos
elétrons no alvo, efeito esse conhecido com
bremsstrahiung.
FUNDA^4ENT0S
TEÓRICOS
PRODUÇÃO D E R A I O S
Ánodo
\
Para o gerador ^
de a l t a voltagem
X
Catodo
/
/
Alvo de
Ttmgstênio"
Para o Gerador
de Filamento
Catodo
Ánodo
J a n e l a de
Berilio
J a n e l a de Vidro
fino
Raios X
Figura 2.1. Diagrama esquemático de um tubo de raios X
2.2. Interação da Radiação Ionizante c o m a Matéria
Sempre que um feixe de raios X passa por um meio absorvedor
como o tecido humano, uma parte desta energia é transferida para o meio e
causará um dano biológico a esse tecido. Esta energia depositada por
unidade de massa do meio é a dose absorvida. A interação pode ocorrer de
várias maneiras dependendo da energia do feixe e do material com que ele
interage.
Os três modos principais de interação da radiação ionizante
(fótons) com a matéria são: Efeito Fotoelétrico, Efeito Compton e Produção de
Pares. Na faixa de energia do acelerador (6 MeV) utilizado no presente
trabalho, o efeito predominante é o Compton.
FUNDAMENTOS
TEÓRICOS
2.2.1. Efeito Fotoelétrico
É o processo no qual um fóton de energia hv interage com um
átomo e libera um dos elétrons orbitais; nesse processo toda a energia hv do
fóton incidente é transferida para o elétron ejetado, conforme Figura 2.2.
Raios X
caracteristicos
4
(fóton)
\~V^"-' •' '
Átomo
é
(fotoelétron)
Figura 2.2. Ilustração do efeito fotoelétrico
Para este efeito ocorrer, a energia do fóton incidente (hv) tem que
ser próxima e maior que a energia de ligação do elétron ( E s ) . O fotoelétron
ejetado adquire a seguinte energia cinética:
E =
hv - Es
A probalidade de ocorrência do efeito fotoelétrico varia com a
energia do fóton incidente com (1/hv)^. À medida que a energia do fóton
aumenta, o efeito fotoelétrico torna-se menor e começa a aparecer o efeito
Compton.
FUNDAMENTOS
TEÓRICOS
2.2.2. Efeito Compton
Neste efeito, o fóton incidente de energia hv interage com um
elétron fracamente ligado; nessa interação o elétron recebe uma parte da
energia deste fóton e é emitido em um ângulo 9. O fóton incidente com a
energia reduzida é espalhado em um ângulo ^, conforme Figura 2.3.
é (elétron
Elétron
AVts ( f ó t o n
Conç)ton)
"Livre"^./
incidente)
(fóton
espalhado)
Figura 2.3. Diagrama ilustrativo do efeito Compton
O elétron ejetado é chamado elétron de recuo, e possui a seguinte
energia cinética:
'
1 + a(1-cos(l))
onde a = E/mo c^- sendo E = hvo a energia do fóton incidente e moC^ a energia
de repouso do elétron (0,511 MeV).
Como o efeito Compton envolve essencialmente elétrons livres, ele
é independente do número atômico Z; à medida que a energia vai
aumentando, o efeito Compton vai desaparecendo e dando lugar à produção
de pares.
FUNDAMENTOS
TEÓRICOS
2.2.3. Produção de Pares
A produção de pares ocorre quando um fóton de energia maior ou
igual a 1,022 MeV passa perto do núcleo de um átomo e fica sujeito ao seu
campo elétrico forte e interage com ele, desaparecendo e dando origem a um
par elétron-pósitron, conforme pode ser observado na Figura 2.4.
ê
> 1 , 0 2 2 MeV •
(elétron)
/
' •
e
(positron)
Figura 2.4. Diagrama ilustrativo do processo de produção de pares
A energia de 1,022 MeV é limitante para esse efeito ocorrer,
porque a energia de repouso do elétron é de 0,511 MeV; a energia cinética
total do par elétron-pósitron é dada por:
E = ( h v - 1,022) MeV
A produção de pares aumenta rapidamente acima do limite de
1,022 MeV, sendo que a probabilidade deste efeito ocorrer varia com
.
Neste processo, tanto o elétron como o positron perdem energia no
meio, e quando o positron já não mais tiver energia cinética, ele se aniquilará
com qualquer elétron livre do meio, dando origem a dois fótons, em sentidos
opostos com energia de 0,511 MeV cada um.
FUNDAMENTOS
TEÓRICOS
2.3. Teoria de Bragg-Gray
Para se medir a dose absorvida em um meio exposto à radiação, é
preciso colocar neste meio um objeto que seja capaz de medir esta radiação.
Este objeto vai diferir do meio em densidade e número atômico e, de acordo
com a teoria de Bragg-Gray, esse objeto constitui uma cavidade neste meio.
A teoria da cavidade de Bragg-Gray pode ser usada para se
calcular a dose diretamente a partir da medida da câmara de ionização em um
meio^^^).
De acordo com a teoria de Bragg-Gray, a ionização produzida em
uma cavidade cheia de gás, colocada em um meio, está relacionada à energia
absorvida no melo vizinho. Quando a cavidade é suficientemente pequena, de
maneira que sua introdução no meio não altera o número ou distribuição de
elétrons que existem no meio na ausência da cavidade, então a relação de
Bragg-Gray é satisfeita:
'^meio ~ '^cavidade -m ^meio .cavidade
onde
Dmeio
e
Dcavidade
representam a dose absorvida no meio e na cavidade
respectivamente, e
mSmeio.cavidade
é a razão entre os poderes
de
freamento de massa médio do meio e da cavidade.
A relação de Bragg-Gray não leva em conta as grandes perdas de
energia, ou seja, a produção de raios 5 (ou elétrons secundários rápidos), que
depositam energia fora do volume de interesse; por isso esta relação constitui
um modelo de perda contínua de radiação.
Outras teorias, de Spencer e Attix, e de Buriin (teoria cavitária
geral) levaram em conta outros parâmetros, sofisticando a teoria de Bragg-
FUNDAMENTOS
TEÓRICOS
1Q
Gray, que devem ser aplicados conforme as características das câmaras e
dos feixes de radiaçào'^^'.
2.4. Cámaras de Ionização
Para a medida da radiação proveniente de fontes radioativas,
deve-se utilizar um sistema que seja capaz de detectar essa radiação, ou
seja, pode-se utilizar uma câmara de ionização.
A câmara de ionização é o mais simples dos detectores a gás, e
sua operação está baseada em coletar todas as cargas produzidas por
ionização direta, pela aplicação de um campo elétrico.
As câmaras de ionização mais simples apresentam um eletrodo
coletor central; a parede é revestida de um material condutor, que delimita
uma cavidade preenchida com um gás ou uma mistura de gases.
Entre o eletrodo central e a parede é aplicada uma diferença de
potencial, para separar os íons produzidos e esse fluxo de íons produz uma
corrente elétrica extremamente baixa (da ordem de 10"^^), que é medida por
um instrumento sensível chamado eletrometro.
As câmaras de ionização normalmente não são seladas; isto quer
dizer que o ar no seu interior é o mesmo do ambiente; por isso deve-se
corrigir as leituras obtidas para a pressão e temperatura ambientes. A
umidade também pode afetar as leituras obtidas com esses instrumentos,
produzindo uma corrente denominada "corrente de fuga", o que torna
necessário o controle da umidade no ambiente em que as câmaras são
guardadas. A correção da leitura para pressão e temperatura é feita pelo
seguinte fator
:
FUNDAMENTOS
T,P
onde
Tref
e
Pref
TEÓRICOS
11
(273,2+ T^^)p
são tomados como valores de referência de 20°
C
e 101,3 kPa
(1013,15 mbar = 760 mmHg) respectivamente.
Existem vários tipos de câmaras de ionização com formas e
dimensões diferentes. O uso de cada uma vai depender da finalidade à qual
será destinada. Para dosimetria de feixes terapêuticos são utilizadas as
câmaras cilíndricas e de placas paralelas para feixes eletromagnéticos
(fótons). No caso das câmaras de placas paralelas elas também são utilizadas
para detectar radiações de elétrons.
Neste
trabalho
foram
utilizadas
uma
câmara
de
ionização
cilíndrica, tipo dedal, e uma mini câmara shonka.
Nas medidas de dosimetria de rotina em radioterapia é necessário
ter-se uma câmara de fácil utilização, manuseio e transporte e que possa ser
usada para medir radiação em fantomas (phantoms).
Essas câmaras não medem exposição diretamente e por isso
precisam ser calibradas em relação a um sistema padrão de um laboratório
autorizado
no País, a cada dois anos ou sempre que necessitar de
manutenção, segundo as recomendações nacionais^^^'^^^ e internacionais^^"^
A câmara de ionização tipo dedal é um instrumento de dimensões
pequenas com uma parede sólida condutora que delimita um certo volume de
ar. No centro do volume há um eletrodo que coleta os pares de íons formados
no ar. Para que não haja perturbação no campo de radiação, tanto a parede
quanto o eletrodo central devem ser equivalentes ao ar, em relação á
interação dos fótons e dos elétrons secundários. Esta equivalência significa
FUNDAMENTOS
TEÓRICOS
12
que a parede se comporta como uma camada de ar condensado, fazendo
com que a fluência e o espectro de energia dos fótons e dos elétrons
secundarios (gerados pela interação da radiação primária com o material da
parede e no volume ativo de ar) não sejam perturbados pela parede. Esta
parede tem uma espessura sempre maior que o alcance máximo dos elétrons
secundários gerados fora da câmara; isto significa que toda ionização
detectada pelo eletrodo central pode ser associada aos elétrons secundários
gerados e freados dentro do volume de ar, já que ocorre o equilíbrio
eletrônico, ou seja, a transferência de energia dos elétrons secundários
(gerados na parede) para o volume ativo de ar é igual a dos elétrons (gerados
no volume de ar) para a parede da câmara'®'^"^'^^'^^*.
Na Figura 2.5 pode-se observar o esquema de uma câmara de
ionização tipo dedal.
eletrodo coletor-
parede da câmara-
Figura 2.5. Esquema de uma câmara de ionização cilíndrica tipo dedal
2.5. Eletrômetros
Quando se expõe uma câmara de ionização a um feixe de
radiação, é gerada uma carga ou corrente, que é muito pequena e só pode
ser medida por meio de um instrumento sensível a esta corrente, que é o
eletrometro.
FUNDAMENTOS
TEÓRICOS
13
Basicamente, o eletrometro é um multímetro capaz de medir
tensão, corrente e carga, nem sempre dentro das faixas usuais.
Um mesmo eletrometro pode ser usado com várias câmaras de
ionização dependendo da corrente que é gerada na câmara e da escala do
eletrometro.
O sistema de câmara acoplada ao eletrometro, quando utilizado
para dosimetria de feixes em Radioterapia, é conhecido como dosímetro
clínico.
Segundo
as
recomendações
dos
organismos
internacionais^^°\
quando o eletrometro for utilizado para medidas juntamente com uma câmara,
os dois devem ser preferencialmente calibrados juntos.
Idealmente o eletrometro deve ter um mostrador digital e possuir
uma resolução de quatro dígitos ou 0 , 1 % . A mudança na sua resposta devido
à fuga ou à estabilidade a longo prazo não deve exceder ±0,5% ao ano'^^'^^\
Alguns eletrômetros possibilitam a variação da tensão aplicada á
câmara de ionização, assim como a reversão da polaridade, para que se
possa determinar a eficiência de coleção de íons e o efeito da polaridade da
mesma.
2.6. Grandezas Dosimétricas
2.6.1. Exposição
A exposição, X, é definida pelo Comitê Internacional de Unidades
de Radiação (ICRU) como o quociente de dQ por dm, onde dQ é o valor
absoluto da carga total de íons de um mesmo sinal produzidos no ar quando
FUNDAMENTOS
TEÓRICOS
I4
todos os elétrons (positivos e negativos) liberados pelos fótons
numa
determinada massa de ar dm são completamente freados no ar*^^'.
X = dQ/dm
A unidade antiga da grandeza exposição era o roentgen (R); a
unidade atual (Sistema Internacional) é o coulomb por quilograma (C/kg). A
relação entre estas unidades é:
1R = 2,58x10"^ C/kg
Sendo assim, exposição foi definida como sendo a habilidade ou
capacidade dos raios X e gama em produzir ionizações no ar.
2.8.2. Dose Absorvida
A grandeza dose absorvida. D, foi definida para descrever a
quantidade de radiação, para todos os tipos de radiações ionizantes, incluindo
partículas carregadas e não carregadas, todos os materiais e energias. Dose
absorvida é a medida dos efeitos biologicamente significantes produzidos pela
radiação ionizante'^^^
Dose absorvida é, então, definida como a quantidade de energia
depositada pela radiação ionizante na matéria num determinado volume
conhecido*^^*. É dado por:
D = dE/dm
OÓWlSbAO NAGiGNít üf. tMfcKÜIA M U C L E A R / S P
WM
FUNDAMENTOS
TEÓRICOS
15
onde dE é a energia média depositada pela radiação ionizante num material
de massa dm.
A unidade de dose absorvida é expressa em termos da energia
absorvida por unidade de massa. Essa unidade é chamada no Sistema
Internacional de gray (Gy) e é definido como uma dose de radiação absorvida
de um joule por kilograma, ou seja: 1 Gy = 1 J/kg.
A unidade especial original de dose absorvida é o rad (radiation
absorbed dose), que foi expressa com sendo 100erg/g, mas, com a
introdução do Sistema Internacional de Unidades, passou a ser expressa
como 0,01 J/kg, ou seja, IGy = 100 rad.
2.6.3. Kerma
O kerma, K, (energia cinética perdida no meio) é definido como o
quociente de ÓE^I
dm,
onde
dEtr
é a soma das energias cinéticas iniciais de
todas as partículas ionizantes carregadas (elétrons e positrons), liberados
pelas partículas sem carga (fótons) em um material de massa dr ^^^^
K = d E t r / dm
A unidade de kerma é a mesma utilizada para a dose absorvida,
ou seja. J/kg, onde U/kg = 1 Gy = 100 rad.
FUNDAMENTOS
TEÓRICOS
^
-| Q
2.7. Equilibrio Eletrônico
A definição da grandeza exposição está diretamente ligada à
condição de equilírio eletrônico. De acordo com a definição, os elétrons
produzidos pela interação da radiação com a matéria devem perder toda a
sua energia por meio de ionizações num volume específico de ar, e as cargas
de mesmo sinal devem ser somadas. Entretanto, alguns elétrons produzidos
neste volume específico depositam sua energia fora deste mesmo volume,
produzindo cargas que não serão consideradas na soma total. Por outro lado,
os elétrons produzidos fora do volume específico podem entrar neste volume
e ser considerados na soma total das cargas produzidas. Se as cargas
produzidas forem compensadas pelas cargas a mais consideradas, existirá a
condição de equilíbrio eletrônico, necessária para a definição de exposição*^^\
Desta forma, "as capas de equilíbrio eletrônico" das câmaras de
ionização são utilizadas somente para campos de radiação de energias altas,
para atenuar os fótons e proporcionar a condição de equilíbrio eletrônico.
2.8. Aceleradores Lineares
O
acelerador
linear
é
um
equipamento
que
usa
ondas
eletromagnéticas de alta frequência para acelerar partículas carregadas tais
como elétrons de altas energias através de um tubo linear. O feixe de elétrons
de energia alta pode ser usado para tratar tumores superficiais, ou podem
colidir num alvo para produção de raios X, para tratamento de tumores mais
profundos'^^'.
O acelerador linear de elétrons foi desenvolvido no final dos anos
40 e início dos anos 50 por vários grupos de pesquisa diferentes*'*^'.
SP
íí-t»
FUNDAMENTOS
TEÓRICOS
17
Os módulos principais no acelerador são: a coluna (gantry), o
pedestal (stand), o console de controle e a mesa de tratamento. A estrutura
operacional do acelerador está alojada na coluna e roda sobre um eixo
horizontal fixada no pedestal.
2.8.1. Pedestal
Os principais componentes do pedestal sao:
a) Guias de onda: tubos que guiam as ondas eletromagnéticas de
um ponto ao outro.
b) Sistema de refrigeração de água: responsável pela refrigeração
de vários componentes que dissipam energia com calor, e
estabelece uma temperatura estável.
2.8.2. Tubos Aceleradores
Há dois tipos de tubos aceleradores: ondas viajantes (traveling
waves) e ondas estacionárias (standing waves).
FUNDAMENTOS
TEÓRICOS
-| Q
2.8.2.1. Acelerador do Tipo Onda Viajante
Neste tipo de acelerador, uma onda eletromagnética como a dos
fornos de microondas viaja junto com o elétron. O elétron é continuamente
acelerado dentro da seção aceleradora. A única limitação nesse processo é
que não se tem um controle dinâmico durante o feixe, ou seja, o elétron e a
onda do campo elétrico devem mover-se na mesma velocidade.
Em aceleradores de energia alta, os elétrons são produzidos por
um canhão de elétrons. Os elétrons no canhão estão com energias entre 20 e
50 keV e ganham energia suficiente para se aproximarem da velocidade da
luz, depois de serem acelerados pela microonda. No guia de onda viajante, a
energia máxima do elétron é diretamente proporcional ao guia de onda. A fim
de obter elétrons de energias maiores, um guia de onda longo é necessário;
neste caso, utiliza-se então o acelerador do tipo onda estacionária*'*^'.
2.8.2.2. Acelerador do Tipo Onda Estacionária
A concepção de um acelerador do tipo onda estacionária faz uso
do conceito de interferência. Quando duas ondas eletromagnéticas estão
presentes no mesmo lugar e tempo, seus campos elétricos e magnéticos são
adicionados aritméticamente. Em outras palavras, a onda estacionária é
produzida pela soma de duas ondas de igual comprimento de onda e em fase,
mas viajando em direções opostas. Se os picos das duas ocorrem no mesmo
lugar e tempo e em fase uma com a outra, elas adicionam o seu comprimento
de onda e interferem construtivamente. Se o máximo de uma onda está no
local do mínimo de outra onda, elas decrescem o seu resultado por subtração
e interferem destrutivamente. Esse acelerador é chamado estacionáho porque
os campos elétricos e magnéticos parecem estar parados*'*^'.
FUNDAMENTOS
TEÓRICOS
19
2.8.3. Coluna
Os principais componentes encontrados na coluna são:
a) Magnetron: fonte de microondas empregada
para
produzir
energia em aceleradores de energias baixas (4, 6, 10, até
15 MeV). A magnetron é energizada por pulsos de voltagem DC
entre o grande anodo exterior (eletrodo positivo) e o catodo
central (eletrodo negativo). Os elétrons do catodo central viajam
na direção do anodo positivo. Por causa de um grande campo
magnético constante e uniforme, perpendicular a sua direção de
viagem, eles viajam em uma espiral na direção do anodo*^^^
b) Estrutura
aceleradora:
energizada
pelas
microondas
da
magnetron via guia de onda.
c) Canhão de elétrons (ou catodo): constitui a fonte de elétrons que
são injetados dentro da estrutura aceleradora.
d) Circulador: localizado entre a magnetron e o tubo acelerador; ele
evita que a onda refletida retorne para a magnetron, desviando-a
para uma carga d'água.
e) Cabeçote de tratamento: contém os colimadores, o filtro de
plasma, a câmara de ionização para o monitoramento e o tubo
acelerador.
2.8.4. Outros Componentes
a) Mesa de tratamento: os movimentos da mesa de tratamento são
controlados por um pendente operado pelo técnico. A maioria
"A
FUNDAMENTOS
20
TEÓRICOS
das mesas de tratamento também possibilita a rotação da mesa
ao redor de um eixo vertical passando pelo isocentro.
b) Console de controle: centro de controle do acelerador. Ele
controla o tempo de cada tratamento, propicia visão do paciente
e foi projetado para evitar qualquer problema técnico ou com o
paciente'^^'.
As Figuras 2.6, 2.7 e 2.8 mostram os componentes e os detalhes
de aceleradores lineares.
3 f
Figura 2.6. Estrutura
do
acelerador
com
a
indicação
algumas
partes
importantes:
1. Canhão de elétrons; 2. Estrutura aceleradora do tipo onda
estacionária; 3. Magnetron; 4. Circulador; 5. Filtro de planura;
6. Colimadores; 7. Câmara de ionização
(Figura cortesia da Empresa Varian Medical Systems Brasil Ltda)
iOMISSAO NADONAL Df fcNÉRGIA NUULEAH/SP
IPt»
FUNDAMENTOS
TEÓRICOS
21
Figura 2.7. Fotografía de um acelerador do tipo onda estacionária com suas
respectivas cavidades aceleradoras.
(Foto cortesia da Empresa Varian Medical Systems Brasil Ltda)
Acelerador L i n e a r
Feixe de raios X
Plano Trasversal X
Plano Longitudinal Y
Mesa de
tratcmanto
Figura 2.8. Visão esquemática do acelerador, mostrando a relação geométrica
do aparelho com a mesa de tratamento*^^'.
FUNDAMENTOS
TEÓRICOS
22
2.9. Protocolos de Dosimetría
O propósito de um protocolo de dosimetria é o de fornecer um
método seguro para a determinação da dose na água para feixes de fótons e
elétrons de energias altas utilizados em radioterapia.
Existem
vários
protocolos
radioterapia*2'^-^'^^'^^'2^'^2'2^'^^-2«'2°34-37,4i,42,45)
internacionais
para
uso
em
^ 3 protocolos mais utilizados no
Brasil são o da AAPM Task Group 21 de 1983*^', e o da lAEA n° 277 de
1987(19.21)_
2.9.1. Protocolo A A P M (TG 21)
O protocolo da Associação Americana de Físicos na Medicina'^'
utiliza o parámetro
Ngás,
que é o fator de calibração de uma cavidade de gás.
A calibração do monitor para a energía de 6 MeV é feita na água, a
5 cm de profundidade, para um campo de radiação de l O x I O c m ^ . Esta
profundidade é recomendada para se evitar a contaminação de elétrons.
O fator de calibração, segundo o protocolo americano*^', é dado
por:
Fe
=
L (p,t)/100
X Ngás X ( U p )ar X Pwaii X P¡on X P^epi X
100/ P D P (5 C m )
onde:
L(p,t) = Média das leituras do eletrometro, com tensões de +300V e -300V
corrigidas para pressão e temperatura de referência.
ÜOWiSSAO NACíCNAL ü£ t W t K ü i A WÜCLhAM/Í>P
FUNDAMENTOS
TEÓRICOS
23
O fator de correção para temperatura e pressão de referência é
dado por:
(|) (p, T) = (273,2 + T) / (273,2 + 20) x (101,3 p)
onde T e p são dados em °C e kPa respectivamente.
N,k-(W/e)-p,3,r
(L/P)ar
(^Íer/P)wall
onde:
Nx =
Fator de calibração em exposição, não corrigido para recombinação
iónica
Esse fator foi obtido a partir do fator de calibração NR do sistema
dosimétrico
(câmara + eletrometro),
utilizado
como
sistema
padrão
no
Laboratório de Calibração de Instrumentos do IPEN, por meio de:
Nk = Nx(W/e)1/(1-g)
43,95 X 10-^ Gy/ue =
33,80 J/C
Nx
= 5,04 R/ue (ue: unidade de escala)
k
= Carga produzida no ar, por unidade de massa, por unidade de
exposição (2,58 x 10"^ C/kgR)
W/e = Energia média gasta, por unidade de carga, no ar, em condições de
umidade usual (~33,7 J/C)
FUNDAMENTOS
pwail
Aion
TEÓRICOS
£4
= Quociente da dose absorvida pelo kerma de colisão (1,005)
= Eficiencia de coleta de ions na câmara, que corrige a coleta
incompleta de carga na câmara durante a calibração
Aíon=
4-(Qi-Q2)/3
onde:
Q i = Carga coletada com tensão aplicada de 300 V
Q2 = Carga coletada com tensão aplicada de 150 V
=
Awaii
Fator de correção da parede; leva em conta a atenuação e o
espalhamento do feixe primário de ^°Co na parede e na capa de
equilibrio eletrônico da cámara de ionização
(L / p)^r^" = Razão entre os poderes de freamento da parede e do ar = 1,0
í7,
/r.^3r
-
Razão
entre
os coeficientes
de absorção
de massa e
energia = 1,0
L/p
= Razão da média do poder de freamento de colisão de massa restrito
do material do phantom com relação ao gás da câmara (1,127)
Pwaii
~ Fator de correção que leva em conta a diferença entre a composição
da parede da câmara e o phantom
_
[ a ( L / p ) ( | a e n / p ) + (1 - a ) ( L / p ) ]
(L/p)
onde:
a
= Fração de ionização total produzida pelos elétrons que chegam à
parede da câmara
XMISSAO KAQGNAL DE ENtHGIfl N U C L E A H / Ü f
iKr»
FUNDAMENTOS
TEÓRICOS
£5
(1 - a ) = Fração de ionização total produzida por elétrons que chegam no
phantom de dosimetria
^en / p = Razão do coeficiente médio de absorção de massa e energia para o
phantom de dosimetria com relação ao da parede da câmara
Píon
=
Fator de correção por perda de recombinação iônica aplicável à
calibração no feixe do usuário
Um método adequado para se determinar
P¡on
consiste em se
realizar dois conjuntos de medidas, sendo um com potencial de 300V e o
outro com potencial de 150V aplicado à câmara de ionização*^'.
Píon =
Ql/Q2
Com a relação de tensões, pode-se determinar o valor do
Píon
por
meio do protocolo*^'.
Prepi
= Taxa de fluência de energia do fóton no centro da cavidade, quando a
cavidade é preenchida com um meio e a câmara está cheia de ar. É
um fator que corrige a substituição do material d o " phantom" por uma
câmara de ionização
PDP (5cm) = Porcentagem de dose profunda a 5cm de profundidade na água
FUNDAMENTOS
TEÓRICOS
26
2.9.2. Protocolo IAEA (TRS 277)
O protocolo da Agencia Internacional de Energia Atômica (IAEA)
define o parâmetro
NQ, dependente da câmara, muito semelhante
parâmetro
é definido como*^^'^^':
Ngás*'*°'. N D
ND
= Nk
ao
(1 - g) katt k m
onde:
Nk
= Fator de calibração em termos de kerma no ar (Gy/divisão do
eletrometro) fornecido pelo laboratório padrão
g
= Fração
da
energia
bremmstrahiung
katt
das
partículas
secundárias
convertidas
em
(0,003 para ^°Co)
= Fator de correção para a absorção e o
espalhamento dos fótons
primários na parede e na capa da câmara
km
= Fator de correção para a falta de equivalência de ar da parede da
câmara
O fator de calibração ( N k ) pode ser relacionado com o fator de
calibração de exposição (N^), por meio da relação:
Para a calibração do monitor na liberação do 1 cGy/UM, no
phantom de água, a 5 cm de profundidade, para um campo de 10 x lOcm^,
utiliza-se o procedimento descrito a seguir.
:ÍO*«ISSA0 N A Q O N A L
OE E N E H G I A
NUCLEAH/SP
IKfe»
FUNDAMENTOS
TEÓRICOS
27
O fator de calibração, segundo o protocolo da lAEA*^^'^^^ é dado
por:
Fe = Mu X N D X ( S
ar)x Pu X Peel X 100/
PDP
(5
cm)
onde:
Mu
= Média das leituras do eletrometro, com tensões de +300V e -300V,
corrigidas para pressão e temperatura, umidade e perdas
por
recombinação.
S w.ar = Razão entre os poderes de freamento da parede da câmara e do ar
Pu
Peel
= Fator de correção para a perturbação para fótons
= Fator de correção que leva em conta a não equivalência a
ar do
material do eletrodo central da câmara de ionização
PDP (5cm) = Porcentagem de dose profunda a 5cm de profundidade na água
MATERIAIS
E
MÉTODOS
28
3. MATERIAIS E MÉTODOS
Este trabalho foi realizado no CEBROM - Centro Brasileiro de
Radioterapia, Oncologia e Mastologia, em Goiânia, Goiás, que colocou à
disposição os seguintes equipamentos para a realização deste trabalho:
3.1. Acelerador Linear
O acelerador linear do CEBROM, com 6 MeV de energia nominal,
da Varian, modelo Clinac 600C, permite a irradiação de pacientes com feixes
de fótons, além de ser isocéntrico e possibilitar a irradiação em campos fixos
e rotatórios; ainda possui os quatro colimadores assimétricos. (Figura 3.1.)
coluna
laser de teto
alvo de
raios X \
rotação do
\
colimador
rotação da
indicadores de
coluna^"
/ p o s i ç õ e s digitais
eixo central
'
pedestal
do feixe
laser lateral
laser lateral
eixo da ,
coluna
isocentro
tr an sl a ç õfis.da-''^^!^
mesa
mesa
rotação da mesa
tratamento
pendente
Figura 3.1. Esquema
do Acelerador
Linear
Clinac
CEBROM, Goiânia
QOWtSSAO NACiONM DE ENERGIA
NUCLEAH/SF
600C,
Varian, do
MATERIAIS
E
MÉTODOS
29
No sistema Clinac 600C, a energia nominal do feixe de fótons é
6 MeV, definida pela porcentagem de dose profunda (PDP) a 10cm de
profundidade na água, para um campo de 1 0 x 1 0 c m ^ e distância fontesuperfície de 100 cm.
O aparelho trabalha com seis taxas de dose absorvida diferentes, a
saber: 80, 160, 240, 320 e 400 cGy/UM (UM= unidade monitora), para uma
distância fonte-superficie de 100 cm. Nos tratamentos rotatórios, o próprio
aparelho ajusta a velocidade de tratamento de acordo com a dose utilizada.
Este acelerador foi calibrado para trabalhar com a taxa de dose de
320 cGy/UM.
O equipamento possui duas câmaras contadoras, ou seja, um
sistema duplo de dosimetria. O relógio de tratamento funciona com um
sistema adicional de segurança para interrupção do feixe. O sistema de
dosimetria controla a homogeneidade e a simetria do campo de tratamento.
Além disso, se por algum problema técnico a simetria variar mais
que 2%, é acionado um interruptor de segurança e o feixe de radiação é
cortado imediatamente.
Na Figura 3.2 pode-se observar a disposição das salas do setor de
radioterapia do CEBROM.
MATERIAIS
E
MÉTODOS
30
SRiado
£>€rmopEui
Síla do Acelerador Linear
Olnac - 600 C
Sida de
computadores
H S«ladein<terlili
Salada
laFiãcii
V
Controle do
Accderador
coDtrole do
BATD
SaladebraquILerl]
de a l u taxa de dose
(BATD)
Figura 3.2.
Planta baixa do setor de radioterapia do CEBROM.
3.2. Sistemas de Medida
Foi utilizado o conjunto de medida constituído por uma câmara de
ionização à prova d'água, Exradin, Med Tec, modelo A12, EUA, e um
eletrometro Sun Nuclear Corporation, modelo 1010, série 1450010, EUA.
Este
sistema
dosimétrico
(câmara
e eletrometro)
certificado de calibração de 21/12/99 do IPEN-CNEN/SP.
GOMíSSAO RIAAONAL OE EWtRGIA NUCLEAR/SP
li^
apresenta
MA JERIAIS
E MÉTODOS
3 '\
Para as medidas de densidade óptica dos filmes radiográficos foi
utilizado o densitômetro digital M . R A , série CQ 010103, Brasil, e o filme
utilizado foi o Diagnostic Film Ready-Paclc X-OMAT V da Kodak.
3.3. Sistemas Auxiliares
Foram utilizados os seguintes fantomas (phantoms):
a. Fantoma de água, com dimensões de 3 0 x 4 0 x 4 0 c m ^ ,
manivela
manual
para
se
realizar
medidas
na
água
com
em
profundidade, Med Tec, modelo MT-100, EUA
b. Fantoma de água, com dimensões de 52 x 65 x 48 cm^, e sistema
automático CRS (computerized
radiation
scanner),
Dosimetrika,
Brasil
A sala do acelerador linear tem sistema de ar condicionado; as
condições ambientais foram medidas, utilizando-se:
a. Termômetro, Incoterm, Brasil
b. Higrómetro, Cibracon-Satchwell, Brasil
c. Barómetro de Torricelli (coluna de mercúrio), Incoterm, Brasil
3.4. Arranjo Experimental para Calibração do Monitor do Acelerador
O esquema do arranjo experimental de calibração do monitor do
acelerador Clinac 600C está representado na Figura 3.3, utilizando-se o
sistema dosimétrico e o fantoma de água.
I
MATERIAIS
E
MÉTODOS
32
Tubo de Raios X
100 cm
í
Fantoma de Agua
5cm
1
Figura 3.3. Esquema de calibração do monitor do acelerador Clinac
600C, utilizando uma câmara de ionização cilíndrica num
fantoma de água
TESTES DE ACEITAÇÃO
33
4. TESTES DE ACEITAÇÃO
Durante a instalação de um acelerador linear deve-se levar em
consideração os altos graus de exatidão e precisão necessários para que o
equipamento venha a ser utilizado com pacientes.
É portanto necessário comprovar-se o seu funcionamento perfeito,
por meio dos testes chamados testes de aceitação. É verificado se as
especificações do equipamento são concordantes com as nominais (do
fabricante).
São necessários testes mecânicos, elétricos e com o feixe de
radiação. Os testes iniciais incluem a verificação do funcionamento de todos
os movimentos do equipamento que devem ser suaves, não podendo ter
folgas ou pontos preferenciais de permanência. Deve-se verificar, também, se
estão em perfeitas condições de funcionamento os botões para desligamento
de emergência, sistema de áudio e vídeo de comunicação com o paciente, e o
mecanismo de desligamento de feixe na porta da sala. Deve-se, também,
verificar se a blindagem está adequada por meio de medidas de levantamento
radiométrico^'*°\
O desempenho mecânico do equipamento deve representar apenas
uma fração pequena do desalinhamento total permitido, porque há várias
etapas no processo de tratamento. O paciente é tratado geralmente neste
equipamento em até 70 frações. A tolerância
na reprodutibilidade
do
posicionamento do paciente pelo técnico é de 2 mm; se a tolerância mecânica
para cada parâmetro do acelerador for de 2 mm ou 2°, então a combinação do
erro do técnico com a falta de exatidão do equipamento poderá levar a erros
TESTES O Ê ACEITAÇÃO
34
totais excedendo a 5 mm. Esta análise simples estabelece que a tolerância
mecânica total deve ser de 1-2mm ou de 1°-2° para a maioria dos movimentos
dos equipamento de radioterapia^"*"*'.
Todos os testes de aceitação descritos a seguir foram realizados
pela equipe de engenheiros do fabricante juntamente com o físico da
instituição (autora deste trabalho), e o aparelho só deve ser aceito pelo físico
se todos os parâmetros estiverem dentro das especificações do fabricante,
normalmente dentro dos limites menores. Após o término dos testes, uma
cópia dos resultados é encaminhada à Comissão Nacional de Energia Nuclear
(CNEN) para avaliação e liberação da máquina para uso clínico.
4.1. Variação do Isocentro Mecânico com a Rotação
Este teste deve ser feito para o colimador, a coluna e a mesa de
tratamento do equipamento de radioterapia.
4.1.1. Colimador
A coluna é colocada a 0° e é instalado no aparelho o indicador
mecânico do raio central (front pointer). Em cima da mesa coloca-se uma
folha de papel milimetrado, o colimador é girado de 45 em 45° e o retículo ou
o eixo central do campo deve permanecer no mesmo lugar.
Quanto à tolerância, os pontos do eixo central devem estar contidos
dentro de um círculo com o diâmetro menor ou igual a 2 mm quando o
conminador girar 360° ^^''^
O resultado pode ser observado na Tabela 4 . 1 .
JOWISSAO NACiÜWAL DE ENERGIA N U C L E A R / S P
IPt»
TESTES DE ACEITAÇÃO
35
4.1.2. Coluna
Coloca-se o indicador mecânico do raio central no aparelho, fazendo
com que sua extremidade coincida com a distância de foco-eixo de rotação
(isocentro). No final da mesa é colocada outra ponteira coincidindo com a
extremidade do indicador mecânico e então a coluna é girada de 360°; a
ponta do indicador mecânico deve permanecer em um mesmo ponto.
Quanto à tolerância, este ponto deve se mover dentro de uma esfera
com diâmetro menor ou igual a 2 mm quando a coluna girar de 360°
O resultado pode ser observado na Tabela 4.1.
4.1.3. Mesa de Tratamento
A coluna é posicionada a 0° com o indicador mecânico do raio central
instalado. Coloca-se uma folha de papel milimetrado em cima da mesa, girase a mesma de 90° a 270° e o eixo central não deve mudar.
Quanto à tolerância, os pontos do eixo central devem estar contidos
dentro de um círculo com diâmetro menor ou igual a 2 mm quando a mesa
girar de 90 a 270° ^"^^l
O resultado pode ser observado na Tabela 4.1.
Tabela 4.1. Variação do isocentro mecânico do colimador, coluna e mesa
Especificação
Medida
Resultado
Colimador
<1,0mm
0,5mm
ótimo
Coluna
< 1 ,Omm
<0,5mm
ótimo
Mesa
<1,0mm
0,5mm
ótimo
TESTES
DE
ACEITAÇÃO
Pode-se observar que os resultados estão perfeitamente dentro das
especificações; logo o isocentro mecânico do aparelho está perfeito.
4.2. Campo Luminoso e Alinhamento do Retículo
Com uma folha de papel milimetrado, á distância do isocentro, e com
a coluna a 0°, as bordas do campo luminoso produzidas pelos colimadores
devem ser simétricas ao redor do eixo do colimador.
Essa
simetria
deve
ser
verificada
nos
ângulos
principais
do
colimador. Esta simetria do campo luminoso deve estar dentro de 1mm ou
melhor, ao redor do eixo do colimador. Depois que o colimador for rodado
através de 180°, as bordas do campo luminoso devem estar na mesma
posição que antes da rotação.
O retículo metálico em cruz (cross-hair) deve estar posicionado para
projetar sua imagem no eixo de rotação do colimador. Essa posição deve ser
verificada quando o colimador é rodado. A imagem do retículo não deve
desviar do eixo do colimador durante a rotação por mais do que I m m no
isocentro.
Os resultados foram satisfatórios.
4.3. Rotação do Colimador e da Coluna
O teste de rotação deve ser realizado com relação ao colimador e à
coluna.
jQMISSAO N A Ü O N A L tJí t N t H G I A N U C L E A R / S P
IPt»
TESTES D E ACEITAÇÃO
37
4.3.1. Colimador
A importância deste teste deve-se ao fato que algumas vezes o
colimador deve ser rodado para lados contrários e o campo deve ficar sempre
no mesmo lugar.
Procedimento:
1. Posiciona-se a coluna a 90° e o colimador a aproximadamente 0°;
2. Coloca-se o topo da mesa no isocentro e abre-se os colimadores;
3. Coloca-se um nível na mesa de maneira que sua sombra seja
projetada pelo campo luminoso;
4. Nivela-se o nível e liga-se a lâmpada do campo. As leituras digitais
e mecânicas são feitas e comparadas.
Os resultados obtidos podem ser observados na Tabela 4.2, todos
dentro das especificações.
Tabela 4.2. Verificação da rotação do colimador
Éspecifícação
Mecânica
(graus)
±1,0
Leitura
Mecânica
(graus)
90
(graus)
Especificação
Digital
(graus)
90
±0,5
Leitura
Digital
(graus)
89,8
0
±0,5
0
±1.0
0
270
±0,5
269,9
±1,0
269,5
Angulo
TESTES
DE
ACEITAÇÃO
38
4.3.2. Coluna
A coluna é colocada a O, 90, 180 e 270°, utilizando-se um nível, e
assim pode-se observar as diferenças entre as leituras digital e mecânica.
Os resultados obtidos estão apresentados na Tabela 4.3.
Tabela 4.3. Verificação da rotação da coluna
Ângulo
(graus)
Especificação
Digital
(graus)
0
±0,5
Leitura
Digital
(grausl
0
Especificação
Mecânica
(graus)
± 1,0
0
90
±0,5
90
±1,0
90,5
180
±0,5
180
±1,0
181
270
±0,5
270,1
±1,0
270
360
±0,5
360
±1,0
360,5
Leitura
Mecânica
(graus)
Os resultados se mostraram satisfatórios, dentro das especificações.
4.4. Movimentos Mecânicos da Mesa
Os movimentos mecânicos da mesa (de rotação, lateral, longitudinal
e vertical) devem ser verificados.
'ÍOJWISSAO NACIONAL DE ENERGIA N U ü L E A R / S P
iPEi
TESTES
DE
ACEITAÇÃO
39
4.4.1. Movimento de Rotação da Mesa
Procedimento:
1. Coloca-se o colimador a 0°. Verifica-se a calibração da escala de
rotação, acendendo-se a luz de campo e alinhando-se a borda
frontal da mesa, paralelamente com a borda do campo luminoso. A
escala digital deve mostrar o valor correto dentro de 0,5° e o
indicador mecânico dentro de 1,0°;
2. Deve-se verificar os valores para 90, O e 270°.
Os valores obtidos são apresentados na Tabela 4.4. Pode-se
observar que em todos os casos foram obtidos resultados dentro das
especificações.
Tabela 4.4. Movimentos de rotação da mesa
Ângulo
(graus)
Especificação
Digital
(graus)
Leitura
Digital
(graus)
Especificação
Mecânica
(graus)
Leitura
Mecânica
(graus)
90
±0,5
90
±1,0
90
0
±0,5
0
±1,0
0
270
±0,5
270
±1,0
270
4.4.2. Movimento Lateral da Mesa
Procedimento:
1. Coloca-se a mesa centrada lateralmente e anota-se o valor dado
pelo computador;
TESTES
DE
ACEITAÇÃO
2. Move-se a mesa 23 cm tanto para a direita como para a esquerda
da posição central e anota-se os valores dados pelo computador;
3. Esses valores devem estar dentro de ±2,0 mm dos valores
especificados.
Os valores obtidos são apresentados na Tabela 4.5; os resultados
estão dentro das especificações.
Tabela 4.5. Movimentos laterais da mesa
Posição
Lateral
(ctn)
977
Especificação
Digital
(mm)
Leitura
Digital
±2,0
977,0
0
+2,0
0
23
±2,0
22,9
4.4.3. Movimento Longitudinal da Mesa
Procedimento:
1. Posiciona-se a coluna a 0°;
2. Coloca-se a mesa na altura do isocentro;
3. Instala-se uma fita métrica com o auxílio de uma barra transversal,
que possui uma abertura central; esta deve estar com o valor de
140 cm no centro da abertura, com o "zero" da fita voltado para a
coluna;
TESTES DE ACEITAÇÃO
4 -j
4. Com o auxílio do retículo, deve-se fazer as leituras, deslocando-se
o tampo da mesa para a posição de 60 cm; a leitura digital deverá
estar dentro de 60 cm + 2,0 mm, repetindo-se o procedimento para
120 e 150 cm.
Os valores obtidos são apresentados na Tabela 4.6 estando os
resultados satisfatórios.
Tabela 4.6. Movimentos longitudinais da mesa
Posição
Longitudinal
(cm)
Especificação
Digital
(mm)
Leitura
Digital
(cm)
120
±2,0
120,0
O
±2,0
O
150
±2,0
150,0
4.4.4. Movimento Vertical da Mesa
Procedimento:
1. Coloca-se a coluna a 0°;
2. Coloca-se a mesa na altura do ísocentro usando-se o indicador
mecânico do raio central como referência;
3. Grava-se os valores digitais;
4. Coloca-se uma régua sobre o tampo da mesa; com o auxílio de
uma fita métrica, mede-se da base de rotação da mesa até a régua
do tampo da mesa (altura do tampo da mesa em relação à base);
5. Gira-se a coluna para O ou 270°;
TESTES
DE ACEITAÇÃO
42
6. Adiciona-se 35 cm ao valor de referência e sobe-se a mesa para
este valor. O valor digital deverá marcar 965 cm + 2,0 mm;
7. Subtrai-se 60 cm do valor de referência e desce-se a mesa para
este valor. O valor digital deverá marcar 60 cm + 2,0 mm.
Os valores obtidos são apresentados na Tabela 4.7, estando os
resultados dentro das especificações.
Tabela 4.7. Movimentos verticais da mesa
Posição
Vertical
Jcrnl
Éspecifícação
Digital
(mm)
Leitura
Digital
965
±2,0
(crn).
965,0
0
+2,0
0
60
+2,0
60,1
4.5. Teste de Isocentro de Radiação
Este teste é realizado para se verificar se o isocentro da radiação
coincide com o isocentro mecânico, para a rotação da coluna, do colimador e
da mesa.
4.5.1. Rotação da Coluna
Coloca-se primeiramente a coluna do equipamento a 0°.
Um chassi com um filme é colocado perpendicularmente ao eixo
central do feixe. Utilizando-se o sistema de lasers, coloca-se o isocentro na
TESTES D E
ACEITAÇÃO
43
região central do filme. Fecha-se a quase zero (± 0,2 mm) o colimador que
fica perpendicular ao filme e abre-se totalmente o que fica paralelo (± 40 cm).
São efetuadas as exposições do filme, variando-se o ângulo da
coluna de 30 em 30°; e deve-se obter como imagem no filme vários
segmentos de reta, que se cruzam em um único ponto, que é chamado
isocentro de rotação da coluna.
Esses segmentos de reta devem mover-se dentro de um círculo com
diâmetro menor ou igual a 2 mm quando a coluna girar 360°
Na Figura 4.1 pode-se verificar o resultado satisfatório obtido.
Figura 4.1. Filme mostrando o isocentro radioativo da coluna.
4.5.2. Rotação do Colimador
Coloca-se primeiramente a coluna do equipamento a 0°.
Um chassi com um filme é colocado perpendicularmente ao eixo
central do feixe. Utilizando-se o sistema de lasers, coloca-se o isocentro na
região central do filme. Fecha-se a quase
zero
(± 0,2 mm)
um
dos
TES TES DE
44
ACEITAÇÃO
colimadores e abre-se totalmente o outro (± 40 cm). Faz-se exposições
girando o colimador de 30 em 30° e deve-se obter como imagem segmentos
de reta que se interceptam num mesmo ponto.
Deve-se repetir o procedimento abrindo-se o colimador que foi
fechado e fechando-se o que foi aberto.
Esses segmentos de reta devem mover-se dentro de um círculo com
diâmetro menor ou igual a 2 mm quando o colimador girar 360°
A Figura 4.2 apresenta o resultado satisfatório obtido.
Figura 4.2. Filme mostrando o isocentro radioativo do colimador
4.5.3. Rotação da Mesa
Coloca-se primeiramente a coluna do equipamento a 0°.
Um chassi com um filme é colocado perpendicularmente ao eixo
central do feixe. Com a ajuda do sistema de lasers, coloca-se o isocentro na
região central do filme. Fecha-se a quase zero
colimadores
(± 0,2 mm) um dos
e abre-se totalmente o outro (± 40 cm). Faz-se exposições
TESTES
DE
ACEITAÇÃO
45
girando a mesa de 30 em 30° e deve-se obter como imagem segmentos de
reta que se interceptam num mesmo ponto.
Deve-se repetir o procedimento abrindo-se o colimador que foi
fechado e fechando-se o que foi aberto.
Esses segmentos de reta devem mover-se dentro de um círculo com
diâmetro menor ou igual a 2 mm quando a mesa girar de 90 a 270°
O resultado obtido, satisfatório, pode ser observado na Figura 4.3.
Figura 4.3. Filme mostrando isocentro radioativo da mesa
4.6. Coincidência de Campo Luminoso x Campo Radioativo
Com a folha de papel milimetrado à distância do isocentro e com a
coluna a 0°, as bordas do campo luminoso produzidas pelos colimadores
devem ser simétricas ao redor do eixo do colimador. Essa simetria deve ser
verificada nos principais ângulos do colimador. Esta simetria do campo
luminoso deve estar dentro de 1 mm, ou melhor, ao redor do eixo do
colimador. Depois que o colimador é rodado através de 180°, as bordas do
campo luminoso devem estar na mesma posição que antes da rotação.
TESTES
DE
46
ACEITAÇÃO
Nesse ponto a congruência do campo luminoso e de radiação pode
ser verificada colocando-se um filme perpendicular ao eixo do colimador à
distância do isocentro. A projeção do campo luminoso pode ser demarcada no
filme colocando-se objetos rádio-opacos no campo luminoso, com suas
bordas externas alinhadas com a borda do campo luminoso, ou marcando
com uma caneta de ponta fina as bordas do campo. Coloca-se uma placa de
acrílico por cima do filme para se ter o equilíbrio eletrônico necessário e o
filme é então irradiado. As bordas do campo luminoso devem corresponder ao
nível de dose de 50% dentro de 2 mm<'*°\
Na Figura 4.4 é mostrado o resultado obfido.
O teste de coincidência de campo luminoso com o radioativo é muito
importante para que se possa ter a certeza de que o campo luminoso, que se
vê na pele do paciente, é realmente o que está sendo irradiado.
Figura 4.4. Filme mostrando a coincidência de campo luminoso x campo
radioafivo.
iOWISSAO NflCíÜNAi Lit L N t H ü l M UUULtAM/Ô»*
irtl
TESTES DE
ACEITAÇÃO
47
4.7. Verificação da Espessura de Equilíbrio Eletrônico e da Energia
Para este teste as medidas foram realizadas com a câmara de
ionização, em várias profundidades
na água para a determinação da
espessura em que ocorre a dose máxima, que é a espessura de equilíbrio
eletrônico (build-up). No caso deste acelerador de 6 MeV essa espessura é de
1,5 cm.
A energia do feixe de radiação do acelerador é determinada pela
razão da medida na água em 20 cm de profundidade, pela medida a 10 cm,
para um campo de 10 x 10 cm^. A especificação do fabricante é que esse
valor da razão das medidas deva ficar em torno de (67,0 ± 2)%. Este valor
deve ser de 67,5%, para a energia de 6 MeV^\ o valor obtido nas medidas
feitas na aceitação foi de 66,5% evidenciando uma variação de 1,5%, abaixo
do limite de 2%, que é o recomendado.
Na Figura 4.5 tem-se a curva de medida de dose profunda onde se
pode observar a profundidade de dose máxima de 1,41 cm e, com o aumento
da profundidade, a dose começa a cair.
100
4
6
8
10
Distância do centro (cm)
12
Figura 4.5. Dose profunda para o campo de 10 x 10 cm^ á
distância fonte-superfície de 100 cm.
TESTES DE ACEITAÇÃO
43
4.8. Uniformidade e Simetria do Campo
A uniformidade (planura, flatness) e a simetria de um campo de
radiação são importantes no tratamento de um paciente para se ter certeza de
que, durante o tratamento, todas as partes do campo do paciente estejam
recebendo a mesma dose, ou seja, que a irradiação seja uniforme.
As medidas foram realizadas com a câmara de ionização posicionada
a 10 cm na água do fantoma, para dois campos de radiação de 1 0 x 1 0 cm^ e
de 4 0 x 4 0 c m ^ , transversal e longitudinal, à distância fonte-superfície de
100 cm.
As Figuras 4.6 e 4.7 mostram os resultados obtidos no caso de
campo de radiação de 10 x 10 cm^ e as Figuras 4.8 e 4.9, de 40 x 40 cm^.
A variação da intensidade mínima para a intensidade máxima dentro
de 80% das dimensões do campo não deve ser maior que 6%'''°^ A
uniformidade do campo de radiação apresentou-se de 4 , 1 , 4,3, 3,0 e 2,8%
para respectivamente as Figuras 4.6, 4.7, 4.8 e 4.9, verificando-se portanto
que todos os resultados foram satisfatórios.
Quanto à simetria, as medidas em pontos simétricos ao eixo central
não devem diferir em mais que 2%, o que também não ocorreu em nenhum
dos casos. Foram obtidos apenas 0,6, 0,4, 0,6, e 0,6% para respectivamente
as Figuras 4.6, 4.7, 4.8 e 4.9.
TESTES
-5
DE
ACEITAÇÃO
0
49
5
15
Distância do centro (cm)
Figura 4.6. Testes de uniformidade e simetria a 10 cm de profundidade na
água para o campo de 10 x 10 cm^, transversal, á distância fontesuperfície de 100 cm.
— 1
1
1
1
1
100 -
f
\
c s ^ s o h-
-
>
i 60
1
140
va
20
0-15
1
7
-10
1
1
1
1
-5
0
5
10
Distância do centro (cm)
15
Figura 4.7. Testes de uniformidade e simetria a 10 cm de profundidade na
água para o campo de 10 x 10 cm^, longitudinal, à distância fontesuperfície de 100 cm.
TESTES
DE
ACEITAÇÃO
50
-10
O
10
Distância do centro (cm)
30
Figura 4.8. Testes de uniformidade e simetria a 10 cm de profundidade na
água para o campo de 40 x 40 cm^, transversal, à distância fontesuperfície de 100 cm.
-10
0
10
Distância do centro (cm)
20
30
Figura 4.9. Teste de uniformidade e simetria a 10 cm de profundidade na
água para o campo 4 0 x 4 0 c m ^ , longitudinal, á distância fontesuperfície de 100 cm .
TESTES D E ACEITAÇÃO
51
Terminados os testes de aceitação, iniciou-se a dosimetría total do
equipamento, para a obtenção dos dados para os cálculos de doses em
pacientes, que sao os chamados testes de comissionamento.
DOSIMETRIA
DO SISTEMA
52
5. DOSIMETRIA DO SISTEMA
A dosimetria é sem dúvida o fator primordial na aceitação de um
acelerador linear, porque é com base nestes dados que a dose dada ao
paciente será calculada, daí a importância de se ter dados confiáveis.
Para a realização da dosimetria deste acelerador foi utilizado o
protocolo americano AAPM Task Group 2^^^\
5.1. Calibração do Monitor para liberar 1 cGy/UM, no fantoma de Água
a 1,5 cm de Profundidade para o Campo de 10 x 10 cm^
O fator de calibração do monitor foi determinado utilizando-se os dois
protocolos de dosimetría AAPM ( T G 2 l f > e IAEA (TRS 21lf^'^^\ obtendo-se
os resultados apresentados na Tabela 5.1. O desvio padrão percentual
máximo das medidas foi de 0,4%.
Tabela 5.1. Fator de calibração do monitor, acelerador Clinac 600C
Protocolo
• •
•
:
FaioFdeCalibraçãor]
(çGy/UM)
:
AAPM (TG 21)
0,998 + 0,005
IAEA (TRS 277)
0,997 + 0,005
UM: unidade do monitor
Como a diferença entre os resultados obtidos utilizando-se os dois
protocolos está dentro da incerteza associada, optou-se pela utilização do
protocolo AAPM (TG 21) neste trabalho, por ser mais fundamentado que o
protocolo da IAEA.
^ ^ i S â A O NAÜCNAL DE EtvtKüiA N u C L c à t i / S P
iFt»
DOSIMEmiA DO
SISTEMA
53
5.2. Determinação da Porcentagem de Dose Profunda (PDP)
Uma maneira de caracterizar a distribuição de dose no eixo central é
normalizar a dose em uma profundidade com relação à dose em uma
profundidade de referência do. A porcentagem de dose profunda ( P D P ) pode
ser definida
como
o quociente da dose
absorvida,
D , em qualquer
profundidade d, com relação à dose absorvida, Do, em uma profundidade de
referência fixa do ^^^^:
PDP=
(Dd / D d o ) x 1 0 0
A P D P depende de profundidade, do tamanho de campo, da
distância fonte-superfície e da energia do feixe.
As medidas neste acelerador foram feitas inicialmente utilizando-se o
fantoma de água de 30 x 40 x 40 cm^ com manivela, para facilitar as medidas
em várias profundidades e para vários tamanhos de campos.
Foram feitas medidas utilizando-se a câmara de ionização, para cada
tamanho de campo e para cada profundidade, obtendo-se os dados das
Tabelas 5.2 e 5.3. O desvio padrão máximo das medidas foi de 0,5%.
Os
valores
das Tabelas
5.2 e
5.3 estão
apresentados
em
porcentagem (%). Sabe-se que a 1,5 cm, que é a espessura de equilíbrio
eletrônico, a dose é de 100% e, à medida que a profundidade vai
aumentando, essa porcentagem vai diminuindo.
Nas Tabelas 5.4 e 5.5 estão apresentados os resultados obtidos,
utilizando-se o fantoma de água de 52 x 65 x 48 cm^, automático. O desvio
padrão máximo das medidas foi de 0,5%.
DOSIMETRIA
DO
SISTEMA
54
Tabela 5.2. Medidas da porcentagem de dose profunda, PDP, na água
com câmara de ionização e fantoma manual.
Profundidade
(cm)
1,0
1,5
2,0
3,0
5,0
7,0
9,0
10,0
11,0
13,0
15,0
17,0
19,0
20,0
4x4
98,1
100,0
99,0
94,3
84,5
75,1
66,6
62,7
59,0
52,2
46,2
40,9
36,3
34,2
Can i p o d e raidiação (c m^)
6x6
8x8
10x10
12x12
98,4
98,0
98,5
98T8
100,0
100,0
100,0
100,0
99,3
99,2
99,2
98,9
94,9
95,0
95,1
95,0
85,6
86,3
86,8
86,9
76,7
77,7
78,6
78,9
68,4
69,7
70,9
71,4
64,5
66,0
67,2
67,9
60,9
62,4
63,7
64,4
54,1
55,6
57,1
57,9
48,0
49,6
51,1
52,1
42,6
44,2
45,7
46,7
37,9
39,4
40,9
41,9
35,7
38,7
37,2
39,6
15x15
98,9
100,0
98,9
95,1
87,3
79,6
72,4
68,9
65,6
59,3
53,5
48,1
43,3
41,1
Tabela 5.3. Medidas da porcentagem de dose profunda, PDP, na água
com câmara de ionização fantoma manual.
Profundidade
(cm)
1,0
1,5
2,0
3,0
5,0
7,0
9,0
10,0
11,0
13,0
15,0
17,0
19,0
20,0
Campo de radiação (cm )
17x17
20x20
24x24
2 6 x 2 6 28x28
99,0 ~ 99,7
99,8
99,8 "
98,9
100,0
100,0
100,0
100,0
100,0
98,7
98,9
98,7
98,6
98,6
95,0
95,2
95,2
95,1
95,1
87,5
87,5
87,8
87,8
88,0
80,2
80,7
80,8
81,0
80,1
72,9
73,3
73,8
73,9
74,2
69,5
69,9
70,6
70,6
71,0
66,3
66,7
67,4
67,5
67,9
60,0
61,4
60,5
61,5
61,9
54,2
54,9
55,8
55,9
56,4
49,0
50,6
51,3
49,7
50,8
44,2
44,9
45,9
46,5
46,0
41,9
43,7
44,3
42,7
43,8
¡
30x30
99,9
100,0
98,6
95,2
88,1
81,1
74,3
71,1
68,0
62,0
56,5
51,4
46,7
44,4
i
:
1
i
i
I
¡
!
.
i
DOSIMETRIA
DO
SISTEMA
55
Quando são comparados os dados obtidos com os da literatura^^\
pode-se observar que os dados estão concordantes, sendo que as diferenças
variam de 0,1 a 2,2%.
Tabela 5.4. Medidas da porcentagem de dose profunda, PDP, na água
com câmara de ionização e fantoma automático
Profundidade
(cm)
0,0
0,5
1,0
1,5
2,0
3,0
5,0
6,0
8,0
9,0
10,0
11,0
12,0
15,0
16,0
17,0
20,0
22,0
25,0
27,0
30,0
0x0
45,4
68,9
84,5
100,0
96,6
90,2
78,7
73.6
64,3
60,1
56,2
52,5
49,1
40,3
37,7
35,3
29,0
25,4
20,9
18,4
15,1
Campo de radiação (cm^)
3x3
5x5
6x6
7x7
47,9
49,3
50,0
50,8
72,6
71,6
73,0
73,5
85,8
86,3
86,5
86,7
100,0
100,0
100,0
100,0
97,8
98,6
98,7
98,7
94,1
92,2
94,4
94,7
82,5
85,2
85,7
86,0
77,5
80,6
81,3
81,7
68,0
71,7
72,7
73,3
63,7
67,5
68,6
69,3
59,5
63,5
64,8
65,5
55,7
60,0
61,2
62,0
52,3
56,5
57,8
58,6
43,0
47,0
48,3
49,2
40,3
44,3
45,6
46,4
37,8
41,8
42,9
43,8
31,5
35,0
36,2
37,1
27,9
31,1
32,1
32,9
23,0
25,9
26,9
27,7
20,4
22,9
23,9
24,7
17,0
19,4
20,1
20,8
8x8
51,5
73,9
87,0
100,0
98,7
94,9
86,2
82,0
73,8
69,9
66,2
62,7
59,3
50,0
47,2
44,7
37,9
33,7
28,5
25,4
21,5
DOSIMETRIA
DO SISTEMA
5g
Tabela 5.5: Medidas de porcentagem de dose profunda (PDP), na água,
com câmara de ionização e fantoma automático
Profundidade
(cm)
0,0
0,5
1,0
1,5
2,0
3,0
5,0
6,0
8,0
9,0
10,0
11,0
12,0
15,0
16,0
17,0
20,0
25,0
27,0
30,0
10x10
53,1
74,8
87,4
100,0
98,7
95,2
86,7
82,8
74,8
71,2
67,6
64,2
60,8
51,6
48,9
46,2
39,3
29,7
26,6
22,6
Campo de radiação (cm^ )
15 X 15 20x20
12x12
25 X 25
54,6
60,6
64,4
56,9
75,7
76,9
78,8
80,8
87,9
88,5
89,4
90,4
100,0
100,0
100,0
100,0
98,8
98,9
98,9
98,8
95,3
95,4
95,5
95,6
87,2
87,6
88,5
88,1
83,3
83,9
84,6
85,1
75,6
76,5
77,4
78,4
72,1
75,2
73,0
74,0
71,9
68,6
69,5
70,8
65,3
66,3
67,6
68,9
62,0
63,1
65,9
64,7
52,9
57,7
54,3
56,0
55,0
50,2
51,6
53,3
47,6
48,9
50,8
52,3
40,7
42,0
43,7
45,5
30,9
32,2
33,9
35,6
27,7
29,0
30,7
32,3
24,9
26,3
27,7
23,7
30x30
67,9
82,7
91,4
100,0
98,9
95,7
88,8
85,7
79,1
76,0
72,8
69,9
67,1
59,0
56,2
53,7
46,8
37,0
33,5
28,8
Quando são comparados os dados obtidos para este acelerador
neste caso e os dados da literatura'^', nota-se que os valores obtidos estão
concordantes, sendo que as diferenças encontradas variaram de 0,1 a 1,1%.
Quando se compara a dosimetria feita com o fantoma manual e com
o automático, pode-se observar que as diferenças variam de 0,1 a 5,5%. Esta
diferença de 5,5% ocorreu só caso do campo de 30 x 30 cm^ (profundidade
de 20 cm); isso deve-se provavelmente á largura do fantoma manual, que é
de 30 cm. Também os dados obtidos com o fantoma manual para a
profundidade de 1,0 cm não são coerentes, devido ao fato da câmara dedal
ser muito grande para medida à baixa profundidade.
DOSIMETRIA
DO
SISTEMA
57
5.3. Determinação da Relação de Tecido Máximo
A relação de tecido máximo (TMR), segundo definição de
Holtetal/^^\ é a taxa de dose num meio, num ponto P, com relação à dose
de ionização máxima.
A definição do TMR é relacionada ao processo de calibração
recomendado para feixes de raios X com energias mais altas que 3 MeV,
pelo qual todas as medidas são feitas em um fantoma à profundidade igual ou
maior do que a profundidade de dose máxima'^^\
TMR =
Dd / D m
onde: Dd = dose em uma determinada profundidade
Dm = dose na profundidade máxima (1,5 cm)
As medidas foram feitas com o fantoma de 30 x 40 x 40 c m ^ em
várias profundidades, para tamanhos de campo desde O x O até 30 x 30 cm^.
A câmara foi posicionada sempre a 100 cm do foco da radiação.
Os resultados obtidos podem ser observados nas Tabelas 5.6 e 5.7
com o uso do fantoma manual e nas Tabelas 5.8 e 5.9 com o uso do fantoma
automático. O desvio padrão máximo das medidas foi de 0,5%.
DOSIMETRIA
DO SISTEMA
53
Tabela 5.6. Valores determinados para a relação de tecido máximo com
câmara de ionização, utilizando o fantoma manual.
Profundidade
(cm)
1,5
2,0
3,0
3,5
4,0
8,0
10,0
12,0
15,0
20,0
4x4
5x5
CaiTipo de radiaçé \o(cm^,
qYs
6x6
7x7
9x9
1,000
0,996
0,965
0,948
0,931
0,788
0,722
0,659
0,575
0,458
1,000
0,999
0,971
0,955
0,939
0,802
0,735
0,673
0,589
0,470
1,000
0,999
0,974
0,959
0,943
0,813
0,749
0,661
0,602
0,483
1,000
0,999
0,974
0,960
0,945
0,819
0,757
0,699
0,612
0,492
1,000
0,998
0,975
0,961
0,946
0,826
0,765
0,705
0,623
0,503
1
10x10
1,000
0,999
0,976
0,963
0,950
0,834
0,773
0,715
0,633
0,513
11x11
1,000
0,998
0,977
0,964
0,952
0,839
0,781
0,723
0,646
0,525
1,000
0,999
0,978
0,966
0,953
0,843
0,787
0,726
0,650
0,530
Tabela 5.7. Valores determinados para a relação de tecido máximo com
câmara de ionização, utilizando o fantoma manual.
Profundidade
(cm)
1,5
2,0
3,0
3,5
4,0
8,0
10,0
12,0
15,0
12x12
1,000
0,999
0,977
0,966
0,956
0,848
0,792
0,737
0,657
Campo de radiação (cm^)
15x15
20x20
25x25
1,000
0,999
0,978
0,968
0,958
0,857
0,805
0,754
0,677
1,000
0,997
0,979
0,969
0,959
0,868
0,819
0,771
0,699
1,000
0,997
0,979
0,970
0,961
0,874
0,827
0,781
0,712
30x30
T,ooo "
0,997
0,980
0,971
0,963
0,878
0,834
0,790
0,723
Quando os dados obtidos são comparados com os da literatura'^\ as
diferenças variam de 0,1% a 3,5%, os quais dão um indicativo de que estes
dados são satisfatórios.
'IOSRTÍSBAO N A C ; G N í - l TIT E Í ^ T R Í I I A
í-íuOlcAH/SP
11^
DOSIMETRIA
DO SISTEMA
59
Tabela 5.8. Valores determinados para a relação de tecido máximo, com
câmara de ionização, utilizando o fantoma automático
Profundidade
(cm)
0,5
1,0
1,5
2,0
3,0
4.0
5,0
6,0
7,0
8,0
9,0
10,0
12,0
15,0
17,0
20,0
22,0
0x0
0,711
0,975
1,000
0,976
0,929
0,884
0,842
0,801
0,763
0,726
0,691
0,658
0,596
0.514
0,466
0,402
0,364
5x5
0,729
0,979
1,000
0,996
0,968
0,940
0,911
0,877
0,842
0,808
0,774
0,739
0,679
0.592
0,542
0,476
0,436
Campo de radiação (cm^)
6x6
7x7
8x8
9x9
0,733 0,737 0.740 0,744
0,980 0,980 0,980 0,980
1,000 1,000 1.000 1,000
0,997 0.997 0.997 0.997
0,972 0,975 0.977 0,979
0,945 0.948 0,951 0.954
0,916 0,919 0.921 0,924
0,884 0,889 0,893 0,897
0,851 0,857 0.862 0,867
0,818 0,825 0,832 0,838
0,785 0.793 0.801 0.808
0.753 0.763 0.772 0.779
0,694 0.704 0,714 0.723
0.607 0.619 0.630 0.640
0,557 0.569 0.580 0,590
0,489 0,502 0,514 0,524
0,448 0.459 0.470 0,480
10x10
0,748
0,980
1,000
0,997
0,980
0,956
0,927
0,901
0,872
0,843
0,815
0.786
0,731
0,649
0,599
0,533
0,489
11x11
0,752
0,981
1,000
0,998
0,981
0,958
0,930
0,904
0,876
0,848
0,821
0,793
0,739
0.658
0,608
0,541
0,497
DOSIMETRIA
DO SISTEMA
QQ
Tabela 5.9. Valores medidos da relação de tecido máximo, com câmara
de ionização, utilizando o fantoma automático
Ptofundidade
(cm)
0,5
1.0
1,5
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
12,0
15,0
17,0
20,0
22,0
12x12
0,756
0,981
1,000
0,998
0,981
0,960
0,932
0,907
0,880
0,852
0,826
0,799
0,746
0,666
0,616
0,549
0,505
Campo de radiação
15x15 18x18 20x20
0,778
0,767
0,786
0,983
0,984
0,982
1,000
1,000
1,000
0,998
0,998
0,998
0,983
0,984
0,982
0,965 0,966
0,963
0,940 0,942
0,936
0,913
0,918 0,921
0,894
0,889
0,898
0,862 0,869
0,873
0,845
0,838
0,850
0,811
0,820 0,826
0,761
0,772
0,779
0,698
0,685
0,707
0,651
0,637
0,660
0,595
0,572 0,586
0,530 0,543 0,552
(cm')
25x25
0,806
0,987
1,000
0,999
0,985
0,968
0,946
0,927
0,906
0,883
0,862
0,839
0,795
0,726
0,680
0,615
0,574
30x30
0,825
0,990
1,000
0,999
0,985
0,970
0,949
0,932
0,914
0,892
0,872
0,849
0,808
0J44
0,697
0,636
0,593
!
:
!
:
!
;
i
!
i
1
j
;
i
i
Quando os dados obtidos são comparados com os da literatura'^\ as
diferenças variam de 0 , 1 % a 1,5%, os quais dão um indicativo de que estes
dados são satisfatórios.
Quando são comparados os resultados obtidos da dosimetria
realizada com o fantoma manual e com o automático, observa-se que as
diferenças variam entre 0,1 e 1,8%; no maior caso a diferença foi de 2,9%,
indicando que os dados obtidos nos dois procedimentos de dosimetria são
equivalentes.
DOSIMETRIA
DO
SISTEMA
61
5.4. Determinação dos Fatores de Abertura de Colimador e de Retrodispersão
5.4.1. Fatores de Abertura de Colimadores
Segundo Khan et al.
o fator de abertura de colimador (FAC) pode
ser definido como a taxa de dose primária efetiva para um dado tamanho de
campo de colimador normalizado para um campo de 10 x 10 cm^.
Para a determinação do FAC, as medidas foram realizadas no ar,
utilizando-se a câmara de ionização com capa de equilíbrio eletrônico
espessa o suficiente (nesse caso 1,5 cm), para se ter a dose máxima.
Na Tabela 5.10 são apresentados os resultados obfidos. O desvio
padrão máximo foi de 0,5%. Pode-se observar que o FAC apresenta
dependência com o tamanho do campo de radiação.
5.4.2. Fatores de Retro-dispersão
O fator de retro-dispersão (BSF) pode ser definido como a relação
entre a dose para um dado campo em um fantoma na profundidade de
referência e a dose no mesmo ponto e profundidade para o campo de
referência, com a mesma abertura de colimador'^^ O BSF indica como a
dose de radiação é aumentada pela radiação retroespalhada do fantoma.
Segundo Khan et a\}^^\ a medida direta do BSF de acordo com a
definição é difícil. Entretanto, o BSF pode ser determinado:
Sc,p = FAC X BSF
e
portanto
onde Sc,p é o fator de espalhamento total.
BSF = Sc,p / FAC,
DOSIMETRIA DO SISTEMA
O Sc.p é medido da seguinte forma: a câmara é colocada a 1,5 cm de
profundidade à distância de 100 cm da fonte na superfície da água, e são
feitas medidas de Scp e F A C com a câmara de ionização
para todos os
tamanhos de campo. O desvio padrão das medidas não ultrapassou 0,5%.
Na Tabela 5.10 são apresentados os resultados obtidos para campos
de radiação de dimensões diferentes. O B S F apresenta também dependência
com o tamanho do campo de radiação.
Tabela 5.10. Fatores de abertura de colimador (FAC) e
de retro-dispersão (BSF).
Campo
(cnf)
4x4
5x5
6x6
7x7
8x8
9x9
l O x 10
11x11
12x 12
13x 13
14x 14
15x 15
16x 16
17x 17
18x 18
19x 19
20x20
22x22
24x24
25x25
27x27
30x30
FAC
BSF
01^51"
0^947
0,981
0,987
0,991
0,994
0,997
1,000
1,003
1,005
1,007
1,010
1,011
1,014
1,016
1,018
1,020
1,021
1,024
1,027
1,027
1,030
1,035
0,964
0,976
0,984
0,990
0,995
1,000
1,002
1,006
1,008
1,011
1,013
1,014
1,016
1,018
1,019
1,021
1,023
1,026
1,028
1,030
1,031
DOSIMETRIA DO SISTEMA
53
5.5. Medida do Fator de OFF-AXIS
Filtros achatadores {flattening filters) são utilizados nos feixes dos
aceleradores lineares para aplainar as curvas de isodose por meio de um
campo numa profundidade específica. Entretanto, frequentemente isto faz
com que a dose seja maior fora do raio central, particularmente em pequenas
profundidades. Essa falta de uniformidade de dose
precisa ser levada em
consideração no cálculo de dose fora do eixo central'^\ que é conhecido como
fator de off-axis.
OFF-AXIS = % de dose no ponto fora do eixo
% de dose no raio central
As medidas foram feitas no ar com a câmara de ionização dedal com
capa de equilíbrio eletrônico, utilizando um campo de 40 x 40 c m ^ . O desvio
padrão não excedeu 0,5%.
Na Tabela 5.11 são apresentados os resultados.
Os resultados de off-axis para aceleradores nessa faixa de energia
estão na faixa de 5%, mostrando que os resultados obtidos estão dentro do
esperado.
DOSIMETRIA
DO SISTEMA
54
Tabela 5.11. Fatores de off-axis, medidas realizadas no ar com a câmara
de ionização com capa de equilíbrio eletrônico (1,5 cm).
X e Y representam direções transversal e longitudinal
respectivamente.
Distância do
Centro
(cm)
0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
12,0
13,0
14,0
15,0
16,0
17,0
18,0
19,0
20,0
X
Direita
X
Esquerda
1,000
1,002
1,006
1,014
1,020
1,025
1,028
1,030
1,032
1,032
1,035
1,036
1,039
1,042
1,046
1,047
1,049
1,049
1,046
1,035
0,285
1,000
1,002
1,009
1,017
1,024
1,030
1,033
1,036
1,038
1,038
1,040
1,042
1,044
1,047
1,050
1,051
1,052
1,051
1,048
1,036
0,326
Y
Direita
1,000
0,998
1,001
1,007
1,015
1,021
1,026
1,030
1,033
1,034
1,035
1,037
1,038
1,041
1,044
1,046
1,048
1,047
1,047
0,935
0,824
Y
Esquerda
1,000
1,006
1,012
1,019
1,024
1,028
1,032
1,033
1,034
1,034
1,036
1,037
1,039
1,041
1,044
1,044
1,044
1,029
1,015
0,663
0,312
5.6. Determinação dos Fatores de Bandeja
As bandejas lisas e furadas são utilizadas para as colimações nos
campos de tratamento e elas têm um fator de absorção que precisa ser
determinado.
DOSIMETRIA
DO
SISTEMA
65
Estas medidas foram feitas na água com a câmara posicionada a
5 cm dP profMpdicJQde com distância foco-superfície da água de 100 cm.
Inicialmente são realizadas medidas com a bandeja colocada no feixe e
depois sem a bandeja, em cada caso. O fator de bandeja (FB) é dado por:
FB = Leitura com bandeja / Leitura sem bandeja
Os valores são mostrados na Tabela 5.12.
Tabela 5.12. Fatores de bandeja lisa e furada
Bandeja
FB
Lisa
0,968 + 0,005
Furada
0,980 + 0,005
5.7. Determinação dos Fatores de Filtros
Os filtros em cunha diminuem o rendimento da máquina; eles devem
ser levados em conta nos cálculos da dose de tratamento. Os filtros em cunha
são ufilizados para homogeneizar a dose num determinado local; eles
também corrigem a falta de tecido numa determinada parte a ser tratada.
Esse efeito é caracterizado pelo fator de transmissão de filtro, ou fator de filtro
(FW), definido como a razão entre as taxas de dose com e sem o filtro, em um
ponto no fantoma ao longo do eixo central do feixe'^^^
As medidas foram feitas com a câmara posicionada a 5 cm de
profundidade na água, para um campo 1 0 x 1 0 cm^, mantendo-se a distância
foco-superficie de 100 cm. Inicialmente são realizadas medidas com o filtro
posicionado no campo e depois sem o filtro.
DOSIMETRIA
DO
SISTEMA
O fator de filtro (FW), é dado por:
FW = Leitura com filtro / Leitura sem filtro
Os resultados são apresentados na Tabela 5.13.
Tabela 5.13. Fatores de filtros
Filtro
FW
15°
0,806 ± 0,004
30°
0,706 + 0,004
45°
0,573 + 0,003
60°
0,409 + 0,002
66
PROGRAMA
DE CONTROLE
DA QUALIDADE
QJ
6. PROGRAMA DE CONTROLE DA QUALIDADE
Uma vez que os testes de aceitação foram realizados, as medidas de
comissionamento ficaram prontas e o aparelho já está calibrado para liberar
1 cGy/UM na condição de equilíbrio eletrônico para o campo de 10 x 10 cm^, o
programa de controle da qualidade já pode ser implementado'^'^'^^\
Este programa, ao ser montado, deve levar em conta a necessidade
dos testes a serem feitos, a freqüência com que eles devem ser realizados, as
técnicas a serem ser seguidas, sempre lembrando que os equipamentos a
serem utilizados para os testes devem ser de fácil manuseio e utilização para
economizar tempo de trabalho.
Há estimativas de que aproximadamente 2,5 milhões de pacientes
por ano, ao redor do mundo, se submetem à radioterapia e pode ser dito que
a relação custo-benefício com um bom programa de controle de qualidade
pode até mesmo aumentar por alguns porcento as taxas de cura de câncer''*'*^
Sendo assim, no CEBROM foram implementados os seguintes testes
com as respectivas freqüências:
Testes
Frequência
Fator de calibração
semanal
Energia
semanal
Botões de segurança - botões de emergência
semanal
Dimensões do campo luminoso - indicado x medido
semanal
Indicador de distância foco-superfícle - escala óptica x indicador
semanal
Indicador de ângulos da coluna - digital x mecânico
semanal
Indicador de ângulo do colimador - digital x mecânico
semanal
Coincidência de campo luminoso x campo radioativo
mensal
Diferença entre retículo e escala óptica
mensal
PROGRAMA
DE CONTROLE
DA
QUALIDADE
68
6.1. Determinação do Fator de Calibração
O fator de calibração é determinado, tomando-se medidas na água a
5 cm de profundidade com a câmara de ionização.
Os resultados obtidos desde a instalação do sistema até novembro
de 2000 são apresentados na Tabela 6 . 1 . O desvio máximo padrão das
medidas foi de 0,5%.
Tabela 6.1. Resultados obtidos para os fatores de calibração no
período de fevereiro de 1998 a novembro de 2000,
utilizando taxa de dose de 320 cGy/UM
Fator de Calibração
\^no
Janeiro
Fevereiro
Março
Abril
Maio
Junho
Julho
Agosto
Setembro
Outubro
Novembro
Dezembro
1998
1999
2000
-
0,998
0,996
0,999
0,996
0,996
1,000
0,997
0,994
0,997
0,998
0,994
0,997
1,001
1,000
0,999
0,998
0,994
0,995
1,002
0,995
0,995
0,990
0,994
1,000
1,000
0,998
0,998
0,998
0,999
0,998
0,999
1,000
0,997
0,997
-
Pode-se verificar que a variação máxima foi de 1,0% em apenas um
caso em relação ao valor unitário, sendo que a maioria se manteve dentro do
valor esperado,mostrando que os resultados são satisfatórios.
O formulário apresentado a seguir é utilizado para se determinar o
fator de calibração.
PROGRAMA
DE CONTROLE
DA
69
QUALIDADE
Formulário para Obtenção do Fator de Calibração
(Protocolo AAPM T G 2 1 )
Feixe de Fótons de 6 MV
Data:
Eletrometro: Sun Nuclear
Câmara: Exradin (à prova d'água)
/
/
Modelo: A12
Modelo: 1010
Série: 1450010
DFS = 100 cm
Tamanho do campo na superfície = 1 0 x 1 0 cm^
Profundidade no centro da câmara = 5 cm
Pressão Inicial =
kPa
Temperatura Inicial =
°C
Pressão Final = _
Temperatura Final
kPa
°C
(j) (p,T) = [(273,2 + T) / 293,2)1. (760/P)
•t» (P,T)
=
Unidade
U (+300V)
L (-300V)
Monitora
100
100
100
(cGy/UM)
Fr =
L(p,T)
Npás
L/p
Pwail
Pion
Prepl
Fc = L(p,T) X produto dos fatores acima =
Erro = Fc/Fcref =
/
=
100/PDP(5)
(cGy/UM)
PROGRAMA
DE CONTROLE
DA QUALIDADE
JQ
6.2. Verificação da Energia do Feixe
Para feixes de raios X, o potencial de aceleração nominal está
relacionado com as medidas de taxa de ionização feitas a uma distância
fonte-detetor fixa de 100 cm e a duas diferentes profundidades. A câmara é
posicionada no centro de um campo de 10 x 10 cm^ no phantom de água
primeiramente na profundidade de 10 cm e depois na profundidade de 20 cm,
obtendo-se medidas com valores médios de Lio e L20 respectivamente. O
desvio padrão máximo das medidas foi de 0,5%.
A energia é verificada por:
L20 / L10.
A relação para este aparelho é de (67 ± 2)%.
A energia dos aceleradores lineares é definida pela porcentagem de
dose profunda a 10 cm de profundidade
10
X
na água para o campo
de
10 cm^.
Os resultados para este acelerador mostraram uma relação de
energia com valor de 67,6% quando comparados com a literatura'^' que é de
67,5%; os resultados são portanto equivalentes.
Na Tabela 6.2 são apresentados os resultados para o teste de
verificação da energia deste acelerador desde fevereiro de
1998 até
novembro de 2000.
Observa-se que a variação máxima, em relação ao valor de 67,5%,
foi de 0,9%, mas ainda dentro de 2%, mostrando que os resultados são
satisfatórios.
PROGRAMA
DE CONTROLE
DA QUALIDADE
7 -|
Tabela 6.2. Resultados obtidos para o teste da verificação da
energia do feixe de radiação.
(L2(/Lio)100
(%)
\
Janeiro
Fevereiro
Março
Abril
Maio
Junho
Julho
1 Agosto
Setembro
Outubro
Novembro
Dezembro
.:
f 998
f999
2000
-
67,8
67,7
67,9
68,0
67,9
67,9
67,8
68,1
68,0
67,6
67,8
67,7
67,9
67,9
67,6
67,7
67,6
67,4
67,4
67,5
67,5
67,5
67,5
66,9
66,9
66,9
67,1
67,4
67,5
67,6
67,8
67,8
67,7
67,7
•
6.3. Coincidência de Campo Luminoso x Campo Radioativo
Um filme dentro do envelope, onde se marca um campo de
10 X 10 cm^, é colocado entre duas placas de acrílico, sendo que a de baixo é
para o retroespalhamento e a de cima de 1,5 cm é para se obter a condição
de equilíbrio eletrônico do aparelho. Este aparato é colocado à distância de
100 cm do foco, e o filme é irradiado com uma dose de 50 cGy. Depois de
irradiado, o filme é avaliado no densitômetro, no centro do campo e nas
direções x+, x-, y+ e y-. Quando a leitura em relação ao centro cair até 50%, o
campo é definido, e assim então pode-se comparar o tamanho do campo
radioativo com o luminoso.
PROGFtAMA DE CONTROLE DA QUALIDADE
J2
Tabela 6.3. Resultados obtidos para o teste de coincidência de
campo luminoso x campo radioativo
Vanação do campo
(mm)
Janeiro
Fevereiro
Março
Abril
Maio
Junho
Julho
Agosto
Setembro
Outubro
Novembro
Dezembro
1998
1999
2000
-
2,0
1,0
1,0
1,0
1,0
0,5
0,5
0,5
1,0
1,0
1,0
1.0
1,0
1,0
0,5
1,0
1,0
1,0
1,0
1,0
2,0
0,5
0,5
2,0
1,0
1,0
1,0
1,0
0,5
1,0
-
Pode-se verificar que apenas em algumas vezes chegou-se a 2 mm,
que é o limite recomendado, mostrando que os resultados são satisfatórios.
6.4. Diferença entre Reticulo e Escala Óptica
Este teste constitui-se simplesmente da verificação de quanto o
centro do campo do aparelho está deslocado com relação à escala óptica
(que indica a distância foco-superfície).
O teste foi realizado mensalmente entre fevereiro de 1998 e outubro
de 2000, não tenhdo sido detectada nenhuma variação.
COMISSÃO NACIONM DE E N E R G M
NUCLfAR/SP
ty,r
PROGRAMA
DE CONTROLE
DA QUALIDADE
73
6.5. Botões de Segurança - Botões de Emergência
Os botões de segurança são acionados para se verificar o corte
imediato da emissão de
radiação. Com
o aparelho
na condição
de
I
estacionário (stand-by), aciona-se o botão de emergência e o aparelho deve
desligar por completo.
Há ainda o teste da porta que é feito com o aparelho
em
funcionamento. Abre-se a porta e o feixe deve parar imediatamente.
Nos dois casos, nunca houve nenhum tipo de falha mecânica no
período entre 1998 e 2000.
6.6. Dimensões do Campo Luminoso
Este teste é realizado com o objetivo de verificar se o campo
luminoso de radiação é exatamente o que se está utilizando durante as
irradiações. As dimensões do campo foram examinadas entre o período entre
fevereiro de 1998 e novembro de 2000.
Os resultados podem ser observados na Tabela 6.4.
Os
resultados
obtidos
recomendado pelo fabricante.
sempre
estiveram
abaixo
do
limite
PROGRAMA DE CONTROLE DA QUALIDADE
74
Tabela 6.4. Resultados obtidos para dimensões
luminoso - indicado x medido.
1 0 x 10
20x20
Campo Luminoso
(cm^)
1 0 x 10
20x20
1998
do
campo
10x 10
1999
20x20
2000
10.0 x 10,0
19,9
20,0
10,0x10,0
20,1 x20,0
X
10,0x10,0
20,0x20,1
10,0x10,1
20,1 x20,1
10,0x10,1
20,0x20,0
10.0
10,0
20.0 x20,0
10,0x10,1
20,1 x20,0
10,0 x 10,1
20,0 x 20,0
10,0
19,9x20,0
10.1 x10,0
20,1 x20,0
10,0x10,1
20,0x20,1
10,2x10,0
20,2x20,0
10,0x10,0
20,1 x20,0
10,0x10,1
20,0 x20,1
10.1 x10,0
20,0x19,9
10,0x10,0
20,1 x20,0
10,0x10,1
20,0x20,1
10,1 x 10,0
19,9
19,9
10,0x10,1
20,1 x20,0
10.0
10,1
20,0 x20,0
10,0x10,1
20,0x20,1
10,1 x10,0
20,1 x20,0
10,0x10,1
20,0x20,0
10,1 x10,1
20,0x20,0
10.0
10,0
20,1 x20,0
10,0x10,1
20.0 x20,1
10,0x10,1
20,0x20,1
10,0x10,0
20,1 x20,0
10.1 x10,0
20.1 x20,0
10,0x10,1
20.1 x20,0
10.1
10,1
20,1 x20,0
10,1 x 10,0
20,0x20,1
10,0x10,1
20,1 x20,0
10,0x10,0
20,1 x20,0
9,9
X
X
X
X
X
X
Os testes para os colimadores assimétricos têm-se mantido dentro do
mesmo padrão.
6.7. Indicador de Distância Foco-Superficie
O teste é realizado com o objetivo de verificar a distância de
tratamento utilizada. Este teste é realizado medindo-se as distâncias com a
escala óptica do aparelho. Estas distâncias são a seguir examinadas com os
respectivos
indicadores
mecânicos.
Foram feitas verificações
semanais
durante o período de fevereiro de 1998 a novembro de 2000, não tendo sido
observada nenhuma variação entre os valores indicados e medidos.
COMiSSAO NACiONAt DE ENEHGIA NUCLEAH/SP
«Pt.
PROGRAMA
DE CONTROLE
DA
QUALIDADE
75
6.8. Indicador de Ângulo da Coluna
O objetivo deste teste é de se verificar as angulações mostradas no
marcador digital do aparelho.
Foram realizadas as verificações entre fevereiro de 1998 e novembro
de 2000. Os resultados estão apresentados na Tabela 6.5. A maior variação
observada foi de 1,0° em apenas um caso; a maioria se manteve abaixo das
especificações. Os resultados são portanto satisfatórios.
Tabela 6.5. Resultados obfidos para os ângulos da coluna
Posicionamento da Coluna
0°
90°
"\Ano
Mês"-^,.^^
180° 270°
0°
-
-
Fevereiro
0
90,5
Março
0
Abril
180° 270°
0°
90°
1999
1998
Janeiro
90°
-
-
180° 270°
2000
0
89,7
179,7 270,1
0
90,0
179,8 270,1
180,0 270,0
0
90,0
180,1 270,0
0
90,1
180,0 270,1
90,5
180,0 270,0
0
90,1
180,0 270,1
0
90,1
180,0 270,1
0
90,5
180,0 270,0
0
90,2
180,0 270,0
0
90,1
180,0 270,0
Maio
0
90,5
180,0 270,0
0
90,0
180,0 270,1
0
90,0
180,0 270,1
Junho
0
90,0
180,0 270,0
0
90,1
179,9 270,1
0
90,0
179,9 270,1
Julho
0
90,0
180,0 270,0
0
90,0
180,1
269,9
0
90,1
179,8 270,1
Agosto
0
90,0
180,0 270,0
0
90,2
180,2 270,4
0
90,0
179,9 270,0
Setembro
0
90,0
181,0 270,0
0,1
90,1
180,0 269,9
0
90,1
179,9 270,0
Outubro
0
90,0
180,5 270,0
0
90,1
180,1 270,0
0
90,1
179,8 270,0
Novembro
0
90,0
180,0 270,1
0
90,1
180,1
270,1
0
90,2
179,7 270,1
Dezembro
0
90,0
180,1
270,0
0
90,1
180,1 270,0
-
-
-
-
PROGRAMA DE CONTROLE DA QUALIDADE
76
6.9. Indicador de Ângulo do Colimador
O objetivo deste teste é de se verificar as angulações mostradas no
marcador digital do aparelho.
Os resultados obtidos estão apresentados na Tabela 6.6. A maior
variação foi de 1,0° em apenas 2 meses e para um lado apenas, sendo que a
maioria está abaixo das especificações.
Os resultados
são
portanto
satisfatórios.
Tabela 6.6. Resultados obtidos dos ângulos do colimador
Posicionamento do Colimador
0°
\ A n o
Mês^.,^^
90°
270°
0°
1998
Janeiro
-
-
Fevereiro
0
90,5
Março
0,5
Abril
90°
270°
0°
90°
270°
2000
1999
0,1
90,1
270,5
0
90,0
270,0
270,5
0
90,0
270,0
0
90,2
270,2
89,5
269,1
0
90,2
270,2
0
90,1
270,1
0
90,5
271,0
0
90,2
270,2
0
90,2
270,2
Maio
0
90,9
271,0
0
90,0
270,2
0
90,0
270,2
Junho
0
90,0
270,0
0
90,1
270,2
0
90,1
270,2
Julho
0
90,0
270,0
0,1
90,0
269,2
0
90,1
270,0
Agosto
0
90,0
270,0
0
90,2
270,2
0
90,1
270,2
Setembro
0
90,0
270,1
0,1
90,1
270,4
0
90,1
270,3
Outubro
0
90,0
270,0
0
90,2
270,1
0
90,1
270,4
Novembro
0
90,1
270,1
0
90,0
270,2
0
90,2
270,5
Dezembro
0
90,1
270,1
0
90,1
270,0
-
-
-
COMISSÃO NAC.ONAL D £ ENERGIA N U C L E A R / S P
IPfc*
CONCLUSÕES
77
7. CONCLUSÕES
O sistema do acelerador do CEBROM, em Goiânia, entrou em
funcionamento após passar por todos os testes de aceitação, dosimetria e
controle de qualidade inicial, em fevereiro de 1998, e desde então foi
implantado o programa de controle de qualidade descrito neste trabalho. Após
2 anos e 10 meses de funcionamento, a maior variação verificada no fator de
calibração foi de 1,0% em apenas um caso, sendo que a maioria se manteve
dentro das especificações. Na determinação da energia, a maior variação foi
de 0,9%, sendo que na maioria dos casos os valores se mantiveram dentro
das especificações, mostrando assim a excelente estabilidade do aparelho. A
longo prazo, o programa de controle de qualidade em andamento continuará,
para que possamos manter a qualidade dos tratamentos.
A cada 3 meses o aparelho passa por uma revisão completa de
peças e acessórios e sempre que uma apresenta qualquer defeito, a mesma é
substituída.
Sempre que os botões de segurança e a porta foram acionados com
0
aparelho em funcionamento, o feixe foi interrompido
imediatamente,
mostrando que o aparelho apresenta a segurança desejada.
Os campos radioativo e luminoso têm ficado dentro de no máximo
1 mm de diferença, exceto por 3 casos em que ficaram em 2mm, mas que
foram
corrigidos
imediatamente,
conforme
observado
nos
resultados
apresentados.
Desde que o serviço começou, já foram tratados 1200 pacientes,
sendo que
radiação.
nenhum deles apresentou qualquer efeito fora os normais da
REFERÊNCIAS
BIBUOGRÁFICAS
JQ
REFERÊNCIAS BIBLIOGRÁFICAS
1. AIRD, E.G.A.; BURNS, J.E.; DAY, M.J.; DUANE, S.; JORDAN, T.J.;
KACPEREK, A.; KLEVENHAGEN, S.C.; HARRISON, R.M. LILLICRAP,
S.C.; M c k e n z i e , A . L ; PITCHFORD, W.G.; SHAW, J.E.; SMITH, C.W.
Central axis depth dose data for use in radiotherapy. Brit. J. Radiol.,
suppl. 25, 1996.
2. AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE. A protocol for
the determination of absorbed dose from high-energy photon and
electron beams. Task Group 2 1 . Med. Phys., v. 10, n.6, p.741-771,
1983.
3. AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE. Physical
aspects of quality assurance in radiation therapy. AAPM Task
Group 24, New York, 1984.
4. AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE. Code of
practice for radiotherapy accelerators: Report of AAPM Radiation
Therapy Task Group 45. Med. Phys., v.21, n.17, p.1093-1121, 1994.
5. ANDREO, P. Dose determination with plane-parallel ionization chambers in
therapeutic electron and photon beams. SSDL - Newsletter, 40, p.4-16,
1999.
6. ANDREO,P.; BURNS,D.T.; HOHLFELD.K.; HUG, M.S.; KANAI, T.;
LAITANO, F.; SMYTY, V.; VYNCKIER, S. An international code of
practice for radiotherapy dosimetry based on absorbed dose to water
standards. Radlother Oncol.. 51 (suppl. 1) 19, 1999.
7. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Controle da
qualidade de dosímetros clínicos. Rio de Janeiro, 1985 (ABNT
20:02.007-001).
CuflrtiòdAü
íkAUüWA.4.
twtnbiM H U C L T A H / s r
«fe»
REFERENCIAS BIBLIOGRÁFICAS
JQ
8. ATTIX, F.H. Introduction
to radiological physics and
radiation
dosimetry Ionization chambers, p.292-343; Dosimetry and calibration
of photon and electron beams with cavity ion chambers, p.346-388.John
Wiley & Sons Inc, Madison, Wisconsin, 1986.
9. BENTEL, G.C. Radiation therapy planning. 2 ed. New York : McGrawHill, 1996.
10. COMISSÃO NACIONAL DE ENERGIA NUCLEAR. Atividades
da
Superintendência de Licenciamento e Controle. Rio de Janeiro,
2000.
11. COMISSÃO NACIONAL DE ENERGIA NUCLEAR. Diretrizes Básicas de
Radioproteção. Rio de Janeiro, 1988. (CNEN-NE-3.01)
12. COMISSÃO NACIONAL DE ENERGIA NUCLEAR. Requisitos
de
radioproteção e segurança para serviços de radioterapia. Rio de
Janeiro, 1990 (CNEN - NE - 3.06).
13. DEUTSCHES INSTITUT FÜR NORMUNG. Dosismeßverfahren nach der
Sondenmethode
für
Photonen-und
Elektronenstrahlung
lonisationsdosimetrie. Deutsches Norm DIN 6800, Teil 2, Berlin, 1996.
14. HAVERCROFT,J.M.; KLEVENHAGEN,S.C. Ion recombination corrections
for plane-parallel and thimble chambers in electron and photon
radiation. Phys. Med. Biol., v.38, p.25-38, 1993.
15. HENDEE, W.R.; IBBOTT,
St. Louis: Mosby, 1996.
G.S.
Radiation
therapy
physics.
2 ed.,
16. HOLT, J.G.; LAUGHLIN, J.S.; MORONEY, M.A. The extension of the
concept of tissue-air ratios (TAR) to high-energy X-ray beams.
Radiology, v. 94, p.437-447, 1970.
17. HORTON, J.L. Handbook of radiation therapy. Prentice Hall, Englewood
Cliffs, 1987.
18. INTERNATIONAL ATOMIC ENERGY AGENCY. Manual de dosimetría en
radioterapia. Vienna, 1971 (IAEA - Technical Reports Series No. 110).
GümòòkQ
NAUCW/.L UL t N t K b l A N U C L t A H / S T '
trc*
REFERENCIAS
BIBUOGRAFICAS
QQ
19. INTERNATIONAL ATOMIC ENERGY AGENCY. Absorbed
dose
determination in photon and electron beams: An international code
of practice. Vienna, 1987 (IAEA - Technical Reports Series No. 277).
20. INTERNATIONAL
ATOMIC
ENERGY AGENCY.
Calibration
of
dosimeters used in radiotherapy. Vienna, 1994 (IAEA - Technical
Reports Series No. 374).
2 1 . INTERNATIONAL ATOMIC ENERGY AGENCY. Review of data and
methods recommended in the internacional code of practice: IAEA
Technical Reports Series No. 277, Absorbed dose determination in
photon and electron beams. Vienna, 1996 (IAEA, TECDOC-897).
22. INTERNATIONAL ATOMIC ENERGY AGENCY. The use of plane parallel
ionization chambes in high energy electron and photon beams: An
international code of practice for dosimetry. Vienna, 1997 (IAEA Technical Reports Series No. 381).
23. INTERNATIONAL ATOMIC ENERGY AGENCY. Quality assurance
radiotherapy. Vienna, 1997 (IAEA, TECDOC-989).
in
24. INTERNATIONAL
ATOMIC
ENERGY
AGENCY.
Design
and
implementation of a radiotherapy programme: Clinical, medical
physics, radiation protection and safety aspects. Vienna, 1998
(IAEA, TECDOC-1040).
25. INTERNATIONAL ATOMIC ENERGY AGENCY. Aspectos físicos de la
garantía de calidad en radioterapia: Protocolo de control de
calidad. Vienna, 2000 (IAEA, TECDOC-1151).
26. INTERNATIONAL ATOMIC ENERGY AGENCY. Absorbed
dose
determination in external beam radiotheraoy: An international code
of practice for dosimetry based on standards of absorbed dose to
water. Vienna, 2000 (IAEA - Technical Reports Series s/n).
27. INTERNATIONAL
COMMISSION
ON
RADIATION
UNITS
AND
MEASUREMENTS. Measurement of absorbed dose in a phantom
irradiated by a single beam of X or gamma rays. Bethesda, MD,
1973 (ICRU Report 23).
REFER^NCIAS
BIBUOGRAFICAS
Q 1
28. INTERNATIONAL
COMMISSION
ON
RADIATION
UNITS
AND
MEASUREMENTS. Determination
of absorbed dose in patient
irradiated by means of X or gamma rays in
radiotherapy
procedures. Bethesda, MD, 1976. (ICRU - Report 24).
29. INTERNATIONAL
COMMISSION
ON
RADIATION
UNITS
AND
MEASUREMENTS. Radiation quantities and units. Bethesda, MD,
1980 (ICRU-Report 33).
30. INTERNATIONAL
COMMISSION
ON
RADIATION
UNITS
AND
MEASUREMENTS. Prescribing, recording and reporting photon
beam therapy. Bethesda, MD, 1993 (ICRU - Report 50).
31. JOHNS, H.E.; CUNNHINGHAM, J.R. The physics of radiology.
Springfield, Illinois: Charles C. Thomas Publisher, 1983.
4 ed.
32. KARZMARK, C.J.; MORTON, R.J. A primer on theroy and operation of
linear accelerators in radiation therapy. Madison, Wisconsin: Medical
Physics Publishing, 1981.
33. KHAN, F.M. The physics of radiation therapy. 2 ed. Baltimore: Williams
& Wilkins, 1994.
34. KHAN, F.M.; SEWCHAND, W.; LEE, J.; WILLIANSOM, J.F. Revision of
tissue maximum ratio and scatter-maximum ratio concepts for cobalt 60
and higher energy X-ray beams. Med. Phys., v.7, n.3, p.230-237, 1980.
35. NATIONAL
COUNCIL
ON
RADIATION
PROTECTION
AND
MEASUREMENTS. Dosimetry of X-ray and gamma-ray beams for
radiation therapy in the energy range 10 keV to 50 MeV. Bethesda,
MD, 1981 (NCRP Report 69).
36. NORDIC ASSOCIATION OF CLINICAL PHYSICS. Procedures in external
radiation therapy with electron and photon beams with maximum
energies between 1 and 50 MeV. Acta Radiol. Oncol, v.19, p.55-79,
1980.
COMISSAO NAGiONAL LE ENtRGIA
NUULEAH/Sf
REFERENCIAS
BIBUOGRAFICAS
Q2
37. PEIXOTO, J.G.P. Determination of absorbed dose to water in reference
conditions for radiotherapy kilovoltage X-rays between 10 and 300 kV: A
comparison of the data in the IAEA, IPEM B, DIN and NCS dosimetry
protocols. Phys. Med. Biol., v.45, p. 1-13, 2000.
38. PEREZ, C.A. Principles and practice of radiation
Philadelphia - New York: Lippincott-Raven, 1998.
39. PINTO, A.C.L.C. A radioterapia
Radioterapia, 2000.
oncology.
3 ed.
no Brasil. 2 ed. Curitiba: Soc. Brasil.
40. SCAFF, L.A.M. Física da radioterapia. Sao Paulo: San/ier, 1997.
41. SOCIEDAD
ESPAÑOLA
DE
FÍSICA
MÉDICA.
Procedimientos
recomendados para la dosimetría de fotones y electrones de
energías compreendidas entre 1 MeV y 50 MeV en radioterapia de
haces externos. SEFM, Madrid, 1984 (Publicación n.1).
42. SOCIEDAD ESPAÑOLA DE FÍSICA MÉDICA. Suplemento al documento
procedimientos recomendados para la dosimetría de fotones y
electrones de energías comprendidas entre 1 MeV y 50 MeV en
radioterapia de haces externos. SEFM, Madrid, 1987 (Publicación
n.2).
43. STANTON, R.; STINSON, D. Applied physics for radiation
Madison, Wisconsin: Medical Physics Publishing, 1996.
44. WILLIAMS, J R . ; THWAITES, D.I. Radiotherapy
2 ed. Oxford: Oxford University Press, 2000.
physics in
oncology.
practice.
45. WOOTTON. P.; ALMOND, P.R.; HOLT, J.G.; HUGHES, D.B.; JONES, D.;
KARZMARK, C.J.; SCHULZ, R.J Code of practice for X-ray therapy
linear accelerators. Med. Phys., v.2, n.3, p.110-121, 1975.
1
CCw.iSAO N A U O N Í L DE ENEHGIfi NUCLEAH/SP
i m
Download

Texto Completo