Nutrient Cycling in Amazonia: environmental and climatic changes www.inpa.gov.br/lba Flávio J. Luizão (and LBA collaborators) National Institute for Amazonian Research – INPA Central Office LBA Program – Biogeochemcial Cycles Forest and Rivers: very closed linked and both very important for the atmospheric processes and the functioning of terrestrial ecosystems in Amazon BIOGEOCHEMICAL TRANSFORMATIONS of C, N and P Photosynthesis Respiration “Aloctone” processes POC Decomposition Leaching “Autoctone” processes DOC Primary production Respiration Cycling DOC = Compostos solúveis, como carbohidratos e amino-ácidos e macromoléculas mais refratárias, como ácidos fúlvicos e húmicos Na maioria dos pequenos rios, o balanço de carbono é dominado pelos materiais alóctones, que provém das áreas terrestres adjacentes, como as folhas que caem diretamente sobre a água e são trituradas e decompostas durante o transporte. Em outros casos, o aporte alóctone é dominado por carbono orgânico dissolvido (DOC) proveniente da decomposição e lixiviação da matéria orgânica nos solos. Caxiuana, Brazil Pristine (primary) forest = highly diversified and productive, despite of lack of soil mineral nutrients complex and varied mechanisms of O.M. and nutrient economy, and efficient recycling of organic residues Nutrient content of soils Rio Grande do Sul Amazon Region Nutrient contents Oxisols: Low cation exchange capacity (CTC) Low water holding capacity Good soil aggregation and structure Nutrient conservation mechanisms: - Relatively large root biomass - Roots concentrated close to soil surface - Simbiotic association roots-fungi (mycorrhizae) - Plant/root tolerance to soil acidity Organic Matter recycling • FLORESTAS NATIVAS DENSA CAMADA DE LITEIRA (Folhas, Material reprodutivo, Material Lenhoso e Fragmentos Finos) (Vieira,1988) Fonte: Costa, 2002 Liteira representa um dos principais mecanismos de reciclagem e distribuição de nutrientes na maioria dos ecossistemas terrestres (Vitousek & Sanford, 1986; Hughes & Fahey, 1994) Litter – major source of nutrients and soil cover Annual nutrient input through fine litterfall in plateau forest in central Amazon Nutrients Carbon Nitrogen Calcium Potassium Magnesium Phosphorus Luizão, 1989 Annual input per hectare 4t 151 kg 37 kg 15 kg 14 kg 3 kg Litter layer on soil surface Litter protecting soil surface (Maracá) Soil loss per ha Canopy + litter 0.51 kg/m2 Canopy removed 1.03 kg/m2 Litter also removed 9.38 kg/m2 (Ross, 1990) Roots Macrobiota – soil engineers Earthworms & soil structure Forest pasture (1 year) 500 µm Pasture forest (1 year) Barros et al., 2001 Microbiota – OM decomposers Marasmoid Fungi Mycorrhizal Fungi Root-Fungi association (Mycorrhizal roots/fungi) seringueira angelim cacaueiro açaizeiro embaúba cupuaçuzeiro OCORRÊNCIA NA AMAZÔNIA guaranazeiro cumarú lacre pupunheira cedro andiroba (Bonetti et al., 1984; Bonetti & Narraro, 1990; Guitton, 1996; Luizão et al., 1997; Oliveira et al., 1999; Rodrigues, 2002; Ordinolla, 2003) List (131 regional species associated to FMA) 5 Importance of soil mycorrhiza in the tropics Coarse Litter (CWD) Woody Material with diameter > 2 cm High concentration of C and low for nutrients Few studies in tropical forests Stock in untouched forest : 30-40 Mg.ha-1 CWD must be included in estimates of C fluxes / forest respiration .... .....as well as for nutrients, because of relatively high nutrient concentrations in the diameter class 2-10 cm (Pauletto, 2006) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 n = 95 O Sp ld od ox os is ol ol /p s sa m m en t U Yo lti so un ls ge ro C xi ry so st al ls lin H e ol sh oc ie en ld e al lu viu O ld m er in al ce lu pt vi is um ol s/ an di so ls Biomass carbon increment (t C/ha/yr) RAINFOR (multiple plots): Forests appear to be increasing biomass at a rate linked to soil fertility Increasing soil Fertility Local topography • Área hidrológica (6,8 km2) Platô Vertente Baixio Fonte: (LBA, 2003) Monthly nutrient input through leaf-litter along a topographic gradient in the forest Entrada mensal de nutrientes Platô Vertente Baixio Q u a n t id a d e s /m ê s ( Kg /h a ) 18,0 15,0 12,0 9,0 6,0 3,0 0,0 N K Ca Nutrientes Mg Nutrient stock in the leaf-litter on the forest floor topographic gradient 3,00 2,50 2,00 (g /k g) Co n ce n tr ação d e n u tr ie n te s FOL HA S 1,50 1,00 0,50 0,00 P K+ Ca++ Nu tr ie n te s P LA T Ô VE R T E N T E B A IXIO Mg++ Entrada mensal de nutrientes Vertente Baixio N it r o g ê n io ( g /K g ) Platô Concentração de nitrogênio nas folhas das árvores Q u a n t id a d e s /m ê s ( Kg /h a ) 18,0 15,0 12,0 9,0 6,0 3,0 30 20 10 0 Platô 0,0 N K Ca Vertente Baixio Toposseqüência Mg Nutrientes Paiva, 2005 Monteiro, 2005 Net mineralization Nitrate ions 40 40 30 30 20 20 10 10 0 -10 0 plateau slope bottom Luizão et al., 2004 -10 plateau slope bottom Latossolo 4,0 100,0 3,5 3,0 2,5 60,0 2,0 40,0 1,5 1,0 20,0 Carbono (%) Argila (%) 80,0 Relationship between soil texture and soil carbon along the profile in plateau (Oxisol) and valley (Spodosol) under primary forest – ZF2 7 Espodossolo 0,5 0,0 6 0,0 10-45 45-82 82-108 108-200 Profundidade (cm) Teor de argila Teor de carbono 5 (%) 0-10 Teor de argila 4 Teor de carbono 3 2 Soil C stocks (0 – 2 m) 1 0 Plateau = 187 +- 28,5 Mg.ha-1 Slope = 171 +- 71,2 Mg.ha-1 Valley = 241 +- 23,8 Mg.ha-1 (66 % in 0-30 cm soil layer) 0-25 25-59 Profundidade (cm) 59-120 100% Frações de COS 80% 60% Soil Organic Matter Fractionation C-Silte C-Argila C-Areia 40% C-FLI C-FLL 20% Valley (Spodosol) 100% 0% 0-5 5-10 10-20 20-40 40-60 60-80 80-100 100-160 160-200 Camadas do solo (cm) Plateau (Oxisol) Slope (Ultisol) 100% Frações de CO S 80% C-Silte 60% C-Argila C-Areia C-FLI 40% C-FLL 20% 80% C-Silte Frações de COS C-Argila C-Areia 60% C-FLI C-FLL 0% 0-5 5-10 10-20 20-40 40-60 60-80 80-100 Camadas do solo (cm) 40% 20% 0% 0-5 5-10 10-20 20-40 40-60 60-80 80-100 100-160 160-200 Cam adas do solo (cm) Fraction LL (light and free): plateau = 0.1 a 26 g.kg-1 slope = 0 a 38 valley = 0.9 a 43 C transport to the forest streams • DELINEAMENTO EXPERIMENTAL LITEIRA DO IGARAPÉ Folhas inteiras (L) TRIAGEM Quebradas ou fermentadas (F) Material lenhoso (W) ANÁLISE QUÍMICA: C E NUTRIENTES FONTE: Costa, 2004 Environmental Changes in Amazonia Deforestation in Amazonia 1977-2007 in km² per year Desflorestation (km² per year) 35000 Is it sustainable? 30000 25000 20000 15000 10000 5000 * average for the decade INPE data, 2007 06/07 05/06 04/05 03/04 02/03 01/02 00/01 99/00 98/99 97/98 96/97 95/96 94/95 92/94 91/92 90/91 89/90 88/89 77/88* 0 Selective logging BIONTE Project ZF-2, Manaus) 34,3 m3 timber extracted per ha (6-10 trees, DAP > 55 cm % clearings: 32 % % area tractor tracks: 11,7 % Nutrient Exported in logs: 65,3 kg N; 0.86 kg P; 18,8 kg Ca Partly exposed soil: Lower decomposition rates; Nutrient losses through soil percolation (first weeks); Patches in the clearings with plant debris (branches & canopies): Higher soil moisture high decomposition rates; Higher concentration of available nutrients in soil (Ca, Mg) after 1,5 years higher relative density and growth of climax species Density: pioneer/climax: 0.96 (open area) and 1.54 area with debris Pereira et al. (2002) Forest Ecology and Management) Forest fragmentation at ZF3 – PDBFF Photo: R. Bierregard Forest fragmentation increase stocks of fine litter on soil surface .... 13 B iom ass (M g/ha) 12 Y = 9.46 - 0.67 log X R=0.28, P<0.05 11 10 9 8 7 6 5 100 1000 Distance to edge (m) Nascimento & Laurance (2004) Ecological Applications CW D production (M g/ha/year) ... and CWD as well 12 Y = 10.87 - 2.30 log X R=0.60, P<0.0001 10 8 6 4 2 0 100 1000 Distance to edge (m) Nascimento & Laurance (2004) Ecological Applications. LITTER production in fragmented forest Edge X Interior (3-year períod): At edges, litterfall was 0.68 t/ha/yr higher than at forest interior (9.50 +- 0.23 vs. 8.82 +- 0.14) Leaf litter Ca concentration > near the edges soil Ca mobilization by pioneer species at the edges Vasconcelos & Luizão (2004) Ecological Applications Converting a highly diversified forest…. into a pasture planted with just one (generally exotic) grass species…. Strong impacts expected, because: Nutrient losses from biomass burning (mainly N, S, K) No litter cover of soil surface No litter nutrient inputs Guidelines for optimizing soil biota and organic matter recycling: Keeping soil surface always covered X Adding green manures to soil surface X Selecting plant species which produces biomass with high nutritional quality X X Keeping soil and plant biodiversity Thus: soil conditions deteriorate quickly! N2O Fluxes in Forest x Burnt area x Young Pasture on Oxisol > 70% clay in Manaus (Luizao et al. 1989): Annual Flux of N2O increased 3x in pasture: Forest & Burnt: 1,9 kg ha-1 yr-1 Young Pasture: 5,7 kg ha-1 yr-1 Dry season: forest and pasture similar Wet season: fluxes 3-5x higher in pasture (> 10 ng cm-2 h-1 in March and April) Fallow system after abandonment Vísmia sp CAPOEIRA (CAP) = natural second growth Low biomass; low plant diversity; exposed soil surface; very low soil nutrient availability; poor soil structure and biological activity Fastening second growth after abandonment Improved second growth Planting fast-growing native trees Fire suppression or decrease for new cropping Land preparation without fire slash-and-choping Use of abandoned or degraded land & second growth enrichment as alternative for small farms in the tropics 9 year old AFS Columbrina Pupunha Açaí Agrossilvicultural System AS1 ASP1 – timber trees + pasture Macrofauna in 5-year old Agroforestry Systems in Manaus, Brazil Dry season No . de an im ais (in d./m 2 ) Wet season 100 100 80 80 60 60 40 40 20 20 0 0 C UP P AL AR V DES M B R AC Est ação ch uv o sa E -L C AP C UP P AL AR V DES M B R AC E -L C AP Est ação seca Macrofauna density (ind/m2) in litter layer in wet and dry season, under dominant tree species: Cupuaçu (CUP), Palms (PAL), Planted timber trees (ARV), Desmodium (DESM), Brachiaria (BRAC), Inter-rows (E-L) and Second growth (CAP). Tapia-Coral et al., 1999 13 year old A Aerial biomass and stocks of carbon and nutrients in 9 year old Agroforestry Systems and Second Growth Biomass and carbon Nutrients Biomass Carbon 1400 120 1200 80 Nutrient kg ha-1 Dry W eight Mg ha-1 100 60 40 1000 Mg 800 Ca K 600 P 400 20 N 200 0 0 Fruit Palm TP SF Fruit Palm TP SF McCaffery, Fernandes, Wandelli, Rondon, 2002 Climatic Change and/or Long Distance Impacts in Amazonia Fine litterfall production in primary forest in central Amazon during El Niño year and under high atmospheric CO2 Fabiana Rocha 2002-present Production 1979-82 x 2002-present Plateau & Valley Production 2002 (moderate El Niño) higher Average 2002- ? higher than in 1979-82 ? CWD : increase post El Niño events decomposing dead trees Moisture controls fine litter layer respiration dry litter) 3.5 3.0 -1 2.5 2 m oisture (g H O g 2.0 1.5 1.0 0.5 r dry litter) 0 -1 2 adj =0.36 p < 0.0001 0.0 respiration (ug CO g 2 50 100 150 200 250 300 350 sum of last 20 days rainfall (m m ) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 r 0.0 2 adj =0.72 p < 0.0001 0 0.5 1 1.5 -1 m oisture (g H O g 2 2 2.5 Respiration fluxes from the litter layer is sensitive to hydric stress dry litter) Chambers, 2003 Litter respiration fluxes (susceptible to hydric stress) controlled by moisture -1 day ) 1997 El Niño 2200 mm -1 8.0 7.0 respiratory flux (kg C ha respiratory flux (kg C ha -1 -1 day ) Litter layer 6.0 5.0 4.0 3.0 2.0 total = 2.21 M g ha -1 yr -1 1.0 0 60 120 180 240 day of year 300 360 1999 La Niña 3200 mm 8.0 7.0 6.0 5.0 4.0 3.0 2.0 total = 2.61 M g ha -1 yr -1 1.0 0 60 120 180 240 300 day of year Difference between rainy and dry years = ~0.4 Mg C ha-1 yr-1 Chambers, 2003 360 Litter fungi – very susceptible to moisture ...like the lumniscent ones (night fungi) Efects of the 2005 drought 0.2 Aragao (2007) Changes in basal area of the trees m2 ha-1 per year 0.1 0 -0.1 -0.2 Before drought Drought 2001-2003 2002-2004 SECA FLORESTA Experiment (LBA) Simulating a drier climate in Amazonia 35–41% reduction in effective rainfall during 4.5 years in a 1 ha plot Plant available water X Leaf Area Index - Wood production was the most sensitive component of aboveground net primary productivity (ANPP) to drought, declining by 13 % the first year and up to 62 % thereafter. - Litterfall declined only in the third year of drought (maximum difference of 23 % below the control plot). - Soil CO2 efflux and its 14C signature: no significant response - ANPP: similar between plots in 1st year and declined by 41 % during the subsequent treatment years, rebounding to only a 10 % difference during the first post-treatment year. - Live aboveground carbon declined by 32.5 Mg ha through the effects of drought on ANPP and tree mortality. Thus: multi-year severe drought can substantially reduce Amazon forest carbon stocks. Beyond the internal recycling External contributions for nutrient cycling in the Amazonian forest: Rain water Aerosols Annual input of mineral nutrients (kg/ha) in tropical forests: main sources: Rains Throughfall 151 15 33 P 3 11 3 K 15 12 114 Ca 37 14 26 Mg 14 4 21 Element Litter C 3.880 N Luizão, 1989 Moist Deposition (rain water) in the Amazonia: little or no phosphates Volume Weighted Mean (μM/l) pH H+ Cl- NO3- SO42- Ca2+ Mg2+ Na+ K+ 4.7 17.0 4.6 4.2 4.0 4.8 1.8 2.4 0.8 Balbina (this work) 5.1 7.80 4.64 4.27 3.17 1.70 1.80 4.44 1.56 Rondonia (this work) 5.1 7.91 1.69 9.50 0.19 0.42 0.04 0.61 0.26 Total deposition (kg ha-1.yr-1) H+ Cl- NO3- SO42- Ca2+ Mg2+ Na+ K+ 0.47 8.93 7.13 10.4 5.29 1.22 2.53 0.9 Balbina (this work) 0.18 3.72 5.95 6.84 1.53 0.98 2.28 1.37 Rondonia (this work) 0.05 0.39 3.70 0.20 0.12 0.01 0.09 0.08 Williams (Central Amazonia) Williams (Central Amazonia) From Pauliquevis et al., 2002 Tropical rain forests biomass today: Africa: growing 0.63 (0.22-0.94) MgC/ha/yr (79 plots, 163 ha – Lewis et al. 2009 Nature) Combined tropical Africa, America and Asia: Increment of 0.49 (0.29-0.66) MgC/ha/yr (n=156; 562 ha; mean interval 1987-97 C sink = 1.3 PgC/yr (CI, 0.8-1.6) during last years ? Increase of atmospheric CO2? Aerosol fertilization? Sahara dust deposition in Amazonia 20 – 50 kg dust/ha/ano Atmospheric input of N and P from Sahara is likely important only on timescales of a few millennia as opposed to the hundreds of years proposed by Swap et al. From: Oliver Chadwick, 2002 Figure 1. Total deposition, total N, and total P deposition to northern South America calculated from model outputs. Aerosols and ecosystem Phosphorus fertilization Okin et al. 2004 GBC: Semi-arid steppes Africa & Eurasia significant aerolian P inputs In America: significant only on very old landscapes such as SE of USA and Amazon Basin highly dependant on aeolian depositions to maintain long-term productivity Primary controller of soil P concentrations Okin & Reheis 2002: Dramatic impact of dust emission on smaller scales Amazon and Congo basins: larger additions of P from Sahara shorter turnover times Modern-day P depositions in central Amazon = 35 kg/ha/yr Artaxo et al. 2002: P-rich material derived from fires Mahowald et al. 2008 GBC: on global scale, mineral aerosols are the dominant source (82 %) of total-P Distribution of experiments near the K34 main tower, Manaus Medidas de fluxo de calor sensível por infra-vermelho Fluxo de CO2 e medidas micrometeorológicas Cintilômetro Baixio Medidas de transporte horizontal de CO2, utilizando anemômetros sônicos e analisadores de CO2 Medidas de Fluxo de CO2 e variáveis micrometeorológicas Draino K34 INSTRUMENTATION of the catchment Hoping for a greener and better world (www.lba/inpa.gov.br/lba)