(TXDo}HV/LQHDUHV+RPRJrQHDV (TXDomR$X[LOLDU &DVR5Dt]HV5HDLV'LVWLQWDV \1 = H £{I ( [)}= ) ( 6 ) { Sol. Geral: \ = &1H + & 2 H &DVR'XDV5Dt]HV5HDLV,JXDLV 1 \1 = H P1 = α + Lβ P2 = α − Lβ α+ β \ = &1H + & 2 Hα − β 3URSULHGDGHV /LQHDULGDGH £{I ( [)}= ) ( 6 ) e £{J ( [)}= * ( 6 ) £ −1 {&1 ) ( 6 ) + & 2 * ( 6 )}= &1 I ( [ ) + & 2 J ( [ ) &1 £ −1 {) ( 6 )}+ & 2 £ −1 {* ( 6 )} Porém usando Euler: β H = cos β + LVHQβ \ = Hα [&1 cos( β [ ) + & 2 VHQ( β [ )] 9DULDomRGH3DUkPHWURV \ = \ + \ − \ = H ∫ ∫ ∫H ( ) ( ) £ −1 {) ( 6 )}= I ( [) # £ −1 {) ( V − α )}= Hα I ( [ ) ( ) &RQYROXomR £ −1 {) ( 6 )}= I ( [ ) I ( [ )G[ £ 6ROXo}HVGH(TXDo}HV/LQHDUHVGH2UGHPQmR KRPRJrQHDYLDYDULDomRGHSDUkPHWURV +($9,6,'( P(S) tem grau menor que Q(S) U% ⇒ N = 1,2,3,....Q →∞ 3( 6 ) 3 (U% ) ( ) ' £ −1 H =∑ 4( 6 ) % =1 4 ′(U% ) , + , + , + 3(U1 )H 1 3(U2 )H 2 3(U* )H −1 3 ( 6 ) £ + + .... + = 4′(U1 ) 4′(U2 ) 4′(U* ) 4(6 ) & − £{I ( [ )}= ∫ I ( [)H G[ 0 £{&1 I ( [) + & 2 J ( [)}= &1 £{I ( [)}+ &2 £{J ( [)} = &1 ) ( 6 ) + & 2 * ( 6 ) 8VDQGR/DSODFHSDUD&DOFXODU 7UDQVIRUPDGDGH/DSODFHGH'HULYDGDV £{I ( [)}= ) ( 6 ) então ) ( 6 ) = £{I ( [)} então £{\ ′}= 6 £{\}− \ (0) £{\ ′′)}= 6 2 £{\}− 6\ (0) − \ ′(0) £{\ ′′′}= 6 3 £{\}− 6 2 \ (0) − 6\ ′(0) − \ ′′(0) { } −1 I (0) − 6 I *J 3) £ −1 {) ( 6 ).* ( 6 )}= I ( [ ) * J ( [ ) = J ( [ ) * I ( [ ) ∫ I ( [)G[ = lim ∫ I ( [)G[ £ I ( ) ( [) = 6 ) (6 ) − 6 {) ( 6 ).* (6 )}= ∫ I (W ).J ( [ − W )GW = 2) £{I ( [ ) * J ( [ )}= ) ( 6 ).* ( 6 ) /LQHDULGDGH $ 3URSULHGDGHV 1) I ( [ ) * J ( [ ) = J ( [ ) * I ( [) 7UDQVIRUPDGDVGH/DSODFH ∞ −1 e £ −1 {* ( 6 )}= J ( [ ) 0 \ ′′ + 3 ( [ ) \ ′ + 4 ( [ ) \ = I ( [ ) \ = X1 \1 + X 2 \ 2 Z Z \ = \ + \ X1′ = 1 X ′2 = 2 Z Z ∞ ou 'HVORFDPHQWR − . I ( [ ) G[ + &1H ∫ − ∫ ( ) \ = &1H ) } " £{I ( [)}= ) ( 6 ) I ( [ ) = £ −1 {) ( 6 )} &DVR5Dt]HV&RPSOH[DV&RQMXJDGDV G\ + 3 ( [ ) \ = I ( [) G[ ( − ( ) ∫ ∫ \=H .∫ H " 7UDQVIRUPDGD,QYHUVDGH/DSODFH 2 \ 2 = [H 2 Sol. Geral: \ = &1 H + & 2 [H 1 " G " ( ) ( 6 )) £ [ I ( [ ) = (−1) GV 2 ! 0XOWLSOLFDomRSRU [ \2 = H 1 )RUPXOiULRGH0DWHPiWLFD$SOLFDGD −2 I ′(0) − ..... − 6I − ∫ H I ( [)G[ = ) (6 ) ./ tomando limite quando V → 0 −2 (0) − I −1 (0) ∞ ∫ I ( [)G[ = ) (0) 0 'GKQ/G;@9