Paulo Sérgio de Brito André * Departamento de Física da Universidade de Aveiro Instituto de Telecomunicações pólo de Aveiro * Bolseiro de doutoramento da FCT (PRAXIS XXI/BD/17227/98), projecto DAWN. 4 70 km Point-to-point WDM system, with 3 channels 200 GHz spaced, modulated at 2.48832 Gbit/s. 4 Crosstalk Study. 4 Fibre Bragg Gratings (FBG). 4 Optical Add - Drop Multiplexer (OADM) based on Fibre Bragg Gratings (FBG) 4 Tuning of FBG 4 Tunable OADM 1549.32 nm 1550.92 nm 1552.52 nm 0 Com recuperador de Relógio Sem recuperador de Relógio -1 -2 -3 Log (BER) -4 -5 -6 -7 -9 BER=10 -8 -9 -10 Limite da medida -11 -12 -13 -17 -16 -15 -14 -13 -12 -11 Potência (dBm) -10 -9 -8 -7 Single Channel -2 -3 75 Km Directo -4 -5 Log(BER) -6 -7 -8 BER=10 -9 -9 -10 -11 Limite da medida -12 -13 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 Potência (dBm) -8.0 -7.5 -7.0 Multi-Channel, Central wavelength -2 75 Km WDM 75 km Monocanal Directo -3 -4 -5 Log (BER) -6 -7 -8 BER=10 -9 -9 -10 -11 Limite da medida -12 -13 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 Potência (dBm) -8.0 -7.5 -7.0 Optical Spectra on the system -10 0 Potência Óptica (dBm) -30 -40 -50 -60 -20 -30 -40 -70 1.535 -10 1.540 1.545 1.550 1.555 1.560 1.565 1.535 1.540 Comprimento de Onda ( µm ) 1.545 1.550 1.555 1.560 1.565 Comprimento de Onda (υm) 0 -10 After MUX After 2 EDFA After DEMUX Potência Óptica (dBm) Potência òptica (dBm) -20 -20 -30 -40 -50 -60 -70 - 28 dB XT 1.535 1.540 1.545 1.550 1.555 Comprimento de Onda (υm ) 1.560 1.565 Bit Error Rate as function of the decision level -1 -2 -3 -4 Log (BER) -5 -6 -7 -8 BER=10 -9 -9 -10 -11 Limite da medida -12 -13 -360 -355 -350 -345 330 335 Nível de Decisão (mV) 340 345 350 Data after propagation on 70 km of fiber Eye diagram without signal reformatting Eye diagram with signal reformatting Data Clock 4 Another technical key issue on a wavelength reused OADM network is how to reduce the crosstalk, which severely degrade the system performance. 4 Heterodyne Crosstalk, due to low rejection of the FBG between adjacent channels and the central wavelength. Pp = − 10 ⋅ log (1 − X) 4 Homodyne Crosstalk, due to reflectivity of the FBG to the central wavelength (limit the number of nodes of a network). Pp = − 10 ⋅ log (1 − Q ⋅ X ) 2 Q - SNR Homodyne Crosstalk Heterodyne Crosstalk 12 10 Penalidade de Potência (dB) Penalidade de Potência (dB) 10 Simulação no PTDS Experimental Analítico Simulação no PTDS Experimental Analítico 8 6 4 2 8 6 4 2 0 0 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -40 -14 -35 -30 -25 -20 -15 -10 -5 0 Ratio de Diafonia (dB) Ratio de Diafonia (dB) -1 -2 Homodyne Crosstalk Diafonia Homodina Diafonia Heterodina -3 Heterodyne Crosstalk BER Log (BER) -4 -5 -6 -7 -8 -9 -10 -40 -35 -30 -25 -20 -15 -10 Ratio de Diafonia (dB) -5 0 5 5 Heterodyne Crosstalk - 40 dB - 4 dB Diafonia Homodina - 40 dB - 15 dB 0 dB -8 dB -5 1550.92 nm - 0.5 dB Bandwidth 0.256 nm - 1 dB Bandwidth 0.532 nm - 3 dB Bandwidth 0.748 nm - 20 dB Bandwidth 1.388 nm Insertion Loss at λ C Reflectivity for adjacent Channels Reflectivity at λ C 30.7 dB -10 -15 Reflectividade (dB) Central Wavelength -20 28.3 dB -25 -30 -35 28.3 dB 99.99 % -40 -45 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 Comprimento de Onda (nm) Optimised for the ITU 200 GHz frequency grid, λc = 193.3 THz 4 3 channels at 193.1, 193.3 and 193.5 THz 4 Externally modulated at 2.48832 Gbit/s (STM -16) 4 Transmission over 70 km of fibre G.652 -10 0 -5 193.3 THz 193.5 THz 193.1 THz -20 -15 Potência Óptica (dBm) Potência Óptica (dBm) -10 In -20 -25 -30 Removed 28.1 dB -30 -40 -50 -60 -35 -70 -40 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 -80 1545 1556 1546 1547 Comprimento de Onda (nm) 1550 1551 1552 1553 1554 1555 1556 1554 1555 1556 -15 Pass -20 Potência Óptica (dBm) Potência Óptica (dBm) 1549 Comprimento de Onda (nm) -10 -20 1548 30.7 dB -30 -40 -50 Out -25 -30 -35 -40 -45 -50 -60 1545 1546 1547 1548 1549 1550 1551 1552 1553 Comprimento de Onda (nm) 1554 1555 1556 -55 1545 1546 1547 1548 1549 1550 1551 1552 1553 Comprimento de Onda (nm) Removed Channel Added Channel -2 -2 Directo Canal removido com 50 km de fibra 50 km de fibra -3 Directo Canal adicionado com 20 km de fibra 20 km de fibra -3 -4 -4 -5 Log (BER) Log (BER) -5 -6 -7 -9 BER=10 -8 -7 -8 -9 -10 Limite da Medida -11 -11 -12 -12 -10.0 BER=10 -9 -9 -10 -6 -9.5 -9.0 -8.5 -8.0 -7.5 Potência (dBm) -7.0 -6.5 -6.0 -10.0 Limite da Medida -9.5 -9.0 -8.5 -8.0 -7.5 Potência (dBm) Pp=0.08 dB Pp=0.18 dB Ppt=0.01 dB Ppt=0.14 dB -7.0 -6.5 -6.0 Espaçamento entre Canais (GHz) 50 75 100 125 150 175 200 225 5 Penalidade de Potência (dB) - 3 dB BW 4 - 20 dB BW 3 2 - 1 dB BW 1 0 0.4 0.6 0.8 1.0 1.2 1.4 Espaçamento entre Canais (nm) 1.6 1.8 Desintonia (GHz) -50 8 -40 -30 -20 0 10 20 30 40 50 - 0.5 dB BW 7 Penalidade de Potência (dB) -10 6 5 4 3 2 1 0 -0.4 -0.3 -0.2 -0.1 0.0 0.1 Desintonia (nm) 0.2 0.3 0.4 4 A wavelength tunable OADM, giving access to all the wavelengths of the WDM signals provides more flexibility to satisfy reconfiguration requirements and to enhance network protection. 4 The wavelength tuning capacities of the OADM are related with the FBG capacities to shift their central reflection wavelength. 4 To shift the Bragg grating central wavelength peak there are two main methods: by modifying the fibre refractive index or by changing the grating period. These variations can be induced thermally or/and by mechanical stress. lB = 2 ⋅ neff ⋅ Λ 4 Mechanical stress: Large tuning range ( > 36 nm), high tuning speed ( < 10 ms/nm), low reproducibility and reversibility. 4 Thermal: High reproducibility and reversibility, built-in temperature compensation, low tuning range ( < 1 nm) and low tuning speed ( > 10 s/nm). 4 We present a hybrid method based on a thermal-stress thermally enhanced actuation on a FBG . ∆lB = 2 ⋅ Λ ⋅ dneff dl + neff dΛ dl ⋅∆l + 2 ⋅ Λ ⋅ dneff dT + neff dΛ dT ⋅ ∆T ∆ l BT = l B ⋅ (1 − pe ) ⋅ e z e Z = a CTE ⋅ ∆ T ∆ l = l B ⋅ [(1 − ∆ l BT = l B ⋅ (a Λ + a n ) ⋅ ∆ T Deformação axial (stress) pe ) ⋅ a CTE + (a Λ + a n )]⋅ ∆ T ≈ l B ⋅ 26.31⋅ 10− 6 ⋅ ∆ T KTS = 41.1 pm / ºC Aluminium Coefficient of thermal expansion α CTE = 22.0 x 10-6 ºC-1 Silica Photo elastic coefficient pe = 0.22 Sílica Thermal expansion coefficient α Λ = 0.55 x 10-6 Sílica Thermal optic coefficient α n = 8.6 x 10-6 Comprimento de onda de reflexão (nm) 1550.0 KTS = 44.3 pm / ºC Data Fit 1549.6 1549.2 1548.8 1548.4 1548.0 1547.6 20 25 30 35 40 45 Temperatura (º C) Potência Reflectida (dBm) -5 T T T T T T T T -10 -15 = = = = = = = = 22 25 30 35 40 45 50 55 º º º º º º º º C C C C C C C C -20 -25 1547 1548 1549 Comprimento de onda (nm) 1550 1551 50 55 60 65 0.70 Largura de Banda (nm) 0.60 Largura de banda a - 20 dB Largura de banda a - 3 dB Reflectividade -1.8 -2.0 0.55 -2.2 0.50 -2.4 0.45 -2.6 0.40 -2.8 0.35 -3.0 0.30 -3.2 0.25 -3.4 0.20 -3.6 0.15 -3.8 0.10 -4.0 1547.8 1548.0 1548.2 1548.4 1548.6 1548.8 1549.0 1549.2 1549.4 1549.6 Comprimento de Onda (nm) Reflectividade (dB) 0.65 -1.6 -10 -2 -20 -40 -50 -60 -70 -80 1546 1547 1548 1549 1550 1551 1552 Potência Óptica (dBm) Comprimento de Onda (nm) 100 GHz -8 -10 -12 -14 -16 -10 -18 -20 -20 -30 -22 1547.0 1547.5 -40 1548.0 1548.5 1549.0 1549.5 Comprimento de Onda (nm) -50 -60 -5 -70 -80 1546 1547 1548 1549 1550 1551 -10 1552 Potência Óptics (dBm) Comprimento de Onda (nm) -10 -20 Potência Óptica (dBm) 30 º C 40 º C 50 º C -6 Reflectividade (dB) Potência Óptica (dBm) -4 -30 -30 -40 -50 -15 -20 -25 -30 -35 -60 -40 -70 -80 1546 1546 1547 1548 1549 1550 Comprimento de Onda (nm) 1551 1547 1548 1549 1550 1552 Comprimento de onda (nm) 1551 1552 1550.0 4 We have reported an OADM solution for DWDM systems using a FBG. 4 The OADM performance was demonstrate in a 200 GHz, 3 channels WDM system, working at STM-16 bitrate. 4 The OADM show a good performance with respect to channel spacing and crosstalk. 4 We also reported a tunable OADM based on a thermal - stress thermal enhanced tunable FBG.