UNIVERSIDADE NOVE DE JULHO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOFOTÔNICA APLICADA ÀS CIÊNCIAS DA SAÚDE Efeitos do Laser de Baixa Intensidade (830 nm) na Inflamação Pulmonar Aguda em um Modelo de Síndrome do Desconforto Respiratório Agudo (SDRA) Intra e Extrapulmonar Induzida por LPS Aluno: Manoel Carneiro de Oliveira Junior Orientador: Prof. Dr. Rodolfo de Paula Vieira São Paulo, 30 de Setembro de 2013 1 Manoel Carneiro de Oliveira Junior Efeitos do Laser de Baixa Intensidade (830 nm) na Inflamação Pulmonar Aguda em um Modelo de Síndrome do Desconforto Respiratório Agudo (SDRA) Intra e Extrapulmonar Induzida por LPS Dissertação apresentada á Universidade Nove de Julho, para obtenção do título de Mestre em Biofotônica Aplicada às Ciências da Saúde. Orientador: Prof. Dr. Rodolfo de Paula Vieira São Paulo, 30 de Setembro de 2013 2 FICHA CATALOGRÁFICA 3 4 DEDICATÓRIA Dedico a todos meus familiares, por ter suportado meus maus humores ao longo de minha pesquisa. A minha esposa Thais pelas horas despendidas, aos meus pequenos Gabriel e Gustavo que são a razão da minha vida e tudo isto é pra vocês. Amo Vocês. Aos meus pais, irmãos e familiares por me mostrarem o caminho certo. 5 AGRADECIMENTOS Agradeço principalmente ao meu orientador Prof. Dr. Rodolfo pelos ensinamentos passados ao longo deste curso e por ter me orientado com muita paciência. A Universidade Nove de Julho pela bolsa de Mestrado, a Diretoria de pós graduação em Biofotônica, a Profa. Regiane Albertini e Prof. Rodrigo Martins pela oportunidade de ingresso no Mestrado. A Profa. Dra Ana Paula, por ter me ensinado muitos procedimentos e pelos conhecimentos passados, cuja paciência, dedicação e experiência me ajudaram muito. Agradeço as amigas: Vanessa Roza da Silva, Flávia Regina Greiffo, ao nosso grupo de pesquisa: Ricardo, Paulo, Adilson, Nicole e Ana Roberta, aos colegas de curso por estarem sempre ao meu lado nas horas de aperto e nas horas que não sabíamos o que fazer. As minhas amigas Ana Paula Souza e Elis Cabral Victor pela paciência de terem me escutado nos momentos que pensei em desistir e a todos os Profs. que passaram na minha vida acadêmica passando seus conhecimentos com afinco. As amigas Nilsa Regina Damaceno e Francine M. Almeida (FMUSP) pela ajuda em nosso projeto, meu muito obrigado. As técnicas do laboratório Ângela e Luciana pela paciência e pelos ensinamentos das técnicas que me foram úteis para desenvolver este projeto, meus agradecimentos. E principalmente a Deus por me dar forças e paciência para completar este objetivo de vida. 6 Resumo A síndrome do desconforto respiratório agudo (SDRA) é uma síndrome que apresenta altas taxas de mortalidade, que pode ser resultante tanto de insultos pulmonares como extrapulmonares. A síndrome é caracterizada pela insuficiência respiratória proveniente da resposta inflamatória que cursa com alteração de permeabilidade alvéolo-capilar, edema e hipoxemia refratária aos altos fluxos de oxigênio. Um dos mais importantes mecanismos que determinam a severidade desta injúria é a magnitude da lesão da barreira epitélio alveolar. A possibilidade de reparação do epitélio em um estágio precoce é o maior determinante da recuperação. Muitas das modalidades terapêuticas baseiam-se na tentativa de diminuição da inflamação pulmonar para minimizar a lesão inicial, a qual se deve em grande parte ao processo inflamatório mediado pela ativação local e sistêmica por citocinas como TNF-α e IL-1β. Um número crescente de estudos relata que o laser de baixa intensidade apresenta efeitos antiinflamatórios em modelos de SDRA induzida por LPS e isquemia e reperfusão da artéria pulmonar. No entanto, até o momento, apenas lasers no espectro vermelho (650 – 655 nm) foram estudados. Portanto, o presente estudo tem como objetivo investigar o papel do laser de baixa intensidade (LBI), na faixa do infravermelho (830nm), 3J/cm2, 35mw, 80 segundos por ponto (03 pontos por aplicação), na inflamação pulmonar, usando um modelo de SDRA de origem pulmonar (LPS intratraqueal) e também extrapulmonar (LPS intraperitoneal). A aplicação do laser foi realizada diretamente em contato com a pele, em três pontos do tórax (correspondente ao final da traquéia - ponto 01, pulmão direito - ponto 02 e do pulmão esquerdo ponto 03), por três vezes, 01 hora após a administração de LPS. Camundongos BALB/c (n = 40) machos foram distribuídos em Controle (n = 08; não administrado com LPS), IT 10 (n = 07; LPS intratraqueal; 10 µg/camundongo), IT + Laser (n = 09; LPS intratraqueal; 10µg/camundongo + Laser), IP (n= 07; LPS intraperitoneal; 100µg/ camundongo), IP + Laser (n = 09; LPS intraperitoneal; 100 µg/camundongo + Laser). Os animais foram eutanaziados vinte e quatro horas após a administração de LPS. Foi avaliada a contagem de células totais e diferenciais no lavado bronco alveolar (LBA), os 7 níveis de citocinas (IL-1β, IL-6, IL 10, KC e TNF-α), a densidade de neutrófilos no parênquima pulmonar. Os resultados demonstraram que o LBI significativamente reduziu o número de células totais e de neutrófilos no Lavado Bronco Alveolar (LBA), o número de neutrófilos no parênquima pulmonar, e os níveis de citocinas próinflamatórias no LBA tanto no modelo de SDRA pulmonar quanto extrapulmonar. Portanto, concluímos que o laser infravermelho 830nm é eficaz para reduzir a inflamação pulmonar, em ambos os modelos de SDRA intrapulmonar e extrapulmonar induzida por LPS. Palavra Chave: neutrófilos. SDRA, laserterapia, inflamação pulmonar, citocinas, 8 Abstract Acute respiratory distress syndrome (ARDS) is a syndrome that presents high mortality rates, and the results of both insults pulmonary or extrapulmonary (pneumonia or septic shock) are high, and is a disease characterized by respiratory insufficiency from the inflammatory response that leads to alteration of alveolar-capillary permeability, pulmonary edema and hypoxemia refractory to high flow oxygen. One of the most important mechanisms that determined the severity of this injury is the magnitude of the injury of alveolar epithelial barrier. The possibility of repairing epithelial at an early stage is the major determinant of recovery. Many of therapeutic modalities based on the attempt to decrease lung inflammation to minimize the initial injury and much of the inflammatory process occurs through activation of local and systemic cytokines such as TNF-α and IL-1β. A growing number of studies report that Low Level Laser Therapy (LLLT) have anti-inflammatory effects in models of LPS-induced pulmonary ARDS, however, so far, only the red spectrum lasers were studied. Therefore, this study aimed to investigate the role of infra red laser (830nm), 3J/cm2, 35mw, 80 seconds per point (03 points per application), in pulmonary inflammation, lung using LPS model (intratracheal) and also extrapulmonary (intraperitoneal) inducing ARDS. The laser application was performed directly in contact with the skin in the chest three points (corresponding to the end of the trachea - Section 01 right lung point 02 and left lung - point 03), three times, beginning 01 hour after LPS administration. BALB / c mice (n = 40) were divided into control (n = 08; not administered LPS), IT (n = 07; intratracheal administered LPS (10 µg / mouse), IT + LLLT (n = 09; intratracheal LPS administered (10 µg / mouse) + LLLT), IP (n = 07; LPS administered intraperitoneal (100 µg / mouse), IP + LLLT (n = 09; administered intraperitoneal LPS (100 µg / mouse) + LLLT). Twenty-four hours after administration of LPS and Laser, animals were euthanized and the lungs removed for studies of pulmonary inflammation: Total cell count and differential, bronchoalveolar lavage (BAL), cytokines (IL-1beta, IL-6, IL-10, KC and TNF-α), BAL levels were also analyzed quantitatively the number of neutrophils in the lung parenchyma in lung tissue using histomorphometry techniques. Results showed that LLLT significantly reduced pulmonary and extra-pulmonary LPS 9 induced in both configurations Experimental of ARDS, as evidenced by a reduction in the number of total cells and neutrophils in BAL, reduced levels of IL-1β, IL-6, KC, and TNF-α in BAL fluid as well as the number of neutrophils in the lung parenchyma. Therefore, we conclude that the 830nm infrared laser is effective in reducing pulmonary inflammation in both models pulmonary or extrapulmonary LPS-induced experimental ARDS. Keyword: neutrophils. ARDS, laser therapy, pulmonary inflammation, cytokines, 10 Sumário 1. INTRODUÇÃO ................................................................................................... 13 1.1. Síndrome do Desconforto Respiratório Agudo (SDRA) ......................................... 13 1.2. Processo Inflamatório e Citocinas.............................................................................. 14 1.3. Reparação ..................................................................................................................... 15 1.4. Fatores envolvidos na coagulação .......................................................................... 166 1.5. Laser de Baixa Intensidade ......................................................................................... 16 1.5.1. Laser de Baixa Intensidade nas Doenças Pulmonares................................. 177 2. OBJETIVOS .................................................................................................... 178 3. MATERIAIS E MÉTODOS ................................................................................... 188 3.1. Animais ......................................................................................................................... 188 3.2. Grupos Experimentais................................................................................................ 188 3.3. Modelos Experimentais de Indução da SDRA ....................................................... 188 3.4. Análise da Inflamação Pulmonar.............................................................................. 189 3.5. Protocolo Experimental .............................................................................................. 199 3.5.1 Modelo de indução da SDRA Intratraqueal ...................................................... 199 3.5.2. Modelo de Indução da SDRA Extrapulmonar ................................................. 199 3.6. Aplicação com LBI ........................................................................................................ 20 3.7. Coleta de Sangue ......................................................................................................... 20 3.8. Lavado Broncoalveolar (LBA) ..................................................................................... 21 3.9. Análise dos Níveis de Citocinas ................................................................................. 21 3.10. Proteínas Totais ........................................................................................................ 201 3.11. Histologia - Análise da Densidade de Neutrófilos no Parênquima Pulmonar . 211 3.12. Análises Estatísticas......................................................................................212 4. RESULTADOS ................................................................................................... 22 4.1.Artigo submetido para revista Respiratory Physiology and Neurobiology .......... 23 5. CONSIDERAÇÕES FINAIS ................................................................................... 46 6. REFERÊNCIAS BIBLIOGRÁFICAS ...................................................................... ....48 11 ANEXOS.......................................................................................................................54 Anexo I - Aprovação do Comitê de Ética em Uso de Animais (CEUA) da Uninove......54 Anexo II - Paper em segunda revisão...........................................................................57 Anexo III - Paper publicado...........................................................................................80 12 LISTA DE ABREVIATURAS SDRA – Síndrome do Desconforto Respiratório Agudo IL – Interleucinas LPS – Lipopolissacarídeo TLBI – Terapia Laser de Baixa Intensidade LBI – Laser de Baixa Intensidade IT – Intratraqueal IP – Intraperitoneal LBA – Lavado Bronco Alveolar PBS – Phosphate Buffered Saline – Tampão Fosfato Salino mW – Miliwatt Nm – Nanômetro µg – Micrograma µl - Microlitro 13 1. Introdução 1.1. Síndrome do Desconforto Respiratório Agudo (SDRA) As doenças pulmonares intersticiais compreendem uma variedade de afecções que possuem em comum o acometimento do interstício pulmonar, por distorção, fibrose ou destruição, sendo na maioria das vezes visualizada radiologicamente como um infiltrado intersticial (1). SDRA é o termo utilizado para designar a insuficiência respiratória proveniente da resposta inflamatória que cursa com alteração da permeabilidade alvéolo-capilar, edema pulmonar e hipoxemia refratária aos altos fluxos de oxigênio (2, 3, 4). As anormalidades patológicas do pulmão, na SDRA, originam-se de uma grave lesão da unidade alvéolo-capilar, seguida pelo extravasamento do líquido intravascular, gerando edema. À medida que o processo evolui, o edema é substituído pela necrose celular, hiperplasia epitelial, inflamação e fibrose, caracterizando uma lesão alveolar difusa (5). A SDRA pode ser dividida em três fases, sendo cada fase variável de acordo com o tempo e a evolução clínica da doença: a “fase exsudativa”, de edema e hemorragia, a “fase proliferativa”, de organização e reparação, e a “fase de fibrose”. A fase exsudativa estende-se, geralmente, durante a primeira semana após o início da insuficiência respiratória. A fase proliferativa é o estágio de organização dos exsudatos intra-alveolares e intersticiais, observados na fase aguda. Na fase fibrótica, o pulmão é totalmente remodelado por tecido rico em fibras de colágeno. Além do colágeno, há um aumento de outras proteínas de matriz extracelular, como a elastina, proteoglicanos e lamininas. A fibrose compromete assim todo o sistema alvéolo-capilar, envolvida nas trocas gasosas, levando à hipoxemia grave refratária e hipertensão arterial pulmonar, responsáveis pela fase terminal da SDRA (5). Muitos estudos (7) mostram que a prevalência de SDRA intrapulmonar é maior quando comparada com a extrapulmonar, entretanto, existem estudos (8) que demonstram uma igualdade na prevalência dos dois tipos. O índice de mortalidade entre os insultos pulmonares e extrapulmonares varia consideravelmente, porém alguns estudos demonstram um aumento da mortalidade no grupo de etiologia direta (9), enquanto outros demonstram relações entre aumento de mortalidade com insulto indireto (8). 14 1.2. Processo Inflamatório e Citocinas A barreira alveolar normal é composta de três diferentes estruturas: o endotélio capilar, o espaço intersticial, incluindo a membrana basal e a matriz extracelular, e o epitélio alveolar. O epitélio alveolar consiste de células alveolares tipo I e II. A superfície de células tipo I engloba cerca de 90 % da área alveolar. As células cubóides alveolares tipo II são células multifuncionais. Elas produzem surfactante, são importantes para ativar clearence do líquido alveolar e representam as células progenitoras que regeneram o epitélio alveolar após a injúria (2). Em estudos histológicos de tecidos pulmonares provenientes de pacientes com SDRA, a primeira lesão aparece como edema intersticial seguido por lesão severa do epitélio alveolar. O epitélio alveolar usualmente exibe extensiva necrose das células alveolares tipo I deixando uma erosão, porém, mantendo a membrana basal recoberta com membranas hialinas. A célula epitelial tipo I é altamente vulnerável a lesões, entretanto, a tipo II é a célula mais resistente e pode funcionar como progenitora celular para regeneração do epitélio após a lesão. A interleucina 8 (IL-8) é um forte fator quimiotático para neutrófilos e é encontrado nos pulmões em altas concentrações em pacientes com SDRA. Os níveis de IL-8 nos pulmões também servem como fator prognóstico para o desenvolvimento da SDRA, uma vez que foi demonstrado que pacientes com níveis aumentados de IL-8 significativamente desenvolvem mais SDRA do que pacientes com níveis mais baixos (11). Estudos experimentais demonstram que em modelos de sepsis, a cascata de citocinas consiste em TNF-α, IL-1β, IL-6, IL-1ra, sTNF-R e IL-10 (12). As duas primeiras citocinas da cascata são TNF-α e a IL-1β, sendo produzidas localmente. Essas citocinas são usualmente referidas como próinflamatórias e tanto o TNF-α como a IL-1β, estimulam a produção de IL-6 e ambas (IL-1β e IL-6) podem apresentar papel tanto pró-inflamatório como antiinflamatório. O TNF-α tem sido reportado como um importante modulador na injúria pulmonar aguda (13). Estudos experimentais têm sugerido que os níveis plasmáticos de TNF-α aumentam durante a injúria pulmonar e, 15 bloquear seus efeitos biológicos, através de anticorpos, induz a uma diminuição da severidade da lesão (12). Além disso, injeções intravenosas de TNF-α induzem à injúria pulmonar aguda com seqüestro de neutrófilos e aumento da permeabilidade microvascular (3,13). Após o início da lesão inicial, a produção de citocinas pelo parênquima pulmonar aumenta, as quais são liberadas pelos macrófagos e ativadas via p38 MAPK (14). 1.3. Reparação A perda da integridade do epitélio-alveolar gera conseqüências funcionais e patológicas severas, como por exemplo: Um influxo de proteínas e edema para o espaço aéreo com deposição de membrana hialina na membrana basal lesada, hiperplasia da célula alveolar tipo II típica da fase proliferativa da SDRA, células alveolares tipo II migrando e iniciando a proliferação ao longo do septo alveolar na tentativa de recobrir a membrana basal lesada e restabelecer a continuidade do epitélio alveolar. Dentro da parede alveolar, fibroblastos proliferam e migram para a membrana basal através do exsudato fibroso intra-alveolar. Se o exsudato fibroso pode resolver esse processo lesivo, a restauração da arquitetura normal do pulmão pode ser alcançada. Entretanto, se a célula alveolar tipo II migrar sobre a superfície da organização tecidual granular, ocorre uma transformação de exsudato intra-alveolar para tecido intersticial, e a fibrose intersticial do pulmão pode se desenvolver (2), gerando uma reparação não eficiente, mas sim fibrótica. 16 1.4. Fatores envolvidos na coagulação Trabalhos demonstram que a inflamação sistêmica está associada com a ativação da coagulação e o sistema fibrinolítico. (15). O maior iniciador da cascata de coagulação é o Tissue Factor (TF), sendo o receptor e cofator para o fator de coagulação VII no plasma. A síntese de TF é induzida por mediadores inflamatórios como a IL-6, IL-8, e MCP-1 (15). Normalmente, o TF é expresso em células em contato direto com o sangue, mas podem ser expressos em células intravasculares principalmente monócitos e células endoteliais quando estimulados especialmente por estímulos inflamatórios incluindo o LPS. Quando aumentado, o TF pode ser o responsável pelas manifestações trombóticas em vários estados inflamatórios, como ocorre na SDRA (15). 1.5. Laser de Baixa Intensidade Laser é um dispositivo que emite luz através de um processo de ampliação óptica baseado na emissão estimulada de radiação eletromagnética. O termo laser originou-se da sigla light amplification by stimulated emission of radiation ou, luz amplificada por estimulação emitida por radiação. Lasers diferem de outras fontes de luz por possuir luz coerente (formada por ondas de mesma freqüência e direção), colimada (onde as ondas eletromagnéticas andam na mesma direção) e ser monocromático (possuir uma única cor) (43). Por suas propriedades especiais, o laser é hoje utilizado nas mais diversas aplicações: médicas (cirurgias), na Fisioterapia com o efeito antiinflamatório, regenerador e analgésico, na indústria (cortar metais, medir distâncias), pesquisa científica (pinças ópticas, hidráulica, física atômica, óptica quântica, resfriamento de nuvens atômicas, informação quântica), comerciais (comunicação por fibras ópticas, leitores de códigos de barras), no campo bélico (miras lasers) e mesmo todos os dias em nossas casas (aparelhos leitores de CD, DVD e Blu-Ray, laser pointer usado em apresentações com projetores). 17 É produzido por materiais como o cristal de rubi dopado com safira, mistura de gases no caso do hélio e neônio, dispositivos de estado sólido como Laser Díodo, moléculas orgânicas como os lasers de corante (44). No campo da pesquisa a energia laser tem sido investigada como alternativa de tratamento nos processos de regeneração dos tecidos biológicos há aproximadamente 20 anos. Vários trabalhos desenvolveram-se perante a evidente necessidade de se reduzir o tempo de reparação dos tecidos, principalmente em doenças consideradas incapacitantes e têm sido relatados efeitos positivos da terapia laser de baixa intensidade (TLBI) no reparo de lesões de tecidos como: músculos (17); nervos periféricos (18); pele (19) e ossos (20,21), entre outros tipos de tecidos. (22) 1.5.1. Laser de Baixa Intensidade nas Doenças Pulmonares Existem grandes evidências na literatura sobre os efeitos do LBI nas doenças pulmonares (23, 24, 25, 26), alguns estudos demonstram que o laser em combinação com outras modalidades terapêuticas apresentam significativa melhora de pacientes com bronquite crônica, promovendo a função de drenagem dos brônquios, facilitando a normalização do estado imunitário do paciente, e contribuindo para a otimização dos processos de peroxidação lipídica (27). Já outros estudos demonstraram que o laser (660nm, 30 mw), na inflamação pulmonar aguda induzida tanto pela isquemia e reperfusão do intestino quando pela administração de LPS inibe significativamente a inflamação pulmonar e a liberação de citocinas pró-inflamatórias, além de estimular a liberação da IL-10 (28). Aimbire F. ET AL relata em seus estudos (29) que a ação do laser Ga-Al-As (685 nm) na inflamação pulmonar induzida por LPS, reduziu as respostas inflamatórias da hiper-reatividade traqueal, lavado bronco alveolar e a infiltração dos neutrófilos pulmonares devido a sua interação seletiva de COX-2 com derivados de metabólitos. 2. Objetivos Avaliar os efeitos do laser de baixa intensidade na faixa do infravermelho (830 nm) na inflamação pulmonar aguda induzida pela administração de LPS, tanto em modelo intrapulmonar quanto extrapulmonar de SDRA. 18 3. Materiais e Métodos 3.1. Animais Os animais foram obtidos do Biotério Central da Universidade Nove de Julho e mantidos em condições controladas de umidade (50-60%), luminosidade (12h claro/12h escuro) e temperatura (22°C - 25°C), água e alimentação ad libitum. O experimento foi aprovado pelo Comitê de Ética da Universidade Nove de Julho (CEUA) sob o n° AN0020_2013. 3.2. Grupos Experimentais Foram utilizados 40 Camundongos BALB/c, machos, com 08 semanas de idade, pesando aproximadamente 20 gramas, os quais foram distribuídos aleatoriamente nos seguintes grupos experimentais: Controle (n = 08; não administrado LPS), IT (n = 07; LPS intratraqueal 10µg/camundongo), IT + Laser (n = 09; LPS intratraqueal 10µg/camundongo + Laser), IP (n = 07; LPS intraperitoneal 100µg/camundongo), IP + Laser (n = 09; LPS intraperitoneal 100 µg/camundongo + Laser). 3.3. Modelos Experimentais de Indução a SDRA O modelo experimental de indução a SDRA intrapulmonar e extrapulmonar será o mesmo utilizado por Santos et. al., (30). Nesse trabalho, os autores utilizaram a administração de Lipopolissacarídeo Escherichia coli (LPS) nas doses de 10 µg (intratraqueal) e 100 µg (intraperitoneal) para o desenvolvimento do modelo de SDRA intrapulmonar e extrapulmonar, respectivamente. Neste estudo, os animais foram estudados 24 horas após a administração do LPS. 3.4. Análise da Inflamação Pulmonar Um dos mais importantes mecanismos que determina a severidade da injúria pulmonar na SDRA é a magnitude da lesão da barreira epitelial. A possibilidade de reparar o epitélio num estágio precoce é o maior determinante da recuperação. Tratamentos específicos para acelerar o reparo do epitélio alveolar ainda não existem. Muitas das modalidades terapêuticas testadas atualmente baseiam-se na tentativa de diminuir a inflamação pulmonar para 19 minimizar a lesão inicial. Sabendo-se que grande parte do processo inflamatório se dá pela ativação local e sistêmica de citocinas como TNF-α e IL1β. 3.5. Protocolo Experimental 3.5.1 Modelo de indução da SDRA Intratraqueal Os animais do grupo IT (intratraqueal) e IT + L (intratraqueal + laser) receberam LPS + solução salina 0,9% (10 µg/camundongo/ 50 µl) uma única vez com o auxílio de uma micropipeta, sendo que os animais foram anestesiados com Quetamina e Xilazina para este procedimento. 3.5.2. Modelo de Indução da SDRA Extrapulmonar Os animais do grupo IP (intraperitoneal 100 µg/camundongo) e IP + L (intraperitoneal 100 µg/camundongo + laser) receberam LPS através de aplicação de uma única aplicação via intraperitoneal. 3.6. Aplicação do LBI Uma hora após a administração de LPS os animais foram submetidos à terapia com laser de baixa potência. Sendo utilizado laser com os seguintes parâmetros: Tipo de Laser Infravermelho Comprimento de onda 830 nm Modo Contínuo Densidade 3J/ cm² Potência 35 mW Tempo de Irradiação por ponto 80 segundos Os animais do grupo laser receberam 03 irradiações com intervalo de 1 hora entre cada irradiação diretamente em 03 pontos (conforme protocolo de nosso grupo de estudo): 01 ponto traquéia, 01 ponto pulmão direito e 01 ponto 20 pulmão esquerdo, foram irradiados por 80 segundos cada ponto totalizando 240 segundos. Vinte quatro horas (24hrs) após a administração do LPS, os animais foram anestesiados com Quetamina (100 x µg/kg) e Xilazina (10 x µg/kg) (02 µ/g) e foram eutanaziados. 3.7. Coleta de Sangue Após anestesia foi realizada uma incisão na região abdominal e através da veia cava inferior coletado entre 0,5 ml e 1,0 ml de sangue. O sangue coletado foi armazenado em eppendorf e utilizado 90 µl para contagem total de células em Câmara de Neubauer, o restante foi centrifugado a 3000 RPM a 4°C durante 10 min. O soro suspendido foi armazenado em tubo eppendorf a -70°C para análise dos níveis de citocinas por ELISA. 3.8. Lavado Broncoalveolar (LBA) Após coleta de sangue, foi realizada uma incisão na traquéia e os animais foram canulados e os pulmões lavados com 03 x 0,5 ml de PBS. O volume do lavado recuperado foi centrifugado a 1000 RPM a 4°C por 05 minutos. O sobrenadante armazenado a -70°C para posterior análise das citocinas por meio de ELISA. O botão celular foi ressuspendido em 01 ml de PBS e a determinação do número de células totais no LBA foi realizada por meio de contagem na Câmara de Neubauer (31, 32, 33, 34). Alíquotas do material ressuspendido foram utilizadas para preparação de lâminas de cytospin as quais foram coradas com May-Grunwald-Giemsa (onde 300 células foram contadas para a determinação da contagem diferencial) (31, 32, 33, 34). 3.9. Análise dos Níveis de Citocinas Os níveis de IL-1β, IL-6, IL-10, TNFα e KC no LBA e no soro, foram avaliados utilizando kits comerciais de ELISA de acordo com as instruções do fabricante (B & D Biosciences, Califórnia, EUA). 3.10. Proteínas Totais Os níveis de proteínas totais no LBA foram avaliados através do kit BCA da Thermo Scientific de acordo com as instruções do fabricante. 21 3.11. Histologia - Análise da Densidade de Neutrófilos no Parênquima Pulmonar Após a coleta do sangue e do LBA, os pulmões foram removidos em bloco e fixados em formol 10% durante 24 horas e submetidos à rotina histológica. As lâminas contendo os cortes dos pulmões em 05 µm foram coradas com hematoxilina e eosina (HE). Com o intuito de avaliar os efeitos do laser sobre a densidade de neutrófilos no parênquima pulmonar, foram fotografados 15 campos aleatórios do parênquima pulmonar num aumento de 40x e então através da análise de imagem (utilizando-se o software Image Pro Plus 4.0), foi avaliada a área de tecido e contado o número de células polimorfonucleares (PMN) nessa área. Assim, o número de células PMN foi expresso em número de células por mm² de área de tecido (35,36). 3.12. Análises Estatísticas As análises foram avaliadas através do programa Graphpad Prism 5® por one way ANOVA, poshoc test Newman Keuls para dados paramétricos. 22 4. Resultados 4.1. Artigo submetido para a revista Respiratory Physiology and Neurobiology Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS Manoel Carneiro Oliveira-Junior1, Nilsa Regina Damaceno-Rodrigues2, Flávia Regina Greiffo1, Francine Maria Almeida3, Vanessa Roza da Silva1, Regiane Albertini1, Rodrigo Álvaro B Lopes-Martins1, Ernesto César P Leal-Junior1, Ana Paula Ligeiro de Oliveira1, Rodolfo P Vieira1 1- Nove de Julho University. Rua Vergueiro 239/245, São Paulo – SP, CEP 01504000, Brazil. 2- University of Sao Paulo, School of Medicine, Department of Pathology (LIM 59). Av. Doutor Arnaldo 455, São Paulo – SP, CEP 01246-000, Brazil. 3- University of Sao Paulo, School of Medicine, Department of Clinical Medicine (LIM 20). Av. Doutor Arnaldo 455, São Paulo – SP, CEP 01246-000, Brazil. Running head: LLLT reduces lung inflammation. Corresponding author Rodolfo P Vieira, PhD Rua Vergueiro 239/245, São Paulo – SP, CEP 01504-000, Brazil. 23 Phone/Fax +55 11 3385-9222 / 3385-9066 [email protected] Abstract Acute respiratory distress syndrome (ARDS) is a syndrome presenting high rates of mortality, and may result from pulmonary or extrapulmonary insults. The present study investigated the effects of 830nm laser, 3J/cm2, 35mW, 80 seconds per point (3 points per application), on the pulmonary inflammation, using a pulmonary (orotracheal) and also an extrapulmonary (intra-peritoneal) model of LPS-induced ARDS. The laser application was performed in direct contact with skin in three points of the chest, beginning 1 hour after LPS administration, for 3 times. BALB/c male mice were distributed in Control (n=6; PBS), ARDS IT (n=7; LPS orotracheally administered 10ug/mouse), ARDS IP (n=7; LPS intra-peritoneally administered 100ug/mouse), ARDS IT + Laser (n=9; LPS intra-tracheally administered 10ug/mouse), ARDS IP + Laser (n=9; LPS intra-peritoneally administered 100ug/mouse). Twenty-four hours after last LPS administration, mice were studied for pulmonary inflammation by total and differential cell count in bronchoalveolar lavage (BAL), cytokines (IL-1beta, IL-6, KC and TNF-alpha) levels in BAL fluid and also by quantitative analysis of neutrophils number in the lung parenchyma. The results demonstrated that LLLT significantly reduced pulmonary and extrapulmonary inflammation in LPS-induced ARDS in both experimental settings, as demonstrated by reduced number of total cells (p<0.001) and neutrophils (p<0.001) in BAL, reduced levels of IL-1beta, IL-6, KC and TNF-alpha in BAL fluid and in serum (p<0.001), as well as the number of neutrophils in lung parenchyma (p<0.001). Therefore, we conclude that infra-red 830nm laser is effective to reduce pulmonary inflammation in both pulmonary and extrapulmonary model of LPS-induced ARDS. Key words: ARDS, LPS, LLLT, lung inflammation, cytokines, bronchoalveolar lavage. 24 1. Introduction The acute respiratory distress syndrome (ARDS) is defined as respiratory failure from inflammatory response that leads to alteration of alveolar-capillary permeability, pulmonary edema and hypoxemia refractory to high oxygen flow [The ARDS Definition Task Force., 2012; Matute-Bello et al., 2008]. Although several causes of ARDS result in a uniform pathology, in the last stage, evidence suggests that the pathophysiology may differ according to the type of primary insult. Thus, two forms of ARDS have been described: ARDS with direct effects on lung epithelial cells; ARDS reflecting lung involvement secondary to a systemic inflammatory response, being the center of the injury, the pulmonary endothelial cell [The ARDS Definition Task Force, 2012; Matute-Bello et al., 2008]. Many studies show that the prevalence of intrapulmonary ARDS is higher when compared with extrapulmonary [Silva et al., 2009]. However [Eisner et al., 2001] demonstrate an equal prevalence of both types, ant this issue remains controversial [Eisner et al., 2001]. From pulmonary causes, pneumonia is the most direct cause of injury, followed by aspiration of gastric contents and pulmonary trauma [Silva et al., 2009]. The rate of death from pulmonary and extrapulmonary insults varies considerably, however, [Suntharalingam et al., 2001], shows an increase in mortality in the group of direct etiology, while [Eisner et al., 2001] found a direct relationship between lung injury and increased mortality. The scientific literature has reported anti-inflammatory effects of low-level laser therapy (LLLT) in models of acute lung injury [De Lima et al., 2011, 2013]. Furthermore, a growing number of clinical studies are demonstrating the efficacy and safety of LLLT for different pulmonary diseases, as asthma and chronic obstructive pulmonary diseases (COPD) [Landyshev et al., 2002; Faradzheva et al. 2007; Farkhutdinov et al. 2007; Kashanskaia et al., 2009]. For instance, some studies also 25 have demonstrated that application of LLLT for the treatment of patients with chronic obstructive bronchitis accelerates the elimination of clinical symptoms, increases its efficiency, promotes drainage function of the bronchi, facilitates standardization the immune status of the patient, and contributes to the optimization of lipid peroxidation [Farkhutdinov et al., 2007; Kashanskaia et al., 2009]. Therefore, the present study was designed aiming to fill a lack of information regarding the effects of LLLT in a model of pulmonary and extrapulmonary LPSinduced ARDS in BALB/c mice. 2. Materials and Methods 2.1. Animals and Experimental Groups Thirty-eight male BALB/c mice weighing between 25-30g were obtained from the Animal Facility of the Nove de Julho University. All experimental procedures with animals care followed the international recommendations for the use and care of animals and were approved by the local ethical committee. All mice were housed in bright rooms with controlled temperature (21°-23°C) and humidity (45%-65%) and 1212h light/dark cycle, with access to food and water ad libitum. The animals were divided into 5 groups: Control (n=6), LPS orotracheal (n=7), intra-peritoneal LPS (n=7), orotracheal LPS + laser (n=9), intra-LPS Laser peritoneal + (n=9). 26 2.2 . Pulmonary and Extrapulmonary Model of LPS-Induced ARDS For the pulmonary model of LPS-induced ARDS, under anesthesia (ketamine 100mg/kg and xylazine 10mg/kg), using a 100ul micropipette, animals received LPS (10ug/mouse) diluted in 50ul of PBS through an orotracheal instillation as previously described [Vieira et al., 2011]. For the extrapulmonary model of LPS-induced ARDS, animals received LPS (100ug/mouse) diluted in 50ul of PBS through an intra-peritoneal injection. 2.3. LLLT Protocol One hour after LPS administration, LLLT treated groups received infrared laser administration [continuous wave, 830nm, 3J/cm², 35MW, 80 seconds per point (3 points per application)], where point 1 was in the end part of trachea, point 2 in the right lung and the point 3 in the left lung, in direct contact with skin. These 3 points application totalized 240 seconds and an energy of 9J/cm². In total, LLLT groups received the LLLT as described above for 3 times, in a 1 hour interval between each application. 2.4. Blood Collection, Processing and Analysis Under anesthesia, the abdomen was open the 1 ml of blood was collected via cava vein using a syringe without anti-coagulant and immediately centrifuged at 950 g, 4°C, during 7 minutes. The serum was collected and stored at -70°C for cytokines measurement. 27 2.5. Bronchoalveolar Lavage Fluid (BALF) Aiming to access lung inflammation, the number of total and differential cells count in BALF was performed. Briefly, under anesthesia, mice were submitted to tracheotomy and canulated. Then, using a 1 ml syringe, a 3 x 0,5mL PBS washing was applied and the recovery material was centrifuged at 800 g, at 4°C during 7 minutes. The supernatant was stored at -70°C for cytokines analysis and the cell pellet was ressuspended in 1 ml PBS. The number of total cells was counted using a hematocytometer (Neubauer chamber) and the differential cells count were performed through a cytospin preparation, stained with Diff Quick and 300 cells were counted according to the hematological characteristic [Gonçalves et al., 2012; Ramos et al., 2010]. 2.6. Inflammatory Mediators in BALF and in Serum The levels of pro-inflammatory cytokines IL-1beta, IL-6, KC and TNF-alpha and of anti-inflammatory cytokine IL-10 was evaluated in the BALF according to the manufacturer’s instructions. 2.7. Histomorphometric Study To evaluate the effects of LLLT on parenchymal inflammation, one the hallmarks of ARDS, the lungs were collected, fixed in 10% formalin and submitted to histological routine. Briefly, 5 µm ticks lung slices were stained with hematoxylin and eosin. Then, 15 aleatory fields of the lung parenchyma of each mouse were photographed. By using the software Image Pro Plus 4.0, the air and tissue area of all photomicrographs were determined. The number of polymorphonuclear (PMN) cells (notably neutrophils) was counted in each photo according the morphological criteria by an experienced research, blinded to the group’s description. Then, the number of PMN cells per square millimeter of lung tissue was presented. 28 3. Results 3.1. Inflammation in Bronchoalveolar Lavage Fluid (BALF) and in Lung Tissue in the Pulmonary Model of ARDS The figure 1 shows the inflammatory profile in BALF (total cells – panel 1A; neutrophils – panel 1B) and the number of polymorphonuclear cells (notably neutrophils – panel 1C) and the representative photomicrographs of control (panel 1D), LPS IT (panel 1E) and LPS IT + laser (panel F) in the pulmonary (IT) model of ARDS. The results shows that intra-tracheal administration of LPS significantly increased the number of total cells (p<0.001) and neutrophils (p<0.001) in BALF when compared with control group. On the other hand, LLLT significantly reduced the number of total cells (p<0.001) and neutrophils (p<0.01) when compared with LPS group. LLLT also significantly reduced the number of polymorphonuclear cells in the lung parenchyma (p<0.001; panels 1C until 1F). 3.2. Cytokines Levels in BALF in the Pulmonary Model of ARDS The figure 2 shows the levels of IL-1beta, IL-6, KC, TNF-alpha and IL-10 in BALF in a pulmonary model of ARDS (panels 2A to 2E, respectively). Panel 2A to 2D shows that LLLT significantly reduced intra-tracheal LPS increased IL-1beta, IL-6, KC and TNF-alpha (p<0.05). Panel 2E shows that no differences in the levels of IL-10 were found when all groups were compared (p>0.05). 3.3. Cytokines Levels in Serum in the Pulmonary Model of ARDS The figure 3 shows the serum levels of IL-6 and TNF-alpha in a pulmonary model of ARDS (panels 3A and 3B, respectively). In the panel 3A, the results show that LLLT significantly reduced intra-tracheal LPS increased IL-6 levels (p<0.01). In panel 3B, the results show that LLLT significantly reduced intra-tracheal LPS increased TNFalpha levels (p<0.001). 29 3.4. Inflammation in Bronchoalveolar Lavage Fluid (BALF) and in Lung Tissue in the Extrapulmonary Model of ARDS The figure 4 shows the inflammatory profile in BALF (total cells – panel 4A; neutrophils – panel 4B) and the number of polymorphonuclear cells (notably neutrophils – panel 4C) and the representative photomicrographs of control (panel 4D), LPS IP (panel 4E) and LPS IP + laser (panel 4F) in the extrapulmonary (IP) model of ARDS. The results shows that intra-peritoneal (IP) administration of LPS significantly increased the number of total cells (p<0.001) and neutrophils (p<0.001) in BALF when compared with control group. On the other hand, LLLT significantly reduced the number of total cells (p<0.001) and neutrophils (p<0.001) when compared with LPS group. LLLT also significantly reduced the number of polymorphonuclear cells in the lung parenchyma (p<0.001; panels 4C until 4F). 3.5. Cytokines Levels in BALF in the Extrapulmonary Model of ARDS The figure 5 shows the levels of IL-1beta, IL-6, KC, TNF-alpha and IL-10 in BALF in a pulmonary model of ARDS (panels 5A to 5E, respectively). Panel 5A shows that intra-peritoneal LPS administration significantly increased the levels of IL-1beta (p<0.001), while LLLT significantly its levels, compared with LPS group (p<0.01). Panel 5B and 5C shows that intra-peritoneal LPS administration significantly increased the levels of IL-6 (p<0.001) and KC (p<0.001), respectively, while LLLT significantly its levels, compared with LPS group (p<0.001). Panel 5D shows that while intra-peritoneal LPS administration significantly increased the levels of TNF-alpha (p<0.01), LLLT significantly reduced its levels (p<0.01). Similarly to intra-tracheal model of intrapulmonary ARDS, in the extrapulmonary model of ARDS (intra-peritoneal LPS administration), no differences were observed in the levels of IL-10 (p>0.05). 30 3.6. Cytokines Levels in Serum in the Pulmonary Model of ARDS The figure 6 shows the serum levels of IL-6 and TNF-alpha in an extrapulmonary model of ARDS (panels 6A and 6B, respectively). In the panel 6A, the results show that LLLT significantly reduced intra-peritoneal LPS increased IL-6 levels (p<0.001). In panel 6B, the results show that LLLT significantly reduced intra-peritoneal LPS increased TNF-alpha levels (p<0.05). 4. Discussion The present study showed for the first time the effects of LLLT (830nm) reducing the acute pulmonary inflammation in a pulmonary and extrapulmonary model of LPS-induced ARDS in BALB/c mice, revealing that LLLT (830nm) may inhibit acute pulmonary inflammation independent of etiology of primary insult. Acute respiratory distress syndrome (ARDS) presents high rates of morbidity and mortality and the amount and the state (activation and apoptosis rate) of the neutrophils may be correlated with the diseases severity and prognosis [Fialkow et al., 2006]. In the present study, we found that both models (pulmonary and extrapulmonary) of LPS-induced ARDS significantly increased the migration of neutrophils to the lungs, accordingly to the previous studies [Matute-Bello et al., 2008; Silva et al., 2009; Gonçalves et al., 2012; Ramos et al., 2010]. In the physiopathology of ARDS, neutrophils contribute to the lung injury releasing several mediators, i.e. free radicals, proteases, cytokines and chemokines [Matute-Bello et al., 2008]. Furthermore, the activation of neutrophils has been directly linked with ARDS’ severity and mortality [Fialkow et al., 2006]. In this way, our results showed that LLLT was effective to reduce the migration of neutrophils to the lungs, as demonstrated through neutrophils counting in bronchoalveolar lavage and also by the quantitative analysis of the neutrophils number in the lung parenchyma. These anti-inflammatory effects of LLLT on neutrophils recruitment is particularly important, since that such effect was 31 observed in pulmonary and extrapulmonary model of LPS-induced ARDS, reinforcing the beneficial effects of LLLT independent of the diseases etiology. This results are also in agreement with previous studies that have demonstrated that LLLT was able to reduce neutrophils migration in model of intestinal ischemia-reperfusion induce ARDS [De Lima et al., 2011, 2013]. The modulation of neutrophilic inflammation in ARDS have been attributed to release of several pro-inflammatory cytokines, for instance, IL-1beta, IL-6, IL-8 and TNF-alpha [Matute-Bello et al., 2008]. Interleukin 1 beta (IL-1beta) is a potent proinflammatory cytokine and its increased levels in patients developing ARDS are related with poor prognosis of disease [Meduri et al., 1995]. IL-1beta is thought to play a central role in the beginning of inflammatory process and the neutrophils to be the main source of IL-1beta release in during diverse inflammatory response [Cho et al., 2012]. IL-1beta also increases neutrophils survival, contributing for non-resolution of the inflammation [Cho et al., 2012]. In the present study we found increased levels of IL1beta in both, pulmonary and extrapulmonary models of ARDS, in agreement with the current literature [Matute-Bello et al., 2008; Cho et al., 2012]. The present study also revealed that LLLT was capable to decrease the levels of IL-1beta in both models of ARDS, pointing out the inhibitory effects of LLLT on the pro-inflammatory mediators involved in the physiopathology of ARDS. Of note, a study has been found similar results concerning the suppressive effects of LLLT on the levels of IL-1beta, however, in a model of extra-pulmonary LPS-induced ARDS in rats [Aimbire et al., 2008]. Interleukin 6 (IL-6) is considered a pleiotropic cytokine, presenting a central role in the physiopathology of ARDS, beyond to be correlated with poor prognostic for disease [Meduri et al., 1995; Cho et al., 2012; Sharifov et al., 2013; Rojas et al., 2013]. The levels of IL-6 are increased in the lungs and also in the blood of humans and also in animal’ models of ARDS [Meduri et al., 1995; Cho et al., 2012; Sharifov et al., 2013; Rojas et al., 2013]. In the present study we found increased levels of IL-6 in 32 bronchoalveolar lavage fluid and in serum of mice in both pulmonary and extrapulmonary model of LPS-induced ARDS. Of note, in both models, LLLT was able to significantly reduce IL-6 levels in bronchoalveolar lavage fluid and also in serum, to values very close to values of control group. These findings are extremely relevant, since that increased levels of IL-6 are involved in the perpetuation of the inflammatory state and also in pro-coagulant response in ARDS [Meduri et al., 1995; Fu et al., 2012]. Interleukin 8 (IL-8) and its functional homologue in mice (CXCL1/KC) present a central role in the physiopathology of ARDS, primarily mediating the chemotaxis for neutrophils [Meduri et al., 1995; Cho et al., 2012]. However, IL-8 and CXCL1/KC also presents other important effects in the inflammatory process in ARDS, for instance, increasing of neutrophils survival [Meduri et al., 1995; Cho et al., 2012; McGettrick et al., 2006], and also are related with ARDS severity and mortality. In the present study we found that in both models (pulmonary and extrapulmonary) of LPS-induced ARDS the pulmonary levels of CXCL1/KC are significantly elevated. On the other hand, in the present study, we also found that LLLT significantly reduced the pulmonary levels of CXCL1/KC, event that may be involved in the anti-inflammatory effects of LLLT. Tumor necrosis factor alpha (TNF-alpha) is a cytokine involved in neutrophils adhesion and activation, and coagulation and edema formation, especially during events of acute lung inflammation [Souza et al., 2002; Aimbire et al., 2006]. This cytokine is accredited to be involved in IL-6 stimulation and release, playing a central role in the inflammatory process in ARDS [Souza et al., 2002; Aimbire et al., 2006]. Also, increased levels of TNF-alpha are found in the lungs and also in the systemic circulation of patients developing ARDS, reinforcing its role in the pathophysiology of the disease [Meduri et al., 1995; Sharifov et al., 2013; Rojas et al., 2013]. In the present study we found that the pulmonary and the extra-pulmonary model of LPSinduced ARDS coherently induced increases in the BALF and serum levels of TNFalpha. On the contrary, LLLT significantly reduced the TNF-alpha levels in both models 33 and also in both sites, in the lungs (in BALF) and also in the systemic circulation (in serum). These inhibitory effects of LLLT are particularly important, considering the potent pro-inflammatory effects and the central role of TNF-alpha in the pathophysiology of ARDS. Also, these results are in agreement with previous studies that have demonstrated that LLLT significantly reduced the mRNA expression of TNFalpha in a model of immune-complex induce lung injury [Aimbire et al., 2006] and also in an ex-vivo study using rat bronchi, where LLLT reduced bronchi hyper reactivity to cholinergic agonist through a TNF-alpha dependent mechanism [Mafra et al., 2009]. Therefore, we conclude that LLLT present important anti-inflammatory effects against the LPS-induced acute respiratory distress syndrome, independent of etiology of disease. 34 References 1. Aimbire F, Albertini R, Pacheco MTT, Castro-Faria-Neto HC, Leonardo PSLM, Iversen VV, Lopes-Martins RAB, Bjordal JM., 2006. Low-level laser therapy induces dose-dependent reduction of TNFα levels in acute inflammation. Phot Laser Surg. 24 (1), 33-37. 2. Aimbire F, Ligeiro de Oliveira AP, Albertini R, Corrêa JC, Ladeira de Campos CB, Lyon JP, Silva Jr JA, Costa MS., 2008. Low Level Laser Therapy (LLLT) Decreases Pulmonary Microvascular Leakage, Neutrophil Influx and IL-1β Levels in Airway and Lung from Rat Subjected to LPSInduced Inflammation. Inflammation. 31 (3), 188-197. 3. Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, Granick JL, Matsushima H, Takashima A, Iwakura Y, Cheung AL, Cheng G, Lee DJ, Simon SI, Miller LS., 2012. Neutrophil-derived IL-1b is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog. 8 (11), e1003047. 4. De Lima FM, Albertini R, Dantas Y, Maia-Filho AL, Santana Cde L, CastroFaria-Neto HC, França C, Villaverde AB, Aimbire F., 2013. Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol. 89 (1), 179-188. 5. De Lima FM, Moreira LM, Villaverde AB, Albertini R, Castro-Faria-Neto HC, Aimbire F., 2011. Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome. Lasers Med Sci. 26 (3), 389400. 6. De Lima FM, Villaverde AB, Albertini R, Corrêa JC, Carvalho RL, Munin E, Araújo T, Silva JA, Aimbire F., 2011. Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and 35 reperfusion: Action on anti- and pro-inflammatory cytokines. Lasers Surg Med. 43 (5), 410-420. 7. De Lima FM, Vitoretti L, Coelho F, Albertini R, Breithaupt-Faloppa AC, de Lima WT, Aimbire F., 2013. Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci. 28 (2), 551-564. 8. Eisner MD, Thompson T, Hudson LD, Luce JM, Hayden D, Schoenfeld D, Matthay MA; Acute Respiratory Distress Syndrome Network., 2001. Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med. 164 (2), 231-236. 9. Faradzheva NA., 2007. Efficiency of a combination of haloaerosols and helium-neon laser in the multimodality treatment of patients with bronchial asthma. Probl Tuberk Bolezn Legk. (8), 50-53. 10. Farkhutdinov UR, Farkhutdinov ShU., 2007. Effect of laser radiation on production of reactive oxygen species in the blood of patients with chronic obstructive pulmonary disease. Bull Exp Biol Med. 144 (2), 238-240. 11. Fialkow L, Fochesatto Filho L, Bozzetti MC, Milani AR, Rodrigues Filho EM, Ladniuk RM, Pierozan P, de Moura RM, Prolla JC, Vachon E, Downey GP., 2006. Neutrophil apoptosis: a marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Crit Care. 10 (6), R155. 12. Fu PK, Wu CL, Tsai TH, Hsieh CL., 2012. Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid Based Complement Alternat Med. 837513. 36 13. Gonçalves CTR, Gonçalves CGR, Almeida FM, Lopes FDTQS, Silva LFF, Marcourakis T, Castro-Faria-Neto HC, Vieira RP, Dolhnikoff M., 2012. Protective effects of aerobic exercise on acute lung injury induced by LPS in mice. Critical Care. 16 (5), R199. 14. Kashanskaia EP, Fedorov AA., 2009. Low-intensity laser radiation in the combined treatment of patients with chronic obstructive bronchitis. Vopr Kurortol Fizioter Lech Fiz Kult. (2), 19-22. 15. Landyshev IuS, Avdeeva NV, Goborov ND, Krasavina NP, Tikhonova GA, Tkacheva SI., 2002. Efficacy of low intensity laser irradiation and sodium nedocromil in the complex treatment of patients with bronchial asthma. Ter Arkh. 74 (3), 25-28. 16. Mafra de Lima F, Costa MS, Albertini R, Silva Jr JA, Aimbire F., 2009. Low level laser therapy (LLLT): attenuation of cholinergic hyperreactivity, B2adrenergic hyporesponsiveness and TNF-alpha mRNA expression in rat bronchi segments in E. coli lipopolyssacharidae-induced airway inflammation by a NF-kB dependent mechanism. Lasers Surg Med. 41 (1), 68-74. 17. Matute-Bello G, Frevert CW, Martin TR., 2008. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 295 (3), L379-L399. 18. McGettrick HM, Lord JM, Wang KQ, Rainger GE, Buckley CD, Nash GB., 2006. Chemokine- and adhesion-dependent survival of neutrophils after transmigration through cytokine-stimulated endothelium. J Leukoc Biol. 79 (4), 779-788. 19. Meduri GU, Headley S, Kohler G, Stentz F, Tolley E, et al., 1995. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest. 107 (4), 1062–1073. 37 20. Ramos DS, Olivo CR, Lopes FDTQS, Toledo AC, Martins MA, Osório RAL, Dolhnikoff M, Ribeiro W, Vieira RP., 2010. Low-intensity swimming training partially inhibits lipopolysaccharide-induced acute lung injury. Med Sci Sports Exer. 42 (1), 113-119. 21. Rojas M, Parker RE, Thorn N, Corredor C, Iyer SS, Bueno M, Mroz L, Cardenes N, Mora AL, Stecenko AA, Brigham KL., 2013. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model. Stem Cell Res Ther. 4 (2), 26. 22. Sharifov OF, Xu X, Gaggar A, Grizzle WE, Mishra VK, Honavar J, Litovsky SH, Palgunachari MN, White CR, Anantharamaiah GM, Gupta H., 2013. Anti-inflammatory mechanisms of apolipoprotein a-I mimetic Peptide in acute respiratory distress syndrome secondary to sepsis. PLoS One. 14, 8 (5), e64486. 23. Silva PL, Garcia CS, Maronas PA, Cagido VR, Negri EM, DamacenoRodrigues NR, Ventura GM, Bozza PT, Zin WA, Capelozzi VL, Pelosi P, Rocco PR., 2009. Early short-term versus prolonged low-dose methylprednisolone therapy in acute lung injury. Eur Respir J. 33 (3), 634-645. 24. Souza, D.G., Soares, A.C., Pinho, V., et al., 2002. Increased mortality and inflammation in tumor necrosis factor–stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am. J. Pathol. 160 (5), 1755–1765. 25. Suntharalingam G, Regan K, Keogh BF, Morgan CJ, Evans TW. 2001. Influence of direct and indirect etiology on acute outcome and 6-month functional recovery in acute respiratory distress syndrome. Crit Care Med. 29 (3), 562-566. 38 26. The ARDS Definition Task Force., 2012. Acute respiratory distress syndrome: the Berlin definition JAMA. 307 (23), 2526-2533. 27. Vieira RP, Müller T, Grimm M, von Gernler V, Vetter B, Dürk T, Cicko S, Ayata CK, Sorichter S, Robaye B, Zeiser R, Ferrari D, Kirschbaum A, Zissel G, Virchow JC, Boeynaems JM, Idzko M., 2011. Purinergic receptor type 6 contributes to airway inflammation and remodeling in experimental allergic airway inflammation. Am J Respir Crit Care Med. 184 (2), 215-223. 39 Figures and Figures Legends Figure 1 Figure 1 – Inflammatory profile in BALF (total cells – panel A; neutrophils – panel B) and the number of polymorphonuclear cells in the lung parenchyma (notably neutryphils – panel C) and the representative photomicrographs of control (panel D), LPS i.t. (panel E) and LPS i.t + laser (panel F) in the pulmonary (IT) model of ARDS. In panel A, B and C, ***p<0.001; **p<0.01 and *p<0.05. 40 Figure 2 Figure 2 – Cytokines levels (IL-1beta, IL-6, KC, TNF-alpha and IL-10) in BALF in a pulmonary (IT) model of ARDS. In panel A, B, C and D, *p<0.05. 41 Figure 3 Figure 3 – Cytokines levels (IL-6 and TNF-alpha) in serum in a pulmonary (IT) model of ARDS (panels A and B, respectively). In panel A, **p<0.01 and in panel B, ***p<0.001. 42 Figure 4 Figure 4 – Inflammatory profile in BALF (total cells – panel A; neutrophils – panel B) and the number of polymorphonuclear cells in the lung parenchyma (notably neutryphils – panel C) and the representative photomicrographs of control (panel D), LPS i.t. (panel E) and LPS i.t + laser (panel F) in the extra-pulmonary (IP) model of ARDS. In panel A, B and C, ***p<0.001. 43 Figure 5 Figure 5 – Cytokines levels (IL-1beta, IL-6, KC, TNF-alpha and IL-10) in BALF in a extrapulmonary (IP) model of ARDS. In panel A, B, C and D, ***p<0.001 and **p<0.01. 44 Figure 6 Figure 6 – Cytokines levels (IL-6 and TNF-alpha) in serum in an extrapulmonary (IP) model of ARDS (panels A and B, respectively). In panel A, ***p<0.001 and in panel B, *p<0.05. 45 5. Considerações Finais O presente estudo mostrou pela primeira vez os efeitos da laserterapia (830 nm) em uma comparação entre um modelo de SDRA intrapulmonar e extrapulmonar em camundongos BALB/c, revelando que laser (830 nm) foi eficaz na redução da inflamação pulmonar em ambos modelos experimentais. A síndrome do desconforto respiratório agudo (SDRA) apresenta altas taxas de mortalidade, morbidade, da quantidade e do estado (ativação e taxa de apoptose) dos neutrófilos que podem ser correlacionados com o prognóstico de doenças. No presente estudo, verificou-se que ambos os modelos (intrapulmonar e extrapulmonar) de SDRA induzido por LPS aumentou significativamente a migração dos neutrófilos para os pulmões, de acordo com a literatura (37, 38, 39, 40). Além disso, nossos resultados mostraram também que a laserterapia foi eficaz na redução da migração de neutrófilos para os pulmões, tal como demonstrado por meio da contagem de neutrófilos no lavado bronco alveolar e também no parênquima pulmonar. Em consideração aos resultados, embora os apresentados aqui foram obtidos a partir de um modelo experimental, nosso experimento demonstrou que a inflamação pulmonar das vias aéreas foi reduzida com LBI através de uma forma não invasiva, podemos propor que o laser de baixa intensidade pode ser amplamente utilizado como uma terapia coadjuvante no tratamento clínico de desordens pulmonares e como uma alternativa na tratamento da inflamação pulmonar aguda, levando em consideração a reflexão, absorção e penetração que podem influenciar diretamente o tecido a ser tratado, devido a quantidade de luz penetrada, apesar do fato de que existe pouca informação sobre como a luz pode modular o processo inflamatório pulmonar através de alguns minutos de irradiação. Com isto em mente, é claro que uma compreensão do mecanismo de ação da luz em lesão pulmonar aguda após indução a SDRA seriam úteis para o desenvolvimento de tipos de tratamentos. Concluímos que o presente estudo mostra a laser terapia como uma excelente estratégia para o tratamento de SDRA, considerando que o laser diminuiu as citocinas pró-inflamatórias e aumentou as citocinas inflamatórias 46 como demonstrado, possivelmente melhorando a função respiratória. No entanto, mais estudos com o objetivo de entender os mecanismos celulares do laser e os processos envolvidos nos efeitos antiinflamatórios devem ser estudados. 47 6. Referências Bibliográficas 1. Adalberto Sperb Rubin, José da Silva Moreira, Nelson da Silva Porto, Klaus Loureiro Irion, Rafael Franco Moreira, Bruno Scheidt. Fibrose pulmonar idiopática: características clínicas e sobrevida em 132 pacientes com comprovação histológica 2. Geiser, T. Mechanisms of alveolar epithelial repai in acute lung injury – a translational approach. Swiss Med WKLY. ; v. 133, n.1, p. 586-590, 2003. 3. Browne, G. W.; Pitchumoni, C. S. Pathophysiology of pulmonary complications of acute pancreatitis. World J Gastroenteral. v. 12, n. 44, p. 7087-7096, 2006. 4. Kiss, J.; Kaapa, P.; Savunent, T. Antioxidants combined with NO donor enhance systemic inflammation in acute lung injury in rats. Scandinavian Cardiovascular Journal. V. 41, p. 186 – 191, 2007. 5. Paulo Antoniazzi; Gerson Alves Pereira Júnior; Flávio Marson; Mario Abeid; Sérgio Baldisserotto & Anibal Basile-Filho. Acute Respiratory Distress Syndrome (ARDS), Medicina, Ribeirão Preto, 31: 493-506, out./dez. 1998. 6. Santos, F. B. et al. Time course of lung paranchyma remodeling in pulmonary and extrapulmonary acute lung injury. J Appl Physiol. V. 100, p. 98 – 106, 2006. 7. Pelosi P, D’Onofrio D, Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J, 2003;42:48s-56s 8. Eisner MD, Yelin EH, Trupin L, Blanc PD. Asthma and smoking status in a population based study of California adults. Public Health Rep. 2001 Mar-Apr;116(2):148-57 9. Desai SR, Wells AU, Suntharalingam G, Rubens MB, Evans TW, Hansell DM. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary injury: Radiology. 2001 Mar;218(3):689-93. a comparative CT study. 48 10. Donnelly, E. J. et al. Interleukin – 8 na development of adult respiratory disstress syndrome in at-risk patient groups. Lancet. v. 341, p. 643-647, 1993. 11. Kurdowska, A. et al. Anti- interleukin-8 autoantibodies in patientes at risk for acute respiratory distress syndrome. Crit Care Med., v. 30, p. 23352337, 2002. 12. Petersen, A. M. W. ; Pedersen, B. K. The anti-inflamatory effect of exercises. J Appl Physiol. v. 98, p. 1154-1162, 2005. 13. Yang, Y.; Chen, S.; Ge, X. Role of interleukin – 18 in the development of acute pulmonary injury induced by intestinal ischemia/reperfusion and its possible mechanism. Gastroenterology. V. 22, p. 253-260, 2007. 14. Gutelkin, F. A. et al. Leptin treatment ameliorats acute lung injury in rats with carulein induced acute pancrestitis. World J Gastroenterol. v. 13, n.21, p. 2932-2938, 2007. 15. Franco M, Bagagli E, Scapolio S, Lacaz CS. A critical analysis of isolation of Paracoccidioides brasiliensis from soil. Med Mycol 2000; 38: 185-191. 16. Maniatis NA, Orfanos SE. The endothelium in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care. 2008;14:22–30. 17. Weiss, N. e Oron, U. Enhancement of muscle regeneration in the rat gastrocnemius muscle by low energy laser irradiation. Anat. Embryol, V. 186, p. 497-503, 1992. 18. Rochkind, S. et al. Systemic effects of Low-Power Laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers Surg Med, v.9, p.174-182, 1989. 19. Mester, A.F; Mester, A. Wound Healing. Laser Therapy. V. I, n. 1, p. 7, 1989. 20. Trelles, M.A e Mayayo, E. Bone fracture consolidates faster with lowpower laser. Lasers Surg. Med. V. 7, p. 36-45, 1987. 21. Luger, E.J. et al. Effect of low-Power Laser Irradiation on the Mechanical Properties of Bone Fracture Healing in Rats. Laser Surg. Med. V. 22, n. 2, p. 97-102, 1998. 49 22. Manoel Carneiro Oliveira-Junior, Aldaíza Salomão Monteiro, Ernesto César Pinto Leal-Junior, Egberto Munin, Rodrigo Aléxis Lazo Osório, Wellington Ribeiro and Rodolfo Paula Vieira, Low-level Laser Therapy Ameliorates CCl4-induced Liver Cirrhosis in Rats; Photochemistry and Photobiology, 2013, 89: 173–178. 23. Flávia Mafra de Lima, Luana Vitoretti,Fernando Coelho, Regiane Albertini, Ana Cristina Breithaupt-Faloppa, Wothan Tavares de Lima, Flávio Aimbire; Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion; Lasers Med Sci (2013) 28:551–564 DOI 10.1007/s10103-012-1088-1. 24. F. Mafra de Lima, K.T. Naves, A.H. Machado, R. Albertini, A.B. Villaverde, F. Aimbire; Lung inflammation and endothelial cell damage are decreased after treatment with phototherapy (PhT) in a model of acute lung injury induced by Escherichia coli lipopolysaccharide in the rat; Cell Biology International 33 (2009) 1212e1221. 25. F. Aimbire, F.V. Santos, R. Albertini, H.C. Castro-Faria-Neto, J. Mittmann, C. Pacheco-Soares; Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-κB dependent mechanism; International Immunopharmacology (2008) 8, 603–605. 26. F. Mafra de Lima, M.Sc., A. Balbin Villaverde, Ph.D., R. Albertini, Ph.D., A.P. Ligeiro de Oliveira, Ph.D.,H.C. Castro Faria Neto, Ph.D. and F. Aimbire, Ph.D; Low-Level Laser Therapy Associated to N-Acetylcysteine Lowers Macrophage Inflammatory Protein-2 (MIP-2) mRNA Expression and Generation of Intracellular Reactive Oxygen Species in Alveolar Macrophages; Photomedicine and Laser Surgery, Volume 28, Number 6, 2010, Pp. 763–771, DOI: 10.1089/pho.2009.2638. 27. Kashanskaia EP, Fedorov AA., Low-intensity laser radiation in the combined treatment of patients with chronic obstructive bronchitis, PMID: 19514298, Vopr Kurortol Fizioter Lech Fiz Kult. 2009 Mar-Apr; (2):19-22. 50 28. de Lima FM , Villaverde AB , Albertini R , Correa JC , Carvalho RL , Munin E , Araujo T , Silva JA , Aimbire F. Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines, Lasers Surg Med. 2011 Jul;43(5):410-20. doi: 10.1002/lsm.21053 29. F. Aimbire, R. Albertine, R. G. de. Magalhães, R. A. B. Lopes-Martins, H. C. Castro-Faria-Neto, R. A. Zângaro, M. C. Chavantes, M. T. T. Pacheco. Effect of LLLT Ga–Al–As (685 nm) on LPS-induced inflammation of the airway and lung in the rat, Lasers in Medical Science (2005) 20: 11–20 DOI 10.1007/s10103-005-0339-9 30. Santos, F. B. et al. Time course of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury. J Appl Physiol. v. 100, p. 98-106, 2006. 31. Vieira RP, Toledo AC, Ferreira SC, Santos AB, Medeiros MC, Hage M, Mauad T, Martins Mde A, Dolhnikoff M, Carvalho CR. Airway epithelium mediates the anti-inflammatory effects of exercise on asthma. Respir Physiol Neurobiol. 2011 Mar 15;175(3):383-389. 32. Silva RA, Vieira RP, Duarte AC, Lopes FD, Perini A, Mauad T, Martins MA, Carvalho CR. Aerobic training reverses airway inflammation and remodelling in an asthma murine model. Eur Respir J. 2010 May;35(5):994-1002. 33. Vieira RP, Claudino RC, Duarte AC, Santos AB, Perini A, Faria Neto HC, Mauad T, Martins MA, Dolhnikoff M, Carvalho CR. Aerobic exercise decreases chronic allergic lung inflammation and airway remodeling in mice. Am J Respir Crit Care Med. 2007 Nov 1;176(9):871-7. 34. Vieira RP, Duarte AC, Santos AB, Medeiros MC, Mauad T, Martins MA, Carvalho CR, Dolhnikoff M. Exercise reduces effects of creatine on lung. Int J Sports Med. 2009 Sep;30(9):684-90. 51 35. Vieira RP, Toledo AC, Silva LB, Almeida FM, Damaceno Rodrigues NR, Caldini EG, Santos AB, Rivero DH, Hizume DC, Lopes FD, Olivo CR, Castro Faria Neto HC, Martins MA, Saldiva PH, Dolhnikiff M. Antiinflamatory effects of aerobic exercise in mice exposed to air pollution. Med Sci Sports Exerc. v. 44, p.1227-1234, jul 2012. 36. Vieira, R.P., de Andrade, V.F., Duarte, A.C., Dos Santos, A.B., Mauad, T., Martins, M.A., Dolhnikoff, M., Carvalho, C.R., 2008. Aerobic conditioning and allergic pulmonary inflammation in mice ii: effects on lung vascular and parenchymal inflammation and remodeling. American Journal of Physiology: Lung Cellular and Molecular Physiology 295, L670–L679. 37. Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Cell Lung Mol. Physiol 295: L379-L399. 38. Silva PL, Garcia CS, Maronas PA, Cagido VR, Negri EM, DamacenoRodrigues NR, Ventura GM, Bozza PT, Zin WA, Capelozzi VL, Pelosi P, Rocco PR (2009) Early short-term versus prolonged low-dose methylprednisolone therapy in acute lung injury. Eur Respir J 33:634645. 39. Gonçalves CTR, Gonçalves CGR, Almeida FM, Lopes FDTQS, Silva LFF, Marcourakis T, Castro-Faria-Neto HC, Vieira RP, Dolhnikoff M. Protective effects of aerobic exercise on acute lung injury induced by LPS in mice. Critical Care 16(5):R199. 40. Ramos DS, Olivo CR, Lopes FDTQS, Toledo AC, Martins MA, Osório RAL, Dolhnikoff M. Ribeiro W, RP Vieira. Low-intensity swimming training partially inhibits lipopolysaccharide-induced acute lung injury. Med Sci Sports Exer 42(1):113-119, 2010. 41. Flávia Mafra de Lima, Luana Vitoretti, Fernando Coelho, Regiane Albertini, Ana Cristina Breithaupt-Faloppa, Wothan Tavares de Lima, Flávio Aimbire. Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci, Vol 28: 551-564, 2012. 52 42. F. Aimbire, R. Albertini, M.T.T. Pacheco, H.C. Castro-Faria-Neto, P.S.L.M. Leonardo V.V. Iversen R.A.B. Lopes-Martins, Ph.D., and J.M. Bjordal. Low-Level Laser Therapy Induces Dose-Dependent Reduction of TNF_ Levels in Acute Inflammation, Photomedicine and Laser Surgery Volume 24, Pp. 33–37 Number 1, 2006. 43. Gould, R. Gordon. "The LASER, Light Amplification by Stimulated Emission of Radiation". In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959. p. 128. OCLC 02460155. 44. G. P. Karman, G. S. McDonald, G. H. C. New, J. P. Woerdman, "Laser Optics: Fractal modes in unstable resonators", Nature, Vol. 402, 138, November 11, 1999. 53 ANEXOS Anexo I Aprovação do Comitê de Ética em Uso de Animais (CEUA) da Uninove 54 55 56 Anexo II – Paper em segunda revisão Exercise deactivates leukocytes in asthma Rodolfo P Vieira1,2*, Ronaldo A Silva2, Manoel C Oliveira-Junior2, Flávia R Greiffo1, Ana Paula Ligeiro-Oliveira1, Milton A Martins3, Celso R F Carvalho2 1- Nove de Julho University (UNINOVE), Sao Paulo, Brazil. 2- University of Sao Paulo, School of Medicine (LIM 34), Sao Paulo, Brazil. 3- University of Sao Paulo, School of Medicine (LIM 20), Sao Paulo, Brazil. *Corresponding author Rodolfo P Vieira, BSc, PhD. Nove de Julho University (UNINOVE) Laboratory of Pulmonary and Exercise Immunology (LIPEX) Rua Vergueiro 239/245, Vergueiro 01504-000, São Paulo – SP, Brazil Phone +55 11 3385-9222 Fax +55 11 3385-9222 Running title: Exercise reduces lung inflammation. Section: Immunology 57 Abstract Leukocytes play a central role in asthma physiopathology. Aerobic training (AT) reduces leukocytes recruitment to the airways, but the effects of AT on some aspects of leukocytes activation in asthma are unknown. Therefore, the effects of 4 weeks of AT on airway inflammation, pulmonary and systemic Th2 cytokines levels, leukocytes expression of pro and anti-inflammatory, pro-fibrotic, oxidants and anti-oxidants mediators in an experimental model of asthma was investigated. AT reduced the levels of IL-4, IL-5, IL-13 in bronchoalveolar lavage fluid (BALF) (p<0.001), serum levels of IL5, while increased BALF and serum levels of IL-10 (p<0.001). In addition, AT reduced leukocytes activation, showed through decreased expression of Th2 cytokines (IL-4, IL5, IL-13; p<0.001), chemokines (CCL5, CCL10; p<0.001), adhesion molecules (VCAM1, ICAM-1; p<0.05), reactive oxygen and nitrogen species (GP91phox and 3nitrotyrosine; p<0.001), inducible nitric oxide synthase (iNOS; p<0.001), nuclear factor kB (NF-kB; p<0.001) while increased the expression of anti-inflammatory cytokine (IL10; p<0.001). AT also decreased the expression of growth factors (TGF-beta, IGF-1, VEGF and EGFr; p<0.001). We conclude that AT reduces the activation of peribronchial leukocytes in a mouse model of allergic asthma, resulting in decreased airway inflammation and Th2 response. Key words: asthma, exercise, immunology, allergy, cytokines. 58 Introduction A growing number of studies point out the beneficial effects of regular practice of aerobic training (AT) for the management of asthmatic individuals [2, 5, 6, 7, 9, 13, 19, 23, 24, 25, 26, 30, 31, 32, 36]. In summary, these studies demonstrate that AT significantly improves asthma symptoms, including dyspnea and exercise-induced bronchoconstriction (EIB), health-related quality of life, and also reduces corticosteroid needing as well as reduces the levels of exhaled nitric oxide, suggesting a possible anti-inflammatory effects of AT for the airways [7, 9, 23, 24, 25, 26, 30, 31]. More recently, a study from Mendes et al (2011) demonstrated for the first time that AT reduces eosinophilic inflammation in asthmatic patients, confirming the antiinflammatory effects of AT [24]. However, the mechanisms involved in the antiinflammatory effects of AT for asthma remains not fully elucidated. In this way, a growing number of experimental studies have been performed aiming to investigate the possible cellular and molecular mechanism underlying the anti-inflammatory effect of AT in animals’ models of asthma, currently experimental models of acute and chronic allergic airway inflammation [11, 12, 27, 28, 29, 34, 35, 37, 38, 39]. In general, these studies have demonstrated that AT reduces eosinophilic and lymphocytic airway inflammation, Th2 cytokines production, nuclear factor kB (NFkB) activation, while increases the expression of anti-inflammatory cytokines IL-1ra and IL-10 [11, 12, 27, 28, 29, 34, 35, 37, 38, 39]. From these studies, some initial evidences of the cellular and molecular effects of AT in experimental models of acute and chronic allergic airway inflammation were identified. For instance, Pastva et al., 2004 and 2005 demonstrated that part of the anti-inflammatory effects of AT could be attributed to reduced NF-kB activation and glucocorticoid receptor expression in peribronchial leuckocytes and also in airway epithelium [28, 29]. Following Pastva’s study, Vieira et al., 2007 demonstrated that AT also induces the production of anti-inflammatory 59 cytokine IL-10 [37], a finding that was further confirmed by Silva et al., 2010, that elegantly added the stimulatory effect of AT on IL-1ra expression [35]. However, the literature demonstrates that the leukocytes are responsible also for the release of Th2 cytokines, growth factors and oxidants, which play a central role in the inflammatory and remodeling process in asthma [3, 17, 18, 20, 21, 22, 33]. Therefore, the present study investigate the effects of AT on chronic allergic airway inflammation, focusing on the effects of AT on peribronchial leukocytes activation (i.e. expression of pro-inflammatory, anti-inflammatory, pro-fibrotic, oxidants and antioxidants and growth factors by leukocytes) involved in the inflammatory and remodeling process in asthma. Materials and Methods This study was approved by the ethical committee of the School of Medicine of the University of Sao Paulo. The “Guide for care and use of laboratory animals” was followed (NIH publication 85-23, revised 1996). In addition, we state that the present manuscript is in accordance to the IJSM’s ethical standard [10]. Animals and Experimental Groups Thirty-two BALB/c male mice (20-25 g) were distributed in control (Control; n = 8), aerobic training (AT; n = 8), ovalbumin sensitized (OVA; n = 8) and ovalbumin sensitized + aerobic training (OVA+AT; n = 8) groups. We state that the immunohistochemical and the cytokines measurements in bronchoalveolar lavage fluid (BALF) were performed in the samples of previous study [37-39]. [ 60 Treadmill Training and Test Protocol Animals were adapted to treadmill training (15 min, 25% inclination and 0.2 km/h) during 3 days. In the following day, all animals were submitted to maximal exercise test, as previously described [37, 38]. The physical test was repeated 30 days after the beginning of AT. The results from physical test were presented in the previous study [39]. The treadmill physical training was performed during 4 weeks, 5x/week, 60 minutes per session, at low intensity (corresponding to 50% of maximal exercise capacity reached in the maximal exercise test). The exercise has started one day after the first OVA or saline inhalation exposure [39]. Chronic Model of Allergic Asthma Four intra-peritoneal (i.p.) injections of OVA (20ug per mouse) adsorbed with aluminum hydroxide or saline solution for control groups (non-sensitized mice) were performed on days 0, 14, 28 and 42. Twenty-one days after the first i.p. injection, mice were challenged with aerosolized OVA (1%) or with a saline solution 3 times a week until the 50th day [37, 38, 39]. Anesthesia and Animals’ Euthanasia Seventy-two hours after the last inhalation day and exercise test, animals were anesthetized by intramuscular injection of ketamine (50 mg/kg) and xylazine (40 mg/kg), and tracheostomized to collect bronchoalveolar lavage fluid (BALF). The blood was collected through the abdominal vein for the cytokines quantification, followed by euthanasia through exsanguinations. Bronchoalveolar Lavage Fluid (BALF) Procedures Lungs were gently washed with 1.5 ml of saline (administered as three 0.5ml volumes) via the tracheal cannula. Total cell counts were performed using a hematocytometer (Neubauer chamber) and the differential cell counts (300 cells per 61 lamina) were performed using cytospins preparations stained with May-GrunwaldGiemsa [27, 34, 37]. We clarify that the results of total and differential cell count was already presented in the following previous study [39]. Cytokines Measurements The levels of IL-4, IL-5, IL-10 and IL-13 were quantified in bronchoalveolar lavage and in serum by ELISA using commercial kits (BD Elispot kit, CA, USA) according to the manufacturer recommendation. Lung Histology, Immunohistochemistry and Morphometic Analysis Lungs were fixed in formalin and embedded in paraffin. Five-micrometer thick sections were stained with hematoxylin and eosin for lung structure and inflammation analysis [37]. Immunohistochemistry was performed with anti–IL-4, anti–IL-5, anti–IL10, anti–IL-13, anti-CCL5, anti-CCL10, anti-VCAM-1, anti-ICAM-1, anti-GP91phox, anti-3nitrotyrosine, anti-NF-kB, anti-iNOS, anti-TGF-beta, anti-IGF-1, anti-VEGF and antiEGFr antibodies (Santa Cruz Biotechnology, Santa Cruz, CA), using a biotin– streptavidin–peroxidase method. With a 50-line, 100-point grid connected to the ocular of the microscope, we assessed the peribronchial density of positive leukocytes for the markers described above, using a point-counting technique [37]. Counting was performed in 5 complete airways for each animal at 1,000x magnification. Results were expressed as positive cells per square millimeter [37]. 62 Statistical Analysis Parametric and nonparametric data were expressed as means ± SD and as medians ± 95% confidence interval (95% CI), respectively. Comparisons among groups were performed by one-way analysis of variance followed by the StudentNewman-Keuls post hoc test (parametric data) or by one-way analysis of variance on ranks followed by Dunn’s post-hoc test (nonparametric data); the significance level was adjusted to 95% (p<0.05). Results BALF Levels of Pro-inflammatory Th2 and Anti-inflammatory Cytokines Profile The levels of pro-inflammatory Th2 cytokines (IL-4, IL-5, IL-13) and antiinflammatory cytokine (IL-10) in BALF are presented in Figure 1A–1D, respectively. The results demonstrated that AT significantly reduced the levels of IL-4, IL-5 and IL-13 when compared with OVA group (p<0.01). The results also demonstrated that AT significantly increased the levels of IL-10 in both non-sensitized (AT) and sensitized (OVA+AT) groups (p<0.05). Systemic Th2 (IL-5) and Anti-inflammatory (IL-10) Response The levels of pro-inflammatory Th2 cytokine IL-5 and anti-inflammatory cytokine IL-10 are presented in Figure 2A–2B, respectively. The results demonstrated that AT significantly reduced the levels of IL-5 compared with OVA group (Figure 2A; p<0.01). The results also demonstrated that AT significantly increased the levels of IL-10 in both non-sensitized (AT) and sensitized (OVA+AT) groups (Figure 2B; p<0.05). 63 Peribronchial Leukocytes Expression of Th2 and Th1 Cytokines, Chemokines and Adhesion Molecules The expression of Th2 cytokines, Th1 cytokines, chemokines and adhesion molecules are presented in Figure 3A–3D, respectively. The results demonstrated that AT significantly reduced the expression of Th2 cytokines (IL-4, IL-5 and IL-13) by leukocytes when compared with OVA group (Figure 3A; p<0.001). The expression of Th1 cytokines (IL-2 and IFN-gamma) were not changed when compared all experimental groups (Figure 3B; p>0.05). The results also demonstrated that AT significantly reduced the expression of chemokines (CCL11 and CCL5) when compared with OVA group (Figure 3C; p<0.01). In addition, AT also significantly reduced the expression of adhesion molecules (VCAM-1 and ICAM-1) when compared with OVA group (Figure 3D; p<0.01). Expression of Oxygen and Nitrogen Reactive Species, Anti-inflammatory Cytokine and NF-kB by Peribronchial Leukocytes The expression of Gp91Phox and 3-nitrotyrosine (Figure 4A), iNOS (Figure 4B), IL-10 (Figure 4C) and NF-kB (Figure 4D) are presented in Figure 4. The results demonstrated that AT significantly reduced the expression of Gp91Phox and 3nitrotyrosine (Figure 4A; p<0.001). The results also demonstrated that AT significantly reduced the iNOS expression (Figure 4B; p<0.001). On the other hand, AT in sensitized mice significantly increased the expression of anti-inflammatory cytokine IL10 (Figure 4C; p<0.01). In addition, AT also significantly reduced the NF-kB expression (Figure 4D; p<0.001). 64 Peribronchial Leukocytes Derived Growth Factors Figure 5 A-D shows the expression of growth factors TGF-beta, IGF-1, VEGF and EGFr, respectively. The results demonstrated that AT significantly reduced OVAinduced the expression of all growth factors investigated, as TGF-beta (p<0.01), IGF-1 (p<0.001), VEGF (p<0.001) and EGFr (p<0.01). Discussion The present study showed for the first time that AT inhibit the lung leukocytes activation seen in an experimental model of allergic asthma, demonstrated through the reduced expression of cytokines, chemokines, adhesion molecules, reactive oxygen and nitrogen species, NF-kB and growth factors by peribronchial leukocytes, while increases the expression of the anti-inflammatory cytokine IL-10. Leukocytes play a central role in the pathophysiology of asthma [3, 17, 18, 20, 21, 22, 33]. Leukocytes, especially Th2 leukocytes are differentiated leukocytes responsible for release of Th2 cytokines, i.e. IL-4, IL-5 and IL-13, which exert proinflammatory and pro-fibrotic effects on asthma [3, 17, 18, 20, 21, 22, 33]. In summary, IL-4, IL-5 and IL-13 are involved in eosinophils, dendritic cells and T-lymphocytes differentiation, proliferation and activation, exerting their effects both in the lungs as systemically [3, 17, 18, 20, 21, 22, 33]. In the present study we found that AT significantly reduced not only the expression of IL-4, IL-5 and IL-13 by leukocytes but also the BALF levels of IL-4, IL-5 and IL-13, strongly suggesting that the reduced expression of IL-4, IL-5 and IL-13 by lung leukocytes reflect leukocytes deactivation. Furthermore, the results also demonstrated that AT significantly reduced the serum levels of IL-5, showing that the effects of AT on allergic response is not limited to the lungs, but also may involve a systemic component. However, the results found in the present study may not be applied to circulating leukocytes, an issue that should be investigated in further studies. 65 Beyond Th2 cytokines, chemokines, as CCL5 and CCL11 present an important role in chronic allergic airway inflammation [4]. These chemokines regulates eosinophils trafficking to the airways and are present at increased levels in the asthmatic airways and also related with late onset asthmatic response [4]. In the present study, we demonstrate that AT significantly reduced the expression of CCL5 and CCL11 by leukocytes, reinforcing the anti-inflammatory milieu induced by exercise. However, many other mediators are involved in the eosinophilic trafficking to the airways, as adhesion molecules. Adhesion molecules, i.e. VCAM-1 and ICAM-1 are well studied molecules in inflammatory diseases and are found abundantly in the airways of asthmatic patients and in animal models of asthma [8, 18, 40]. Increased expression of these molecules is thought to exert a central role in the eosinophils adhesion and transmigration during asthmatic inflammation [3]. Again, the present study shown that AT significantly reduced the expression of ICAM-1 and VCAM-1 by peribronchial leukocytes, accounting to the anti-inflammatory effects of AT. Following unresolved chronic allergic airway inflammation, airway remodeling is a key feature of asthma and is thought to be irreversible and the main component of airway hyperresponsiveness and obstruction [21]. Airway remodeling is characterized by hypertrophy and hyperplasia of airway epithelial cells and smooth muscle, mucus hypersecretion and increased deposition of extra-cellular matrix proteins in airway walls [21]. Different proteins families are involved in the remodeling process in asthma, as growth factors (TGF-beta, IGF-1, VEGF and EGF), matrix metalloproteases (MMPs) and tissue inhibitor of matrix metalloproteases (TIMPs) [1, 16]. Of note, growth factors stimulate the synthesis of extra-cellular matrix proteins and are accredited to be the main mediators involved in remodeling [1, 16]. In the present study we show for the first time that AT inhibited the lung expression of TGF-beta, IGF-1, VEGF and EGFr in OVA-sensitized animals. Therefore, these results explicitly show that AT may inhibit the airway remodeling process. 66 As part of the anti-inflammatory and anti-fibrotic effects of AT in chronic allergic airway inflammation, we have investigated the effects of AT on the expression of reactive oxygen species (ROS), reactive nitrogen species (RNS), anti-inflammatory cytokine IL-10 and nuclear transcription factor NF-kB. Regarding the role of ROS and RNS in the pathogenesis of asthma, the literature clearly demonstrates that increased ROS and RNS production modulates Th2 inflammatory and fibrotic response in asthma [33, 41]. In agreement with the current literature, the present study demonstrated that OVA sensitized animals presented increased expression of 3-nitrotyrosine and Gp91phox [33, 41]. On the other hand, AT significantly reduced their expression, confirming the inhibitory effects of AT on reactive oxygen and nitrogen species synthesis by leukocytes, which may be involved in these anti-inflammatory and antifibrotic effects of AT in asthma. In addition, a growing number of studies demonstrates that IL-10 present anti-inflammatory properties, by inhibiting the eosinoplilic inflammation and Th2 cytokines release, notably IL-4, IL-5 and IL-13 [17, 22]. In this way, the present results demonstrated that AT training significantly increased the expression of IL-10 by leukocytes as well as increased the levels IL-10 in the lung and also systemically. However, although we observe a strong stimulus from AT on IL-10 release by leukocytes, the exact molecular mechanisms of IL-10 mediating the antiinflammatory effects of AT in asthma remains to be further investigated. Finally, we also investigated the effects of AT on NF-kB expression by peribronchial leukocytes. Several studies show increased NF-kB expression in airways of asthmatic patients and in animal models of asthma [8, 14, 15, 35, 38, 39]. These studies show that NF-kB controls not only the expression of pro-inflammatory cytokines, but also the expression of pro-fibrotic mediators [8, 14, 15, 35, 38, 39]. Our study has confirmed that ovalbumin-induced chronic allergic lung inflammation is followed by increased expression of NF-kB in leukocytes. However, again, the results of the present study showed that AT significantly reduced NF-kB expression, possibly accounting as part of 67 mechanisms involved in the anti-inflammatory and anti-fibrotic effects of AT in a mouse model of asthma. In conclusion, the present study shows that aerobic training reduces chronic allergic airway inflammation and remodeling in a mouse model of asthma and these results seem to be partially mediated by deactivation of peribronchial leukocytes. 68 References 1. Al-Muhsen, S., Johnson, J.R., Hamid, Q., 2011. Remodeling in asthma. J. Allergy Clin. Immunol. 128, 451-462. 2. American Association of Cardiovascular & Pulmonary Rehabilitation Guidelines of Pulmonary Rehabilitation Programmes. 1998 (2nd ed). Human Kinetics Publishers, Champaign, Illinois, USA. 3. Brooks, A.M, Bates, M.E., Vrtis, R.F., Jarjour, N.N., Bertics, P.J., Sedgwick, J.B., 2006. Urokinase-type plasminogen activator modulates airway eosinophil adhesion in asthma. Am. J. Respir. Cell Mol. Biol. 35, 503-511. 4. Coleman, J.M., Naik. C., Holguin, F., Ray, A., Ray, P., Trudeau, J.B., Wenzel, S.E., 2012. Epithelial eotaxin-2 and eotaxin-3 expression: relation to asthma severity, luminal eosinophilia and age at onset. Thorax. 67, 1061-1066. 5. Disabella, V., Sherman, C., 1998. Exercise for asthma patients: little risk, big rewards. Phys. Sportsmed. 26, 75-84. 6. Engström, I., Fällström, K., Karlberg, E., Sten, G., Bjure, J., 1991. Psychological and respiratory physiological effects of a physical exercise programme on boys with severe asthma. Acta Paediatr. Scand. 80, 1058-1065. 7. Fanelli, A., Cabral, A.L., Neder, J.A., Martins, M.A., Carvalho, C.R., 2007. Exercise training on disease control and quality of life in asthmatic children. Med. Sci. Sports Exerc. 39, 1474-1480. 8. Ferreira, S.C., Toledo, A.C., Hage, M., Santos, A.B., Medeiros, M.C., Martins, M.A., Carvalho, C.R., Dolhnikoff, M., Vieira, R.P., 2010. Creatine activates airway epithelium in asthma. Int. J. Sports Med. 31, 906-912. 69 9. Gonçalves, R.C., Nunes, M.P.T., Cukier, A., Stelmach, R., Martins, M.A., et al. 2008. Effects of an aerobic physical training program on psychosocial characteristics qualityof-life, symptoms and exhaled nitric oxide in individuals with moderate or severe persistent asthma. Rev. Bras. Fisioter. 12, 127-135. 10. Harriss, D. J., Atkinson, G., 2011. Update – ethical standards in sport and exercise science research. Int. J. Sports Med. 32, 819-821. 11. Hewitt, M., Creel, A., Estell, K., Davis, I.C., Schwiebert, L.M., 2009. Acute exercise decreases airway inflammation, but not responsiveness, in an allergic asthma model. Am. J. Respir. Cell Mol. Biol. 40, 83-89. 12. Hewitt, M., Estell, K., Davis, I.C., Schwiebert, L.M., 2010. Repeated bouts of moderate-intensity aerobic exercise reduce airway reactivity in a murine asthma model. Am. J. Respir. Cell Mol. Biol. 42, 243-249. 13. Huang, S.W., Veiga, R., Sila, U., Reed, E., Hines, S., 1989. The effect of swimming in asthmatic children-participants in a swimming program in the city of Baltimore. J. Asthma. 26, 117-121. 14. Imanifooladi AA, Yazdani S, Nourani MR. The role of nuclear factor-kappaB in inflammatory lung disease. Inflamm Allergy Drug Targets. 2010 Jul;9(3):197-205. 15. Janssen-Heininger YM, Poynter ME, Aesif SW, Pantano C, Ather JL, Reynaert NL, Ckless K, Anathy V, van der Velden J, Irvin CG, van der Vliet A. Nuclear factor kappaB, airway epithelium, and asthma: avenues for redox control. Proc Am Thorac Soc. 2009 May 1;6(3):249-55. 16. Kelly, E.A., Jarjour, N.N., 2003. Role of matrix metalloproteinases in asthma. Curr. Opin. Pulm. Med. 9, 28-33. 70 17. Ligeiro de Oliveira, A.P., Peron, J. P. S., Lino-dos-Santos-Franco, A., Acceturi, B.G., Vieira, R. P., Ibanez, O. M., Cabrera, W. H. K., Franco, M., Rizzo, L. V., Vargafitg, B.B., Tavares-de-Lima, W., 2013. Ovariectomized OVA-sensitized mice display increased frequency of CD4+Foxp3+ T regulatory cells in the periphery. Plos One. 8, e65674. 18. Ligeiro de Oliveira, A.P., Lino-dos-Santos-Franco, A., Acceturi, B.G., Hamasato, E.K., Machado, I.D., Gimenes Júnior, J.A., Vieira, R.P., Damazo, A.S., Farsky, S.H., Tavares-de-Lima, W., Palermo-Neto, J., 2012. Long-term amphetamine treatment exacerbates inflammatory lung reaction while decreases airway hyper-responsiveness after allergic stimulus in rats. Int. Immunopharmacol. 14, 523-529. 19. Livingstone, J.L., Gillespie, M., 1935. Value of breathing exercises in asthma. Lancet. 2, 705. 20. Lowder, T., Dugger, K., Deshane, J., Estell, K., Schwiebert, L.M., 2010. Repeated bouts of aerobic exercise enhance regulatory T cell responses in a murine asthma model. Brain Behav. Immun. 24, 153-159. 21. Mauad, T., Bel, E.H., Sterk, P.J., 2007. Asthma therapy and airway remodeling. J. Allergy Clin. Immunol. 120, 997-1009; quiz 1010-1011. 22. Mays, L.E., Ammon-Treiber, S., Mothes, B., Alkhaled, M., Rottenberger, J., MüllerHermelink, E.S., Grimm, M., Mezger, M., Beer-Hammer, S., Von Stebut, E., Rieber, N., Nürnberg, B., Schwab, M., Handgretinger, R., Idzko, M., Hartl, D., Kormann, M.S., 2013. Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. J. Clin. Invest. 123, 1216-1228. 23. Mendes, F.A., Almeida, F.M., Cukier, A., Stelmach, R., Jacob-Filho, W., et al. 2011. Effects of aerobic training on airway inflammation in asthmatic patients. Med. Sci. Sports Exerc. 43, 197-203. 71 24. Mendes, F.A., Gonçalves, R.C., Nunes, M.P., Saraiva-Romanholo, B.M., Cukier, A., et al. 2010. Effects of aerobic training on psychosocial morbidity and symptoms in patients with asthma: a randomized clinical trial. Chest. 138, 331-337. 25. Moreira, A., Delgado, L., Haahtela, T., Fonseca, J., Moreira, P., et al. 2008. Physical training does not increase allergic inflammation in asthmatic children. Eur. Respir. J. 32, 1570-1575. 26. Neder, J.A., Nery, L.E., Silva, A.C., Cabral, A.L., Fernandes, A.L., 1999. Short-term effects of aerobic training in the clinical management of moderate to severe asthma in children. Thorax. 54, 202-206. 27. Olivo, C.R., Vieira, R.P., Arantes-Costa, F.M., Perini, A., Martins, M.A., Carvalho, C.R.F., 2012. Effects of aerobic exercise on chronic allergic airway inflammation and remodeling in guinea pigs. Resp. Physiol. Neurobiol. 182, 81-87. 28. Pastva, A., Estell, K., Schoeb, T.R., Atkinson, T.P., Schwiebert, L.M., 2004. Aerobic exercise attenuates airway inflammatory responses in a mouse model of atopic asthma. J. Immunol. 172, 4520-4526. 29. Pastva, A., Estell, K., Schoeb, T.R., Schwiebert, L.M., 2005. RU486 blocks the antiinflammatory effects of exercise in a murine model of allergen-induced pulmonary inflammation. Brain Behav. Immun. 19, 413-422. 30. Pearson, R.S., 1950. The management of asthma. Br. Med. J. 1, 1311-1314. 31. Ram, F.S., Robinson, S.M., Black, P.N., Picot, J. 2005. Physical training for asthma. Cochrane Database Syst. Rev. CD001116. 32. Ramazanoglu, Y.M., Kraemer, R., 1985. Cardiorespiratory response to physical conditioning in children with bronchial asthma. Pediatr. Pulmonol. 1, 272-277. 72 33. Sevin CM, Newcomb DC, Toki S, Han W, Sherrill TP, Boswell MG, Zhu Z, Collins RD, Boyd KL, Goleniewska K, Huckabee MM, Blackwell TS, Peebles RS Jr. Deficiency of gp91phox inhibits allergic airway inflammation. Am J Respir Cell Mol Biol. 2013 Apr 16. [Epub ahead of print]. 34. Silva, A.C.D., Vieira, R.P., Nisiyama, M., Santos, A.B.G., Perini, A., Mauad, T., Dolhnikoff, M., Martins, M.A., Carvalho, C.R.F., 2012. Exercise inhibits allergic lung inflammation. Int. J. Sports Med. 33, 402-409. 35. Silva, R.A., Vieira, R.P., Duarte, A.C., Lopes, F.D., Perini, A., Mauad, T., Martins, M.A., Carvalho, C.R., 2010. Aerobic training reverses airway inflammation and remodeling in asthma murine model. Eur. Respir. J. 35, 994-1002. 36. Szentágothai, K., Gyene, I., Szócska, M., Osváth, P., 1987. Physical exercise program for children with bronchial asthma. Pediatr. Pulmonol. 3, 166-172. 37. Vieira, R.P., Claudino, R.C., Duarte, A.C., Santos, A.B., Perini, A., Faria Neto, H.C., Mauad, T., Martins, M.A., Dolhnikoff, M., Carvalho, C.R., 2007. Aerobic exercise decreases chronic allergic lung inflammation and airway remodeling in mice. Am. J. Respir. Crit. Care Med. 176, 871-877. 38. Vieira, R.P., de Andrade, V.F., Duarte, A.C., Dos Santos, A.B., Mauad, T., Martins, M.A., Dolhnikoff, M., Carvalho, C.R., 2008. Aerobic conditioning and allergic pulmonary inflammation in mice II: effects on lung vascular and parenchymal inflammation and remodeling. Am. J. Physiol. Lung Cell Mol. Physiol. 29, 670-679. 39. Vieira, R.P., Toledo, A.C., Ferreira, S.C., Santos, A.B.G., Medeiros, M.C., Hage, M., Mauad, T., Dolhnikoff, M., Martins, M.A., Carvalho, C.R.F., 2011. Airway epithelium mediates the anti-inflammatory effects of exercise on asthma. Respir. Physiol. Neurobiol. 175, 383-389. 40. Walsh, G.M., 2010. Antagonism of eosinophil accumulation in asthma. Recent Pat. 73 Inflamm. Allergy Drug Discov. 4, 210-213. 41. Yamamoto M, Tochino Y, Chibana K, Trudeau JB, Holguin F, Wenzel SE. Nitric oxide and related enzymes in asthma: relation to severity, enzyme function and inflammation. Clin Exp Allergy. 2012 May;42(5):760-8. 74 Figure and Figure Legends Figure 1 Figure 1 shows the levels of pro and anti-inflammatory cytokines in BALF. In figures 1 A, 1 B and 1 C, * p<0.01 when compared with all groups. In figure 1 D, * p<0.05 when compared with Control group. 75 Figure 2 Figure 2 shows the levels of pro and anti-inflammatory cytokines in serum. In figure 2 A, * p<0.01 when compared with all groups. In figure 2 B, * p<0.05 when compared with Control and OVA groups. 76 Figure 3 Figure 3 shows the expression of Th2 and Th1 cytokines, chemokines and adhesion molecules by peribronchial leukocytes. In figure 3 A, * p<0.001 when compared with all groups. In figure 3 B, no statistically differences were found comparing all groups. In figures 3 C and 3 D, * p<0.01 when compared with all groups. 77 Figure 4 Figure 4 shows the expression of oxygen and nitrogen reactive species, antiinflammatory cytokine and NF-kB by peribronchial leukocytes. In figures 4 A, 4 B and 4 D, * p<0.001 when compared with all groups. In figure 4 C, * p<0.01 when compared with all groups. 78 Figure 5 Figure 5 shows the expression of growth factors by peribronchial leukocytes. In figures 5 A and 5 D, * p<0.01 when compared with all groups. In figures 5 B and 5 C, * p<0.001 when compared with all groups. 79 Anexo II – Paper publicado 80 81 82 83 84