Large pelagic fisheries and climate variability:
A comparative analysis of the spatio-temporal
patterns in the tropical Indian
Indian, Atlantic and
Pacific Oceans
Ana Corbineau, Tristan Rouyer, Bernard Cazelles,
Alain Fonteneau, Jean-Marc Fromentin, Frédéric Ménard
4th Fishery GIS Symposium
Rio de Janeiro, 25 – 29 August 2008
Brazil
a
Longline fishery in the Indian, Atlantic and Pacific Oceans
•
Industrial fisheries since the 50’s in the Indian, Atlantic and Pacific Oceans
¾ Catch variability in the short and long terms
7000
Catch
(number x 1000)
6000
5000
4000
Atlantic
3000
2000
Indian
1000
Pacific
0
1957
1966
1975
1984
1993
2002
Catch for the principal large pelagic species exploited in the tropical Oceans
(Japanese longliners, from 1957 to 2004, database: IOTC, ICCAT, IATTC/WCPFC)
•
Catch variability
¾ Populations dynamics
Æ migration …
¾ Fisheries activity
Æ overexploitation, targetting…
¾ Climate forcing
Æ regime shift…
Goals
‰ Characterizing and comparing the patterns of variability of catch of large
pelagic fishes (LPF) in the tropical Indian, Atlantic and Pacific oceans
9 TUNA
yellowfin
(YFT)
bigeye
(BET)
9 SWORDFISH
(SWO)
9 BLUE MARLIN
(BUM)
‰ Highlight climate effects on LPF using the Southern Oscillation Index
Species composition of longline Japanese catches
Average
ve ge fishing
s g mapp of
o Japanese
J p ese Longline
o g e ((1990-2002)
990 00 )
50-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
-10 -2500
40
40
30
30
20
20
10
10
0
0
-10
-10
-20
-20
-30
-30
-40
-40
-50-220 -330 -440 -550 -660 -770 -880 -990 -1100 -1110 -1120 -1130 -1140 -1150 -1160 -1170 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
YFT
LL Japan 1990-2002
SBTBFT
BET
SWO20000 YFT
-110 -22-5
00
ALB
Courtesy by Alain Fonteneau (2007)
BET
SWO
ALB
¾ Yellowfin/ Bigeye
¾ Albacore
Equatorial areas
Gyres areas
Biogeochemical Provinces (Longhurst, 1998)
Biogeochemical provinces Æ based on water properties
properties, primary production and nutrient fluxes
Atlantic
Indian
Pacific
NPTGW
MONSW
coastal
gyres
equatorial
MONSE
NPTGE
¾ 18 Provinces
¾ 4 Species
NPTGW
50
0
72
2 catch time series (6 time series))
X
100
BET
150
5
SWO
4
3
2
1
0
2000
MONSE
2000
NPTGE
1992
0
1992
1984
1976
1968
800
1984
400
1960
YFT
Catch (x1000)
1200
Catch (x100
00)
2000
1992
1984
1976
BET
1976
0
2000
8
1992
12
1984
BUM
1976
MONSW
1968
0
1968
1960
300
1968
4
1960
16
Ca
atch (x1000)
100
x1000)
Catch (x
2000
1992
200
1960
2000
1992
1984
1976
1968
1960
catch (x
x1000)
1984
1976
1968
1960
Catch (x1000)
Fisheries time series in the Biogeographical provinces
30
BUM
20
10
0
66 time series
Methods – Wavelet Analysis
‰ Highlight periodic components in a time series (time-frequency decomposition)
Fourier Spectrum
The wavelet spectrum, contrary to Fourier analysis
show frequencies evolution in time.
For each time series (66) we calculated the wavelet spectrum in order to highlight
periods where the interannual variability was significant.
Methods – Classification (clustering)
‰ Based on the wavelet spectra of 2 temporal series:
WPS
WPS
S
P
Ms x N
Mp x N
Covariance Matrix
RSP = S x P t
Single Value Decomposition
RSP = U Γ Vt
Distances
(P and S)
Distance Matrix
Cluster
CARB
NSE
MON
MON
NSE
CARB
AFR
EA
MONS
SW
WAR
RM
SPSG
ARCH
GW
NPTG
NPTG
GW
WAR
RM
NA
ATR
ARCH
TGE
NPT
NPTG
GW
NPTG
GW
NPT
TGE
NPT
TGE
AU
USE
AU
USE
AU
USE
PEQ
QD
NA
ATR
ISSG
WTRA
WTRA
ATL
SA
AU
USE
WTRA
CARB
ETRA
NEC
PN
PN
NEC
PN
NEC
SPSG
SPSG
ETRA
ETRA
AFR
EA
ARCH
ARCH
RM
WAR
PEQ
QD
PEQ
QD
PEQ
QD
ARA
AB
ARA
AB
ARA
AB
CARB
ISSG
ISSG
AFR
EA
SA
ATL
MON
NSE
MON
NSE
MONS
SW
MONS
SW
MONS
SW
EA
AFR
WTRA
RM
WAR
PN
NEC
SPSG
ATL
SA
NPT
TGE
YFT
YFT
BUM
BUM
YFT
YFT
BUM
BUM
SWO
BUM
YFT
SWO
BET
BUM
SWO
BET
SWO
BUM
YFT
YFT
BET
SWO
SWO
SWO
YFT
BET
SWO
SWO
BUM
BUM
SWO
BUM
YFT
BET
BUM
BET
SWO
BET
SWO
SWO
YFT
BET
BET
YFT
BUM
BET
BET
SWO
BUM
BET
BET
SWO
BET
BET
BET
SWO
BET
SWO
BUM
BUM
YFT
YFT
SWO
YFT
YFT
BET
AT
IO
IO
AT
IO
IO
PA
PA
PA
PA
PA
PA
AT
PA
PA
PA
PA
PA
PA
PA
PA
PA
PA
AT
IO
AT
AT
AT
PA
AT
AT
AT
PA
PA
PA
PA
PA
AT
AT
IO
PA
PA
PA
PA
PA
PA
IO
IO
IO
AT
IO
IO
IO
AT
IO
IO
IO
IO
IO
IO
AT
PA
PA
PA
AT
PA
Results I – Indian, Atlantic and Pacific Oceans
Classification
Classification
- 66 catch
Based time
on theseries
66 WPS-
YF
FT
BE
ET
SW
WO
BU
UM
Equatorial IO
Tropical IO
Gyre A
AT
Equatorial A
AT
CAR
RB
WAR
RM
ARC
CH
AUS
SE
NPTG
GW
NPTG
GE
PNE
EC
PEQ
QD
SPS
SG
Intrra
provincce
Inte
er
Provincce
Intra sp
pp
Inter sp
pp
PA
P
IO
AO
A
Inte
er
Ocea
an
Results I – Indian, Atlantic and Pacific Oceans
Factors
Modalities
Especies
P i
Provinces
Summary
‰ Structuration by province in each ocean
‰ The “species”
species is the factor that less influence the structuration of the time series
Relationships to Climate Variability
¾ Climatic Indice: SOI – Southern Oscillation Index (Trenberth, 1997)
Difference between sea level pressure anomalies at Tahiti (17°S – 149°W)
and Darwin (12°S – 130°E)
Southern Oscillation Index
Annual SOI from 1952 to 2004
Cross-spectrum SOI vs Catch time series
2004
2000
1996
1992
1988
1984
1980
1976
1972
1968
1964
1960
1956
1952
2.5
2
5
2
1.5
1
0.5
0
-0.5
-1
-1.5
-2
-2.5
2.5
Wavelet Cross – spectrum
‰ Detect
D t t relationships
l ti
hi b
between
t
2 ttemporall series
i
cross-spectrum
t
CLUSTER
CARB
B
CARB
B
NPTGW
W
CARB
B
ISSG
G
NPTGE
E
WARM
M
ARAB
B
ARAB
B
ARAB
B
NPTGW
W
SPSG
G
SPSG
G
WARM
M
NPTGE
E
PEQD
D
WTRA
A
SATL
L
NPTGE
E
WARM
M
PNEC
C
MONSW
W
NPTGE
E
MONSW
W
MONSW
W
MONSW
W
MONSE
E
NPTGW
W
MONSE
E
EAFR
R
MONSE
E
EAFR
R
CARB
B
ARCH
H
AUSE
E
WTRA
A
EAFR
R
NATR
R
NATR
R
SATL
L
ISSG
G
EAFR
R
ISSG
G
ETRA
A
SPSG
G
PEQD
D
SATL
L
MONSE
E
ETRA
A
ARCH
H
PEQD
D
ETRA
A
PEQD
D
ARCH
H
ARCH
H
WARM
M
AUSE
E
PNEC
C
PNEC
C
SPSG
G
PNEC
C
NPTGW
W
WTRA
A
WTRA
A
AUSE
E
AUSE
E
YFT
BUM
BUM
SWO
YFT
YFT
BUM
BET
BUM
SWO
YFT
YFT
BUM
SWO
SWO
SWO
YFT
YFT
BET
YFT
SWO
YFT
BUM
BET
SWO
BUM
SWO
BET
BET
BUM
BUM
YFT
BET
YFT
BET
SWO
SWO
BET
SWO
BET
BET
BET
SWO
BET
SWO
YFT
SWO
YFT
BUM
BUM
BUM
SWO
BET
BET
SWO
BET
SWO
YFT
BET
BET
BUM
SWO
BET
BUM
YFT
BUM
AT
AT
PA
AT
IO
PA
PA
IO
IO
IO
PA
PA
PA
PA
PA
PA
AT
AT
PA
PA
PA
IO
PA
IO
IO
IO
IO
PA
IO
IO
IO
IO
AT
PA
PA
AT
IO
AT
AT
AT
IO
IO
IO
AT
PA
PA
AT
IO
AT
PA
PA
AT
PA
PA
PA
PA
PA
PA
PA
PA
PA
PA
AT
AT
PA
PA
Results II – Relationships to Climate Variability
Classification
Based on the 66 WCS
YF
FT
BE
ET
SW
WO
BU
UM
Equatorial IO
Tropical IO
Gyre A
AT
Equatorial A
AT
CAR
RB
WAR
RM
ARC
CH
AUS
SE
NPTG
GW
NPTG
GE
PNE
EC
PEQ
QD
SPS
SG
Intrra
provincce
Inte
er
Provincce
Intra sp
pp
Inter sp
pp
PA
P
IO
AO
A
Inte
er
Ocea
an
Results II – Relationships to Climate Variability
Factors
Modalities
Especies
P i
Provinces
Conclusions
‰ The biogeographic provinces is the main factor that
structurate the variability of catch time series in each
ocean
‰ The biogeographic provinces defined by Longhurst,
caracterized by water properties, influence the top
predators distribution (that represent the higher trophic
level).
‰ Large scale climate variability (SOI) influences the
patterns of variation of large pelagic fishes, but the
geographic locations modulated its impact.
Perspectives
Does the limit of those provinces change during the time?
‰ The SIG could underline these changes and link the spatial distribution
of populations to environmental fluctuations
fluctuations.
‰ Use more accurate fishing data (i.e.1°x1° grid)
Thanks for your attention
Thanks to:
‰ CNRS financial support
‰ Frédéric Ménard (PhD supervisor)
‰ IRD – UR Thetis
‰ Bernard Cazelles, Jean Marc Fromentin, Tristan Rouyer and Alain Fonteneau
CLUSTER - MCA
Spectre
S
Spectre
P
Ms x N
Mp x N
Cross Covariance
Cross-Covariance
RSP = S x P t
Matrice de co
covariance
ariance
SVD
RSP = U Γ Vt
U
Γ
V
Les colonnes de U (Ms x Ms)contiennent
les vecteurs singuliers de S
Matrice rectangulaire de Ms x Mp avec
des valeurs sur la diagonale: valeurs singulières
Les lignes de V (Mp x Mp)contiennent
les vecteurs singuliers de P
A = Ut x S
B = Vt x P
(A=K x N) N=temps
(B=K x N) N=temps
K nbre
K=
b sing.vectors
i
t
K nbre
K=
b sing.vectors
i
t
A= leading pattern
(chaque ligne)
B= leading pattern
(chaque ligne)
Matrice de Distance
Comparaison entre les leading pattern et singular vector
Download

Large pelagic fisheries and climate variability: A