PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
CAMPUS CURITIBA
DEPARTAMENTO DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA
E DE MATERIAIS - PPGEM
IRAPUAN SANTOS
ANÁLISE DOS PARÂMETROS DE ENTRADA
NA ELETROEROSÃO DE PENETRAÇÃO
DA LIGA DE TITÂNIO TI-6AL-4V
CURITIBA
AGOSTO - 2010
IRAPUAN SANTOS
ANÁLISE DOS PARÂMETROS DE ENTRADA
NA ELETROEROSÃO DE PENETRAÇÃO
DA LIGA DE TITÂNIO TI-6AL-4V
Dissertação apresentada como requisito parcial à
obtenção do título de Mestre em Engenharia, do
Programa de Pós-Graduação em Engenharia
Mecânica e de Materiais, Área de Concentração
em Engenharia de manufatura, do Departamento
de Pesquisa e Pós-Graduação, do Campus de
Curitiba, da UTFPR.
Orientador: Prof. Milton Luiz Polli, Dr. Eng.
Co-orientador: Prof. Daniel Hioki, Dr. Eng.
CURITIBA
AGOSTO – 2010
TERMO DE APROVAÇÃO
IRAPUAN SANTOS
ANÁLISE DOS PARÂMETROS DE ENTRADA
NA ELETROEROSÃO DE PENETRAÇÃO
DA LIGA DE TITÂNIO TI-6AL-4V
Esta Dissertação foi julgada para a obtenção do título de mestre em engenharia, área de
concentração em engenharia de manufatura, e aprovada em sua forma final pelo
Programa de Pós-graduação em Engenharia Mecânica e de Materiais.
_________________________________
Prof. Giuseppe Pintaúde, Dr. Eng.
Coordenador de Curso
Banca Examinadora
___________________________
Prof. Jefferson de Oliveira Gomes, Dr. Eng.
ITA
______________________________
Prof. Giuseppe Pintaúde, Dr. Eng.
UTFPR
__________________________
__
Prof. Paulo André de Camargo Beltrão, Ph.D.
UTFPR
______________________________
Prof. Daniel Hioki, Dr. Eng.
Co-orientador - UTFPR
______________________________
Prof. Milton Luiz Polli, Dr. Eng.
Orientador – UTFPR
Curitiba, 30 de agosto de 2010
À minha mãe, dona Grá. “Mas é preciso ter
força, é preciso ter raça é preciso ter gana
sempre, quem traz no corpo a marca,
Maria, Maria, mistura a dor e a alegria”.
(Milton Nascimento e Fernando Brant)
À minha esposa, Bhel, por tudo. “À espera
de viver ao lado teu por toda a minha vida”.
(Tom Jobim / Vinícius de Moraes)
Ao meu filho, que vai chegar, que tenha
saúde, se orgulhe e seja um bom homem.
“Sua mãe e eu... lhe damos as boas
vindas... venha conhecer a vida”.
(Caetano Veloso)
AGRADECIMENTOS
Primeiro, ao amigo e competente orientador Milton Luis Polli, pela crença na
capacidade do mestrando, pelo apoio incondicional em todos os momentos e pela
paciência.
Também ao amigo e competente co-orientador Daniel Hioki, pelo zelo,
compreensão, apoio e paciência dedicados em todo o trabalho.
Ao professor e amigo Jefferson de Oliveira Gomes, do ITA, pelo duradouro apoio,
mesmo à distância, e pela cessão da barra de titânio utilizada em todos os ensaios, além
da preciosa colaboração na correção do trabalho.
Aos professores da banca Paulo André de Camargo Beltrão e Giuseppe Pintaúde,
pelas valiosas colaborações e pelo empenho em avaliar o trabalho
À empresa Seecil Carbon Technologies Ltda. (METGRAPHITE), pela doação da
barra de grafite EC 14, da MWI Inc.
À Universidade Tecnológica Federal do Paraná, campi Curitiba e Ponta Grossa,
pela cessão de recursos e locais.
Ao Programa de Pós-Graduação em Engenharia Mecânica e de Materiais da
UTFPR – PPGEM, pela oportunidade e recursos.
Em especial aos professores Davi Fusão, Sandra M. K. Tramontin, Anderson G. M.
Pukasiewicz, Guataçara dos Santos Júnior, Ivanir Luiz de Oliveira e Antão Rodrigo
Valentin (pelo empréstimo da bomba e das válvulas) e Marcos Antônio Hrentchechen,
colegas e amigos, pelo apoio e inestimável contribuição ao trabalho em sugestões e
ajuda nos ensaios.
Aos professores Cesar Arthur M. Chornobai e Marcela Fonseca Santos, pela ajuda
na preparação e utilização de solução e equipamentos da área química.
Ao professor e amigo Flávio Madalosso Vieira, pelo auxílio com normas e
ortografia.
À assistente administrativa do PPGEM, Maria da Graça Costa D. Constantino, pela
simpatia e disposição na solução de problemas administrativos do mestrado.
À Silvana Weinhardt de Oliveira, pela agilização de verba para manutenção
quando a máquina parou de funcionar antes dos ensaios.
Ao professor João Paulo Aires, chefe e amigo, pelo apoio e paciência com as
necessidades de tempo dispensado ao presente trabalho e pelo empréstimo do
notebook.
Aos professores Fábio Martins, Jucélio Tomaz, Giuseppe Pintaúde, José Germano
Hambrusch, Aloísio Schuitek (compadre), João Carlos Guimarães (obrigado pela mesa),
Mário Teske, Márcio Mafra, Carlos Bavastri, Paulo Beltrão, Ossimar Maranho, Antônio
Koslik Jr, Eduardo Nascimento, Maro Guérios, Paulo Borges, Walter Mikos, Pedro Amaral,
Cláudio Ávila, Carlos Cziulik, Sílvio Junqueira, Carlos Henrique da Silva, Ivan Canone,
Marcos F. de O. Schiefler F. e ao servidor Carlos Silvano “Lima” da Luz, pelo apoio,
amizade e ajuda na solução de situações técnicas durante todo o trabalho.
A todos os colegas de disciplinas no PPGEM, pelo mútuo apoio em diversos
momentos.
À acadêmica do curso técnico em mecânica da UTFPR (Ponta Grossa) Aline Franco
Ferreira e aos acadêmicos de Engenharia Mecânica da UTFPR, Jéssica Machado de
Oliveira (Ponta Grossa) e Adriano Gonçalves dos Passos (Curitiba), pelo inestimável
auxílio na fabricação e marcação de eletrodos, medição da massa dos corpos de prova e
eletrodos e medição da rugosidade, respectivamente.
Aos vigilantes da UTFPR Campus Ponta Grossa, Franco A. F. de Oliveira, Gelson L.
de Almeida, Gilberto L. Fornazari, Marcos R. dos Santos e Wellington D. dos Santos pelo
auxílio e alerta durante as usinagens que ocorreram nas madrugadas e fins de semana.
Ao amigo e Herr Professor Walter Lindolfo Weingaertner, pelo exemplo de
profissionalismo e competência acadêmica; pela oportunidade de trabalhar em pesquisa
pela primeira vez e por muito do que aprendi de usinagem.
SANTOS, Irapuan, Análise dos parâmetros de entrada na eletroerosão de penetração da
liga de titânio Ti-6Al-4V. 2010, Dissertação (Mestrado em Engenharia) - Programa de
Pós-graduação em Engenharia Mecânica e de Materiais, Universidade Tecnológica
Federal do Paraná, Curitiba, 126 f.
RESUMO
A eletroerosão tem servido de alternativa para usinagem de materiais de difícil
usinagem em geometrias complexas. As ligas de titânio são materiais de alto
desempenho e possuem características de resistência que tornam sua usinagem
complicada. A interação do material com a tecnologia de corte é interessante para a
produção de superfícies complexas em aplicações de alta tecnologia. Este trabalho
procura estabelecer, através de um método de planejamento de experimentos (DOE),
correlações entre o tempo de onda ligado, a corrente, o duty time e a polaridade na
eletroerosão de penetração da liga Ti-6Al-4V com eletrodos de grafite e os resultados do
trabalho em termos de taxa de remoção, desgaste relativo, rugosidade e camada branca
gerada. As relações entre os parâmetros de entrada e os parâmetros de saída do
processo foram tratadas estatisticamente e apresentadas em forma gráfica. Foi
verificada a vantagem em termos de acabamento da utilização da polaridade positiva no
eletrodo, Apesar da pequena remoção de material. Esta possibilidade é incomum e não
explorada na literatura. Foram também encontradas formações indesejáveis
(protuberâncias) para situações específicas de usinagem com polaridade negativa no
eletrodo, especialmente em maiores tempos de onda ligados, que comprometem a
utilização da superfície usinada.
Palavras-chave: eletroerosão, ligas de titânio, usinagem.
SANTOS, Irapuan, Analysis of the input parameters on Ti-6Al-4V alloy die-sinking EDM.
2010, Dissertation (Masters in Engineering) – Post-Graduate in Mechanical Engineering
and Materials. Federal University of Technology Paraná, Curitiba, 126 p.
ABSTRACT
Electro discharge machining has served as an alternative process for removing
materials difficult to machining in complex geometries. The titanium alloys are
considered high performance materials with high strength resistance characteristics
which implies its machining is rather complicated. Interaction between both material and
machining technology is useful to produce complex surfaces in high technologies
applications. This study aims to stablish the correlation between the factors: on-time,
current, duty time and polarity in electrical discharge machining of Ti-6Al-4V, whit
graphite electrodes. The approach employed involves the Design of Experiments (DOE)
Method. The control variables are: material removal rate, relative wear, roughness and
white layer generated thickness. The relationship between input parameters and output
process parameters were statistically examined. The obtained results indicated the
advantage in terms of finishing when using the positive polarity on the electrode, in
despite of the small material removal rate. This option is unusual and not found in
literature. Undesirable formations (protuberances) were also found for specific
machining with negative polarity on the electrode, especially in higher on-times. This
formations can compromise the use of the machined surface.
Keywords: electrical discharge machining, titanium grades.
LISTA DE FIGURAS
Figura 1.1 – Princípio da usinagem por eletroerosão a seco (ABBAS, SOLOMON E BAHARI, 2007).........
Figura 1.2 – Classificação da maiores áreas de pesquisa na eletroerosão, segundo Ho e Newman
(2003)........................................................................................................................................................
Figura 1.3 – Distribuição do número de pesquisas em EDM, ainda segundo Ho e Newman
(2003)................................................................................................................................................
Figura 2.1 – Micro furos com geometria complexa obtidos por micro EDM (imagens obtidas em
microscópio eletrônico de varredura) (RAJURKAR e YU, 2000)................................................................
Figura 2.2 – Esquema da usinagem por eletroerosão a fio (TARNG, MA e CHUNG, 1995).......................
Figura 2.3 – Esquema da usinagem de eletroerosão por penetração (DUNIβ, NEUMANN e
SCHWARTZ, 1979 apud YOUSSEF e EL-HOFY, 2008).................................................................................
Figura 2.4 – Diferença da taxa de remoção para catodo e anodoem função de TON (DIBITONTO et al,
1989).........................................................................................................................................................
Figura 2.5- Sequência do processo de descarga de uma faísca em eletroerosão (WEINGAERTNER,
199-?)........................................................................................................................................................
Figura 2.6 – Formato e perfil da cratera formada por condições de usinagem diferentes em
eletroerosão (SCHUMACHER, 2004).........................................................................................................
Figura 2.7 – Exemplos de superfícies obtidas em microscópio eletrônico de varredura para vários
materiais de peça em eletroerosão de penetração: (a) alumínio, (b) prata, (c) latão, (d) cobre, (e)
níquel, (f) aço, (g) platina, (h) titânio, (i) aço inoxidável, (j) tântalo, (k) molibdênio e (l) tungstênio.
Material
do
eletrodo:
prata-tungstênio
(MAHARDIKA,
TSUJIMOTO
e
MITSUI,
2008).........................................................................................................................................................
Figura 2.8 – Camadas existentes em superfície gerada por eletroerosão de titânio Ti-6Al-4V com
eletrodos de grafite, TON 150 µs, corrente 3ª, DT 60%, polaridade negativa no eletrodo......................
Figura 2.9 – Camada negra (Black layer) obtida na usinagem de aço BS 4695 D2, com eletrodo de
tungstênio-cobre (75-25) com polaridade positiva, DT = 80%, observado por EDS (energy dispersive
spectroscopy) em SEM (microscópio eletrônico de varredura) (MARAFONA, 2007)................................
Figura 2.10 – Comportamento da rugosidade média Ra em função do TON para diversas correntes.
TOFF = 2 µs, material da peça P20, eletrodo de cobre eletrolítico (KIYAK e ÇAKIR,
2007).........................................................................................................................................................
Figura 2.11 – Plotagem axonométrica de superfície 3D obtida na eletroerosão de aço ferramenta
(0,38%C; 16% Cr), TON = 750 μs, TOFF = 100 µs, i= 11, 18 A (RAMASAWMY e BLUNT,
2004).........................................................................................................................................................
Figura 2.12 - Exemplo de análise de desgaste em eletroerosão através de rugosímetro. Material da
peça Cobre e material do eletrodo Prata-Tungstênio (MAHARDIKA, TSUJIMOTO e MITSUI,
2008).........................................................................................................................................................
Figura 2.13 – Evolução do desgaste do eletrodo em comprimento e no raio de canto em função do
tempo de usinagem, eletrodos de cobre, polaridade positiva, peça de aço ABNT 1045, i= 8A, TON = 96
μs, DT = 50% (MOHRI et al., 1995)............................................................................................................
Figura 2.14 – Estruturas α (à esquerda) e β (à direita), formadas nas ligas de titânio (LEYENS e
PETERS, 2003)...........................................................................................................................................
Figura 2.15 – Estruturas formadas em Ti-8Al-1Mo-1V. Em (a) se observam grãos α (claros) em uma
matriz α+β (escura). Em (b) notam-se grãos da fase (claros) em uma matriz transformada (escura).
Em (c), fase β grosseira (escura) a fase α acicular fina (branca) (ASM HANDBOOK – v 02,
1997).........................................................................................................................................................
Figura 2.16 – Gráfico de resfriamento da liga Ti-6Al-4V, mostrando suas microestruturas (LEYENS e
PETERS, 2003)...........................................................................................................................................
Figura 2.17 – Velocidade da usinagem e temperatura da peça em função do DT. Material da peça Ti6Al-4V, eletrodo de cobre com polaridade negativa e TON 20 μs (FONDA et al., 2008)............................
Figura 3.1 – Suporte utilizado na fixação dos eletrodos...........................................................................
Figura 3.2 – Marcação dos corpos de prova (feita em furadeira).............................................................
18
18
19
23
24
25
27
28
32
36
37
37
38
39
40
41
43
44
45
47
49
49
Figura 3.3 – Fixação dos eletrodos no suporte e na máquina de eletroerosão........................................
Figura 3.4 – Fixação dos corpos de prova e posicionamento do jato de limpeza lateralmente...............
Figura 3.5 – Usinagem dos corpos de prova nos pré-ensaios...................................................................
Figura 3.6 – Formação de estalagmites durante a usinagem do corpo de prova 01. A estalagmite
mostrada foi resultante de corrente 6A, Ton 50 μs, DT 80%, limpeza por jato lateral, polaridade
negativa no eletrodo e regime de usinagem contínuo.............................................................................
Figura 3.7 – Resultado no corpo de prova 01...........................................................................................
Figura 3.8 – Desgaste nos eletrodos no corpo de prova 03......................................................................
Figura 3.9 – Resultado no corpo de prova 03...........................................................................................
Figura 3.10– Formação de protuberâncias nos corpo de prova e vazio nos eletrodos durante a
usinagem do corpo de prova 02...............................................................................................................
Figura 3.11 – Comparação entre os corpos de prova 02 (acima) e 03(abaixo).........................................
Figura 3.12 – Marca de desgaste em eletrodo usado para o corpo de prova 04. Condições de ensaio:
polaridade negativa no eletrodo, limpeza com jato lateral, sistema de usinagem com retração de 0,5
mm e 0,5 s de tempo de usinagem, TON 50 μs, corrente 3A e DT 35%.....................................................
Figura 3.13 – Corpo de prova 04 após usinagem em pré-testes.......................................................
Figura 3.14 – Método de medição de rugosidade utilizado nos pré-ensaios. Cutoff = 0,8 mm e 3
comprimentos de amostra........................................................................................................................
Figura 3.15 – Comportamento da rugosidade com o TON para diversas situações. Salvo indicação em
contrário, a limpeza foi por jato lateral, com regime de retração da máquina (0,5 s x 0,5 mm),
polaridade negativa no eletrodo e DT = 35%............................................................................................
Figura 3.16 – Comportamento da rugosidade Ra para três valores de DT e para uma ampla faixa de
TON. A corrente é de 15 A e o eletrodo tem polaridade negativa.............................................................
Figura 3.17 – Relação do tempo para atingir a profundidade de 2 mm no corpo de prova em função
de TON. Condições de ensaio, salvo indicações em contrário: polaridade negativa no eletrodo, limpeza
com jato lateral, sistema de usinagem com retração de 0,5 s x 0,5 mm e DT
35%............................................................................................................................................................
Figura 3.18 – Evolução do tempo de usinagem com o aumento de TON, para três DT. Condições de
ensaio: polaridade negativa no eletrodo, limpeza com jato lateral e sistema de usinagem com
retração de 0,5 s x 0,5 mm........................................................................................................................
Figura 3.19 – Relação do desgaste máximo no eletrodo para atingir a profundidade de 2 mm
no corpo de prova em função de TON. Condições de ensaio, salvo indicações em contrário: polaridade
negativa no eletrodo, limpeza com jato lateral, sistema de usinagem com retração 0,5 s x 0,5 mm e
DT 35%......................................................................................................................................................
Figura 3.20 – Relação do desgaste máximo no eletrodo para atingir a profundidade de 2 mm no
corpo de prova para uma maior faixa de TON e três DT. Condições de ensaio: polaridade negativa no
eletrodo, limpeza com jato lateral e sistema de usinagem com retração de 0,5 s x 0,5 mm...................
Figura 4.1 – Eletrodo com dimensões, marcação e posicionamento para os ensaios..............................
Figura 4.2 - Medição da massa inicial dos corpos de prova......................................................................
Figura 4.3 – Forno mufla e disposição utilizadas para secagem dos eletrodos........................................
Figura 4.4 – Máquina de eletroerosão disponível no laboratório de usinagem da UTFPR, campus
Ponta Grossa.............................................................................................................................................
Figura 4.5 – Sistema de fixação dos eletrodos e corpos de prova utilizados nos ensaios........................
Figura 4.6 – Alinhamento do suporte dos eletrodos.................................................................................
Figura 4.7 – Esquema do sistema auxiliar de limpeza montado para os ensaios......................................
Figura 4.8 – Sistema auxiliar de limpeza montado na máquina. Em cima se observa a ligação elétrica
(a)(disjuntor), bomba de engrenagens, acoplamento, válvula de segurança e mangueiras (b) e o
conjunto válvula de agulha, manômetro e mangueiras (c e d).................................................................
Figura 4.9 – Posicionamento dos corpos de prova para os ensaios..........................................................
Figura 4.10– Alinhamento do bocal de limpeza sobre o corpo de prova momentos antes dos
ensaios......................................................................................................................................................
Figura 4.11 – Medição de rugosidades dos corpos de prova....................................................................
Figura 4.12 - Cortadeira metalográfica de precisão ISOMET 4000, da Buehler, utilizada no corte dos
corpos de prova........................................................................................................................................
50
50
51
52
53
53
54
54
55
55
56
57
58
59
60
61
61
62
67
68
69
71
72
72
73
74
76
76
78
78
Figura 4.13 – Embutidora utilizada e posicionamento das amostras para embutimento e posterior
lixamento e polimento..............................................................................................................................
Figura 4.14 - Marcação com caneta gravadora elétrica das posições dos corpos de prova para
posterior análise metalográfica................................................................................................................
Figura 4.15 – Lixadeira/politriz metalográfica semiautomática Buehler, modelo Beta, utilizada na
preparação metalográfica dos corpos de prova.......................................................................................
Figura 4.16 – Micrografia obtida no corpo de prova 7. Aumento de 500x...............................................
Figura 4.17 – Exemplos de protuberâncias nas superfícies dos corpos de prova nos ensaios. Os corpos
de prova mostrados estão na mesma posição em relação à usinagem....................................................
Figura 4.18 – Vazios formados nos eletrodos...........................................................................................
Figura 4.19 – Possibilidade de interrupção do fluxo de limpeza em função do pocket formado no
eletrodo com retração menor que a profundidade de usinagem.....................................................
Figura 4.20 – Formação de protuberâncias para situação de eletrodo com seção transversal menor
que os corpos de prova.............................................................................................................................
Figura 5.1 – Gráfico dos efeitos principais sobre a média de rugosidade média Ra (μm), com
intervalos de confiança calculados para probabilidade de 95%...............................................................
Figura 5.2 – Interação de parâmetros de entrada sobre a rugosidade Ra em μm....................................
Figura 5.3 – Gráfico dos efeitos principais sobre a média da taxa de remoção (mm3/min), com
intervalos de confiança calculados para probabilidade de 95%...............................................................
Figura 5.4 – Interação de parâmetros de entrada sobre a taxa de remoção de material em
mm3/min...................................................................................................................................................
Figura 5.5 – Gráfico dos efeitos principais sobre a média de desgaste relativo (%), com intervalos de
confiança calculados para probabilidade de 95%.....................................................................................
Figura 5.6 – Interação de parâmetros de entrada sobre o desgaste relativo em %.................................
Figura 5.7 – Gráfico dos efeitos principais sobre a espessura média da camada branca formada (μm),
com intervalos de confiança calculados para probabilidade de 95%.......................................................
Figura 5.8 – Micrografia do corpo de prova A26, mostrando a variação da camada branca obtida.
Ampliação de 500 x...................................................................................................................................
Figura 5.9 – Interação de parâmetros de entrada sobre a espessura da camada branca em μm............
Figura 5.10 – Corpos de prova obtidos com a repetição dos ensaios com i =24 A, DT = 30%, T ON = 150
A e polaridade negativa no eletrodo; com eletrodo menor que o corpo de prova. Os eletrodos forma
fotografados na mesma posição em relação à montagem para o ensaio................................................
Figura 5.11 – Gráfico dos efeitos principais sobre a formação de protuberâncias...................................
Figura 5.12 – Influência da interação de parâmetros de entrada sobre a formação de
protuberâncias..........................................................................................................................................
Figura 5.13 – Comparação entre regiões de protuberância (à esquerda, com ampliação de 200 x) e
regiões fora da protuberância (à direita, com ampliação de 500x), para ensaios 12 (em cima, com i =
3 A, TON = 150 μs, DT = 60% e polaridade negativa), 18 e 20 (demais, com i = 24 A, T ON = 150 μs, DT =
30% e polaridade negativa).......................................................................................................................
Figura 6.1 – Quadro resumido das influências dos parâmetros de entrada sobre os parâmetros de
saída..........................................................................................................................................................
79
79
80
81
82
82
83
84
87
89
90
91
92
93
94
95
96
99
99
100
102
104
LISTA DE TABELAS
Tabela 2.1 – Propriedades físicas de eletrodos de cobre e de grafite (CHE HARON et al., 2008)............
Tabela 2.2 – Propriedades do titânio em comparação a outros metais (LEYENS e PETERS, 2003)..........
Tabela 3.1 – Condições utilizadas nos pré-ensaios...................................................................................
Tabela 3.2 – Organização dos pré-ensaios realizados. Os ensaios dos corpos de prova 1 foram os
únicos realizados sem retração do eletrodo. Os ensaios do corpo de prova 2 foram realizados com
aumento do gap e da velocidade do servomotor na máquina.................................................................
Tabela 3.3 – Resultados obtidos nos pré-ensaios realizados....................................................................
Tabela 4.1– Níveis especificados para os parâmetros a serem analisados...............................................
Tabela 4.2 – Sequência determinada para os ensaios..............................................................................
Tabela 4.3 – Propriedades de várias grades de grafite (METGRAPHITE, 2009)........................................
Tabela 4.4 – Propriedades físico-químicas do fluido dielétrico Electron, da Archem Química Ltda.
(ARCHEM, 2010).......................................................................................................................................
Tabela 4.5 – Parâmetros fixos utilizados nos ensaios...............................................................................
Tabela 4.6 - Sequência adotada de lixamento e polimento na preparação metalográfica......................
Tabela 4.7 – Ensaios substituídos em função da modificação do valor da retração do eletrodo.............
Tabela 4.8 – Distribuição dos ensaios realizados em função das condições de ensaio............................
Tabela 5.1 – Ensaios e valores dos parâmetros utilizados nos ensaios, com a média das rugosidades
Ra associada..............................................................................................................................................
Tabela 5.2 – Corpos de prova ensaiados e atribuição de valor (v) aos defeitos superficiais
(protuberâncias) encontrados. Os eletrodos forma fotografados na mesma posição em relação à
montagem para o ensaio..........................................................................................................................
34
43
48
52
56
65
66
67
74
77
80
83
85
87
98
LISTA DE ABREVIATURAS E SIGLAS
CNC
EDM
EDS
GD
GND
HSM
SEM
-
Comando Numérico Computadorizado
Electrical Discharge Machining
Energy Dispersive Spectroscopy
Geometria Definida
Geometria Não Definida
High Speed machining
Scanning Electron Microscopy
LISTA DE SÍMBOLOS
ap
DT
fz
i
MRR
n
R
Ra
Rq
Rz
RyDIN
Rt
t
TOFF
TON
U
UA
vc
vf
Vfc
Vfe
Vic
Vie
τ

-
-
Profundidade de corte (mm)
Duty Time (%)
Avanço por dente (mm)
Corrente (A)
Taxa de remoção de material (mm3/min)
Rotação (rpm)
Tempo de retração do eletrodo (s)
Rugosidade média Aritmética (µm)
Rugosidade média Quadrática (µm)
Altura de cinco pontos de rugosidade (µm)
Altura máxima de perfil segundo norma DIN (µm)
Rugosidade máxima (µm)
Tempo de usinagem (min)
Tempo de onda desligado (µs)
Tempo de onda ligado (µs)
Tempo de sequência de descargas (s)
Incerteza de resultado tipo A
Velocidade de corte (m/min)
Velocidade de avanço (mm/min)
Volume final do corpo de prova (mm3)
Volume final do eletrodo (mm3)
Volume inicial do corpo de prova (mm3)
Volume inicial do eletrodo (mm3)
Relação de contato (%)
Desgaste relativo (%)
SUMÁRIO
1 INTRODUÇÃO..................................................................................... 17
1.1 Objetivos................................................................................................................... 20
2 REVISÃO BIBLIOGRÁFICA................................................................... 21
2.1 Eletroerosão..............................................................................................................
2.1.1 Fundamentos do processo de eletroerosão...........................................................
2.1.2 Parâmetros influentes no processo de eletroerosão.............................................
2.1.2.1 Parâmetros de controle......................................................................................
a) Polaridade...................................................................................................................
b) Corrente (i)..................................................................................................................
c) Tempo de onda ligado (TON)........................................................................................
d) Tempo de onda desligado (TOFF)..................................................................................
e) Duty time (DT).............................................................................................................
f) Tempo de retração (R) e tempo de sequência de descargas (U).................................
2.1.3 Materiais de eletrodo.............................................................................................
2.1.3.1 Grafite.................................................................................................................
2.1.4 Análise do processo de eletroerosão.....................................................................
2.1.4.1 Integridade de superfície....................................................................................
2.1.4.2 Taxa de remoção de material e desgaste do eletrodo........................................
2.1.4.3 Gap......................................................................................................................
2.2 Titânio.......................................................................................................................
2.2.1 Histórico do titânio.................................................................................................
2.2.2 Propriedades do titânio..........................................................................................
2.2.3 Ligas de titânio.......................................................................................................
2.2.3.1 Aplicações das ligas de titânio.............................................................................
2.2.3.2 Usinabilidade das ligas de titânio........................................................................
21
25
28
31
31
31
32
32
33
33
33
34
35
35
39
40
41
41
42
43
45
46
3 PRÉ-ENSAIOS...................................................................................... 48
3.1 Influência dos parâmetros na macrogeometria dos eletrodos e corpos de prova...
3.2 Influência dos parâmetros sobre a rugosidade.........................................................
3.3 Influência dos parâmetros no tempo de usinagem e no desgaste do eletrodo.......
3.4 Aspectos identificados nos pré-ensaios....................................................................
52
57
59
62
4 MATERIAIS E MÉTODOS..................................................................... 64
4.1 Projeto dos experimentos.........................................................................................
4.2 Preparação dos corpos de prova...............................................................................
4.3 Medição da massa inicial dos corpos de prova e dos eletrodos...............................
4.4 Medição da massa final dos corpos de prova e dos eletrodos..................................
4.5 Preparação da máquina............................................................................................
4.5.1 Sistema de fixação..................................................................................................
4.5.2 Sistema de limpeza.................................................................................................
4.6 Sequência e ajustes gerais dos ensaios....................................................................
4.7 Medição da rugosidade.............................................................................................
4.8 Medição da camada branca.....................................................................................
64
66
68
70
71
71
73
75
77
78
4.9 Problemas ocorridos nos ensaios e soluções adotadas........................................... 81
4.10 Tratamento dos dados............................................................................................ 84
5 RESULTADOS E DISCUSSÃO................................................................ 87
5.1 Tratamento e análise de dados para a rugosidade.................................................
5.2 Tratamento e análise de dados para a taxa de remoção..........................................
5.3 Tratamento e análise de dados para o desgaste relativo..........................................
5.4 Tratamento e análise de dados para a espessura da camada branca.......................
5.5 Tratamento e análise de dados para a formação de protuberâncias.......................
87
89
91
94
97
6 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS................ 103
6.1 Resultados obtidos.................................................................................................... 103
6.2 Métodos empregados............................................................................................... 105
6.3 Sugestões para trabalhos futuros............................................................................. 106
REFERÊNCIAS........................................................................................ 107
APÊNDICES............................................................................................ 114
17
1 INTRODUÇÃO
Os processos de fabricação de superfícies técnicas têm por finalidade atender às
exigências de qualidade e precisão cada vez maiores em componentes.
Existe uma ampla gama de possibilidades no momento da opção pelo processo de
fabricação de superfícies. Pode-se utilizar fundição, conformação, injeção, tecnologia do
pó, usinagem, soldagem, injeção, aspersão, entre outras; além da possibilidade de se
utilizar vários processos combinados sequencialmente. Quando as exigências de
precisão, tanto dimensional como de forma, e qualidade superficial são elevadas, a
usinagem das superfícies como processo de finalização é, indiscutivelmente, a opção
mais procurada.
A eletroerosão por penetração é um processo de usinagem amplamente utilizado
na fabricação de cavidades para moldes e matrizes, na usinagem de sistemas mecânicos
e microeletrônicos, e em aços ferramenta tratados (LEE, HSU e TAI, 2004; CHE HARON et
al., 2008; AMORIM, 2002). Sua capacidade de realizar formatos complexos e usinar
materiais de alta dureza a torna uma excelente opção para estes campos (LEE e TAI,
2003). Embora em princípio não seja um processo caro, as pequenas taxas de remoção,
em comparação com os chamados processos convencionais de usinagem, tornam o
custo dos componentes produzidos elevado. Algumas modificações no processo, como a
utilização de eletrodos de grafite, permitem o aumento da corrente utilizada,
aumentando a taxa de remoção e assim a velocidade do processo. Este aumento da
corrente pode causar mais danos térmicos como fissuras e modificações metalúrgicas
que podem prejudicar a utilização dos componentes usinados. O problema pode ser
minimizado pela utilização correta de parâmetros de entrada, como corrente e tempo de
onda ligado, que levem a menores danos ao material da peça e sejam economicamente
viáveis.
Menores danos ao material da peça podem, inclusive, facilitar um processo
posterior de acabamento da peça, ou, até mesmo, torná-lo viável, haja vista que uma
superfície danificada poder tornar impossível a correção por processos como o
polimento.
18
Apesar da importância do problema, ainda existem poucos estudos da influência
dos parâmetros de entrada para o processo de eletroerosão com grafite, especialmente
porque a variedade de materiais a serem trabalhados é bastante grande.
Desenvolvimentos em muitas áreas da eletroerosão têm sido realizados, como
vibração ultrasônica do eletrodo, usinagem a seco (mostrada na figura 1.1), aditivos
sólidos ao dielétrico, água como dielétrico e modelagem matemática do processo
(ABBAS, SOLOMON E BAHARI, 2007).
Figura 1.1 – Princípio da usinagem por eletroerosão a seco (ABBAS, SOLOMON E BAHARI, 2007).
Os estudos sobre a eletroerosão foram divididos por Ho e Newman (2003) como
mostra a figura 1.2.
Linhas de pesquisa
em eletroerosão
Otimização das
variáveis do
processo
Monitoramento e
controle do
processo
Melhoria de
performance
Desenvolvimentos
em eletroerosão
Parâmetros
elétricos e não
elétricos
Domínio de
pulso/tempo
Remoção de
material
Aplicações da
eletroerosão
Projeto e
fabricação de
eletrodos
Lógica fuzzi
Desgaste
Processos de
usinagem híbridos
Rádio frequência
Qualidade
superficial
Figura 1.2 – Classificação da maiores áreas de pesquisa na eletroerosão, segundo Ho e Newman (2003).
19
O número de trabalhos nestas áreas, também levantado por Ho e Newman (2003)
pode ser visto na figura 1.3.
Número de trabalhos publicados
70
60
50
40
30
20
10
0
Otimização das
variáveis do
processo
Monitoramento e
controle do processo
Melhoria de
desempenho
Desenvolvimentos
em eletroerosão
Figura 1.3 – Distribuição do número de pesquisas em EDM, ainda segundo Ho e Newman (2003).
Por outro lado, a utilização de ligas de titânio representa uma parcela específica
de aplicações, devido ao seu alto custo e dificuldade em ser trabalhado. Suas
características únicas de resistência garantem o seu emprego em aplicações de alta
tecnologia, como a indústria automotiva e aeroespacial, especialmente a liga Ti-6Al-4V
(FONDA et al, 2008), de implantes ortodônticos e médicos, de supercondutores (ligado
com nióbio) e de materiais com memória (ligado com níquel) (ASM HANDBOOK – v 02,
1997).
A dificuldade em se usinarem formas complexas em materiais de alto
desempenho como ligas de titânio pode ser ultrapassada pelas características de
usinagem presentes no processo de eletroerosão (FONDA et al., 2008).
Esta possibilidade é especialmente interessante com o advento das máquinas de
eletroerosão 8 eixos, e a possibilidade da aplicação da tecnologia eletroerosiva na
fabricação de propulsores de foguetes, em liga de titânio.
Neste contexto, o presente trabalho propõe a análise da influência dos
parâmetros de entrada para a usinagem da liga de titânio Ti-6Al-4V, visando estabelecer
20
uma correlação destes com os níveis de danos resultantes na peça e resultado de
trabalho, aumentando o conhecimento das potencialidades do processo.
No capítulo 2 é apresentada uma revisão bibliográfica sobre o processo de
eletroerosão, suas variáveis e os estudos na área. Encontra-se também uma revisão
sobre ligas de titânio e sua usinabilidade.
No capítulo 3 é apresentada uma sequência de pré-ensaios, com os resultados
obtidos, que serviram para balizar o método empregado nos ensaios. Este método é
apresentada no capítulo 4, incluindo o projeto de experimentos (DOE), a preparação de
máquina, eletrodos e corpos de prova, a sequência de ensaios, as medições, os
problemas ocorridos durante os ensaios e o tratamento adotado para solucionar esses
problemas.
No capítulo 5 são realizados o tratamento dos dados de forma gráfica, e as
análises dos resultados obtidos, incluindo a análise estatística das influências
observadas. As conclusões do trabalho e sobre os métodos empregados são
apresentadas no capítulo 6.
1.1 Objetivos
O objetivo principal deste trabalho é compreender o processo de eletroerosão
por penetração com eletrodos de grafite em liga de titânio, por meio da correlação dos
parâmetros de entrada (corrente, polaridade, tempo de onda ligado e duty time) e os
resultados do processo, em termos da integridade da superfície obtida, do desgaste
relativo entre eletrodo e peça e da taxa de remoção de material.
Para tal foram realizados ensaios de usinagem em eletroerosão e avaliados os
resultados e comportamentos na usinagem, correlacionados com os parâmetros de
entrada descritos.
O objetivo secundário é o de desenvolver dispositivos e utilizar métodos
adequados para a execução dos ensaios, de maneira a conseguir resultados
estatisticamente coerentes.
21
2 REVISÃO BIBLIOGRÁFICA
Na literatura inglesa os processos de usinagem são comumente divididos em
processos convencionais de usinagem e processos não convencionais de usinagem
(BEDDOES e BIBBY, 2003; YOUSSEF e El-HOFY, 2008).
A literatura alemã, porém, divide os processos de usinagem em três grupos:
processos de usinagem com ferramentas de geometria definida, processos de usinagem
com ferramentas de geometria não definida e processos especiais de usinagem
(WEINGAERTNER, 199-?). Neste trabalho esta será a divisão utilizada.
Os processos de usinagem com ferramentas de geometria definida (GD) são os
mais comuns e também os que são empregados para maiores produções. Entre eles
estão o torneamento, o fresamento e a furação. Os processos de usinagem com
ferramentas de geometria não definida (GND) são caracterizados por seu excelente
acabamento superficial. Dentre esses processos encontram-se a retificação, o
brunimento e a lapidação. Os processos especiais de usinagem formam uma categoria
cuja tecnologia e aplicações são diferenciadas dos anteriores (GD e GND). Enquanto
nesses processos a ideia básica é sempre de uma (ou mais) ferramenta sólida em cunha
penetrando no material, em processos especiais essa formatação não existe.
Os processos especiais de usinagem utilizam tecnologias e conceitos novos, se
comparados com processos GD e GND, e surgiram para suprir necessidades específicas,
porém com o tempo passaram a ocupar mais espaços na usinagem e a serem mais
competitivos (BENEDICT, 1987). Entre estes processos podemos citar a usinagem com
jato d´água, a usinagem eletroquímica, a usinagem por laser e a eletroerosão.
2.1 Eletroerosão
A eletroerosão é o mais utilizado e popular dos processos especiais de usinagem
(HO e NEWMAN, 2003; KIYAK e ÇAKIR, 2007), e se baseia no fenômeno de descargas
elétricas não estacionárias (faíscas) controladas para fundir e vaporizar parcelas do
material, configurando através da remoção dessas parcelas de material a usinagem de
uma determinada superfície.
22
Também conhecido por EDM (do inglês electrical discharge machining), o
processo se estabeleceu no início da década de 40, na universidade de Moscou, através
do desenvolvimento de dois cientistas, Boris R. Lazarenko e Natalie I. Lazarenko
(GUITRAU, 1997; HO e NEWMAN, 2003; LEÃO e PASHBY, 2004; KIYAK e ÇAKIR, 2007).
Trabalhos similares se desenvolveram aproximadamente na mesma época nos Estados
Unidos, para a retirada de machos e brocas quebradas de válvulas hidráulicas. A partir da
década de 80, com a utilização da tecnologia CNC, as máquinas tiveram grande avanço,
embora já fossem utilizadas desde a década de 50 (HO e NEWMAN, 2003).
O processo possui grande aplicação em usinagem de peças com geometria
complexa e alta dureza, tais como moldes e matrizes, setores automotivo, aeroespacial,
médico, ótico, de joalheria, dental, de ferramentas, de prototipagem e de componentes
cirúrgicos (SIMAO et al, 2003; HO e NEWMAN, 2003; RAMASAWMY e BLUNT, 2004;
FONDA et al., 2008). Segundo Ho e Newman (2003) e Tsai, Yan e Huang (2003), a
ausência de contato entre peça e ferramenta evita o aparecimento de forças de
usinagem na superfície e vibrações durante o processo, o que faz com que, devido à
ausência de tensões mecânicas, a precisão dos componentes fabricados seja maior e os
dispositivos de fixação sejam menos robustos, o que leva a redução de custo.
Os processos de eletroerosão podem ser aplicados a situações bem específicas
como a fabricação de microfuros (faixa de 100 µm), como mostrado na figura 2.1
(RAJURKAR e YU, 2000). Também é possível a aplicação em usinagem de cerâmicas
condutoras (dopadas) (SANCHES et al, 2001 apud HO e NEWMAN, 2003), ou até mesmo
cerâmicas não condutoras, com eletrodos auxiliares (assistidos) (FUKUZAWA et al.,
2004).
As áreas mais clássicas de aplicação de EDM, como a fabricação de moldes e
matrizes promovem o desenvolvimento da tecnologia, especialmente sua produtividade,
para se manter como processo viável em função da demanda e pequeno ciclo de vida de
componentes (HO e NEWMAN, 2003).
As áreas mais clássicas de aplicação de EDM, como a fabricação de moldes e
matrizes promovem o desenvolvimento da tecnologia, especialmente sua produtividade,
23
para se manter como processo viável em função da demanda e pequeno ciclo de vida de
componentes (HO e NEWMAN, 2003).
Figura 2.1 – Microfuros com geometria complexa obtidos por micro EDM (imagens obtidas em
microscópio eletrônico de varredura) (RAJURKAR e YU, 2000).
O processo de usinagem por eletroerosão se estabeleceu como uma alternativa
para a usinagem de materiais de difícil usinabilidade e geometrias complexas. O
desenvolvimento do processo, especialmente em termos de taxas de remoção, fez com
que se estabelecesse como processo competitivo, extendendo suas aplicações (HO e
NEWMAN, 2003).
As bases de seu controle ainda são muito empíricas, em função da diversidade e
complexidade dos fenômenos elétricos e não-elétricos envolvidos no processo. Existe
uma necessidade do processo de contínuo desenvolvimento para se manter competitivo
em relação a processos como a usinagem de altas velocidades (HSM), que possui
facilidade para usinagem de materiais duros (40-60 HRC), por exemplo (HO e NEWMAN,
2003).
Os processos de eletroerosão podem ser divididos em três tipos: eletroerosão por
penetração, eletroerosão a fio e retificação eletroerosiva (WEINGAERTNER, 199-?).
A eletroerosão a fio é bastante comum e utiliza de um arame metálico como
eletrodo para recortar cavidades. Com a utilização de comandos CNC com mais de cinco
eixos torna-se um processo muito versátil, e com grande aplicação em matrizaria. Possui
vantagens em termos de velocidade de usinagem, custo e velocidade de reposição de
eletrodo em relação ao processo de eletroerosão de penetração. Normalmente usa água
deionizada como dielétrico (LEÃO e PASHBY, 2004).
24
A figura 2.2 mostra um esquema do processo de eletroerosão a fio.
Figura 2.2 – Esquema da usinagem por eletroerosão a fio (TARNG, MA e CHUNG, 1995).
Já o processo de eletroerosão por penetração tem a capacidade de fabricar
cavidades com fundo (conhecidas por cegas) e é um processo amplamente utilizado.
Suas desvantagens em relação aos outros tipos de eletroerosão dizem respeito à
fabricação e substituição de seus eletrodos e limpeza da área de trabalho. Normalmente,
usa um tipo de óleo hidrocarboneto como dielétrico (LEÃO e PASHBY, 2004). A figura 2.3
mostra um esquema de eletroerosão por penetração.
Na busca de melhor desempenho para o processo de eletroerosão, foram ainda
desenvolvidos trabalhos que envolvem processos híbridos de eletroerosão com
retificação, usinagem a laser e usinagem de alta velocidade (HSM) (HO e NEWMAN,
2003: ASPINWALL et al., 2001), ou usinagem ultrassônica, para a produção de microfuros
de até 5 μm de diâmetro (ZHIXIN, JIANHUA e XING, 1997; ABBAS, SOLOMON e BAHARI,
2007; RAMASAWMY e BLUNT, 2004).
25
1 – Eletrodo Peça
2 – Dielétrico
3 – Eletrodo Ferramenta
4 – Avanço
5 – Movimento oscilatório
6 – Gerador de pulso
7 – Fenda de trabalho (gap)
8 – Retificador de corrente
Figura 2.3 – Esquema da usinagem de eletroerosão por penetração (DUNIβ, NEUMANN e SCHWARTZ,
1979 apud YOUSSEF e EL-HOFY, 2008)
2.1.1 Fundamentos do processo de eletroerosão
O processo de eletroerosão consiste basicamente da aproximação de um eletrodo
ferramenta (conhecido normalmente apenas como eletrodo) e um eletrodo peça (peça)
com polaridades diferentes, embora seja possível e menos interessante a utilização de
corrente alternada. Entre os dois eletrodos normalmente se usa um fluido dielétrico, que
pode ser água deionizada, um óleo ou querosene. Quando se atinge certa distância entre
eletrodo e peça, denominada gap, que normalmente varia entre 5 e 100 μm (SIMAO et
al, 2003), um processo de formação de uma faísca elétrica ocorre (WEINGAERTNER, 199?; GUITRAU, 1997; BENEDICT, 1987).
Em nível micrométrico, a sequência do processo de usinagem pode ser explicada
através de quatro fases (AMORIM, 2002):
1. Fase de ignição da faísca.
2. Formação do canal de plasma.
3. Fusão e evaporação de parcelas do material de peça e eletrodo.
4. Ejeção do material fundido.
A fase de ignição da faísca é dada na aproximação da peça e ferramenta, quando
se atinge o gap. O aumento do campo elétrico entre as superfícies da peça e do eletrodo
26
faz com que elétrons do catodo sejam acelerados em direção ao anodo. Durante seu
percurso, esses elétrons colidem com moléculas do dielétrico liberando mais elétrons e
formando partículas positivas, que também são acelerados no campo, formando uma
reação em cadeia conhecida por ionização por impacto (AMORIM, 2002;
WEINGAERTNER, 199-?; GUITRAU, 1997).
A formação do canal de plasma é causada tanto pela multiplicação do fenômeno
da ionização por impacto, quanto pelo superaquecimento do dielétrico, devido à
velocidade dessas colisões. Esse superaquecimento diminui a resistência do dielétrico
enquanto observa-se um aumento da corrente elétrica (AMORIM, 2002). O fluxo da
corrente elétrica é estabelecido quase que na periferia do canal formado, fenômeno
conhecido por efeito skin. Alguns autores consideram o fenômeno da ionização por
impacto insuficiente para explicar o início da descarga, considerando a evaporação do
dielétrico por efeito joule como um mecanismo fundamental para a continuidade do
processo (SCHUMACHER, 2004; GUITRAU, 1997).
A etapa de fusão e evaporação de parcelas do material de peça e eletrodo com o
efeito da passagem da corrente para a região interna do canal de descarga, conhecida
por efeito pinch (WEINGAERTNER, 199-?; GUITRAU, 1997; BENEDICT, 1987). Os elétrons
penetram concentradamente no anodo e os íons positivos, da mesma forma, no catodo,
de forma que a energia cinética de ambos é convertida em calor, o que faz com que
sejam atingidas temperaturas altíssimas na região do canal onde se desenvolve a faísca
(WEINGAERTNER, 199-?; GUITRAU, 1997; BENEDICT, 1987). Segundo alguns autores,
essas temperaturas se situam entre 8000 e 12000 oC (BOOTHROYD, 1989, apud HO e
NEWMAN, 2003; GUITRAU, 1997); segundo outras fontes, podem atingir de 15000 a
40000 oC (McGEOUGH, 1988 apud HO e NEWMAN, 2003; DIBITONTO et al, 1989). Essas
temperaturas levam à fusão e vaporização de partes do material da peça e do eletrodo,
além do dielétrico.
Segundo DiBitonto et al (1989), durante os primeiros momentos da descarga,
devido a maior mobilidade dos elétrons, o dano é maior no anodo. Com o passar do
tempo os íons positivos atingem o catodo, que por emitir apenas elétrons, mantém seu
diâmetro no canal de plasma praticamente inalterado, enquanto que o diâmetro do
27
canal de plasma no anodo aumenta, diminuindo sua temperatura e consequentemente,
seu dano. O gráfico mostrado na figura 2.4 mostra o comportamento da retirada de
material para o catodo e o anodo no tempo.
TAXA DE EROSÃO
CATODO
ANODO
Anodo de Cobre
Catodo de Aço
TON
Figura 2.4 – Diferença da taxa de remoção para catodo e anodo
em função de TON (DIBITONTO et al, 1989).
A ejeção do material fundido acontece com o desligamento da energia elétrica.
Com o aumento da bolha formada pelo canal de plasma, através da vaporização dos
materiais de eletrodo e peça, a energia passa a se dispersar, em um novo efeito skin e as
temperaturas caem (WEINGAERTNER, 199-?). Então a energia do processo é desligada e
a bolha entra em colapso, lançando no canal o material parcialmente líquido e
parcialmente evaporado no gap, sendo este material rapidamente resfriado e removido
do gap na forma de cavacos microscópicos pela ação do fluido dielétrico, que
movimentado adequadamente, assume a característica de lavação dos cavacos formados
(HO e NEWMAN, 2003; WEINGAERTNER, 199-?; GUITRAU, 1997; BENEDICT, 1987). Uma
quantidade desse material é redepositada sobre as superfícies das peças e eletrodo
(AMORIM, 2002).
A figura 2.5 mostra a sequência do processo, segundo Weingaertner (199-?).
28
Figura 2.5- Sequência do processo de descarga de uma faísca em eletroerosão
(WEINGAERTNER, 199-?).
Todo esse processo envolve um tempo que normalmente se situa entre 10 e 1000
µs. Cada faísca retira uma quantidade pequena de material, normalmente entre 10-6 e
10-4 mm3 (HO e NEWMAN, 2003), porém como processo de cada faísca é muito rápido,
muitas faíscas são disparadas no tempo, criando uma remoção de material que não pode
ser comparável aos processos de usinagem com ferramentas de geometria definida e à
maior parte dos processos de usinagem com ferramentas de geometria não definida.
Não obstante são encontradas diversas aplicações industriais para o processo. A taxa de
remoção normalmente se situa entre 2 e 400 mm3/min (HO e NEWMAN, 2003).
2.1.2 Parâmetros influentes no processo de eletroerosão
Durante a execução do processo, existem diversos parâmetros de entrada que
influenciam o resultado do trabalho (RAMASAWMY e BLUNT, 2004; FENGGOU e
DAYONG, 2003):
29
 Material da peça.
 Material do eletrodo.
 Área usinada.
 Profundidade da usinagem (para eletroerosão de penetração).
 Composição e condição do fluido dielétrico.
 Corrente nominal utilizada.
 Tempo de onda ligado (TON).
 Tempo de onda desligado (TOFF).
 Frequência.
 Tipo do dielétrico.
 Condição de limpeza (pressão e vazão de fluido, número e geometria da
aplicação e da cavidade).
 Sistema de usinagem (com ou sem retração do eletrodo), ou no caso de
eletroerosão a fio ou retificação eletroerosiva, a velocidade do fio ou
rebolo.
As condições de limpeza influenciam profundamente o processo. Porém, a
quantidade de possibilidades geométricas tanto de disposição dos bicos de limpeza e da
cavidade executada, pressão e vazão utilizadas e as possibilidade de utilização de
limpeza interna ao eletrodo fazem com que o estudo das condições ideais seja tanto de
difícil solução e controle, como muito específica a cada caso.
O sistema de usinagem influi, no caso da eletroerosão de penetração,
principalmente modificando as condições de limpeza, tornando muitas vezes a usinagem
possível em detrimento do tempo de usinagem. A utilização de maiores retrações para o
eletrodo, seja em termos de tempo ou distância, facilita a limpeza da fenda,
especialmente em cavidade profundas. A velocidade do fio, no caso da eletroerosão a
fio, ou a velocidade do rebolo na retificação eletroerosiva tem maior influência na
diminuição do desgaste de eletrodo.
A frequência é pura consequência matemática dos valores do tempo de onda
ligado (TON) e do tempo de onda desligado (TOFF), podendo sua influência ser explicada
em termos desses dois parâmetros. Entretanto, é fácil relacionar alguns parâmetros de
30
saída, como acabamento superficial, em termos de freqüência. Isso leva alguns autores a
considerarem a frequência como um parâmetro de entrada em separado. Normalmente,
um aumento da frequência promove uma melhoria da qualidade superficial, uma vez
que a energia fica dividida em várias parcelas, ocasionando uma remoção mais
distribuída pelas faíscas geradas (BENEDICT, 1987).
O material do eletrodo tem importância fundamental no processo, e embora
teoricamente existam muitas possibilidades para material de eletrodo (a princípio
qualquer material condutor elétrico), na prática existe um conjunto reduzido de
materiais utilizados como eletrodo com sucesso (GUITRAU, 1997). Os materiais para
eletrodos serão mais bem discutidos no item 2.1.3.
A composição e a condição do fluido dielétrico também influem na estabilidade
do processo, o que na prática significa dizer que alteram em todo o resultado da
usinagem, desde a taxa de remoção de material (ARANTES, 2001) até a rugosidade
obtida (LEÃO E PASHBY, 2004).
O fluido dielétrico normalmente é um hidrocarboneto, incluindo o querosene
(CHE HARON et al., 2008; TSAI, YAN e HUANG, 2003; GUITRAU, 1997), porém pode ser
usada água deionizada (CHEN, YAN e HUANG, 1999), ou até usinagem a seco, que tem
sido muito estudada com alternativa econômica, uma vez que o ar é dielétrico (ABBAS,
SOLOMON e BAHARI, 2007). Alguns estudos ainda levam em consideração o estudo de
dielétricos comerciais baseados em água e água com partículas em suspensão. Estes
tipos de dielétrico são interessantes do ponto de vista de meio ambiente, embora, no
geral a desempenho do óleo hidrocarboneto seja melhor (LEÃO e PASHBY, 2004).
A utilização de pós em suspensão no dielétrico podem ainda melhorar a qualidade
superficial, aumentar as taxas de remoção e diminuir o desgaste nos processos de
eletroerosão (ABBAS, SOLOMON e BAHARI, 2007).
Normalmente, na eletroerosão de penetração, a peça e o eletrodo ficam imersos
em dielétrico, embora seja utilizado jato de dielétrico diretamente na fenda de trabalho
(LEÃO e PASHBY, 2004). A forma de aplicação do fluido também é fundamental para a
determinação da capabilidade do processo.
31
2.1.2.1 Parâmetros de controle
Os parâmetros de entrada na máquina, ou seja, os parâmetros facilmente
modificáveis no processo e que normalmente são os parâmetros controlados para a
obtenção de qualidade no processo de eletroerosão são listados a seguir.
a) Polaridade
Embora os processos de eletroerosão possam ser realizados com corrente
alternada, essa opção não é interessante em termos de desgaste, especialmente. Em
processos de eletroerosão por penetração, a polaridade do eletrodo é normalmente
positiva, o que previne o desgaste no eletrodo e diminui a velocidade de usinagem
(GUITRAU, 1997).
Esse fato é causado pela diferença de movimentação dos elétrons e dos íons
positivos em direção ao anodo e catodo, respectivamente, conforme explicado no item
2.1.1 (DIBITONTO, 1989).
Em geral, a melhor relação entre a taxa de remoção e o desgaste é obtida com
polaridade positiva no eletrodo ferramenta e negativa na peça. Polaridades negativas no
eletrodo são usadas para remoção rápida de material, especialmente com eletrodos de
grafite e também na eletroerosão a fio (GUITRAU, 1997). Na usinagem de titânio,
carbonetos e metais refratários com eletrodos metálicos, a utilização de polaridade
negativa no eletrodo é considerada a única forma de sucesso na usinagem.
b) Corrente (i)
A corrente é o fator mais influente na textura da superfície gerada (RAMASAWMY
e BLUNT, 2004). Normalmente, para maiores níveis de corrente utilizada, maior a taxa de
remoção e piora da qualidade superficial e subsuperficial (GUITRAU, 1997; BENEDICT,
1987). A intensidade de corrente é limitada pela área de usinagem e pelo material do
eletrodo (ENGEMAC, 2002; GUITRAU, 1997).
32
c) Tempo de onda ligado (TON)
O tempo de onda ligado, comumente denominado de TON é o tempo durante o
qual a faísca possui energia elétrica. Este valor é inserido diretamente na máquina e se
situa na faixa de alguns microsegundos a alguns milisegundos (BENEDICT, 1987). O
aumento de TON normalmente leva a um aumento da taxa de remoção, a uma piora da
qualidade superficial e subsuperficial e na diminuição do desgaste do eletrodo
(GUITRAU, 1997; BENEDICT, 1987).
A figura 2.6 mostra o resultado de uma craterização obtida com diferentes T ON e
corrente.
Figura 2.6 – Formato e perfil da cratera formada por condições de usinagem diferentes em eletroerosão
(SCHUMACHER, 2004).
d) Tempo de onda desligado (TOFF)
O tempo de onda desligado, denominado TOFF, é o tempo necessário à
estabilização do ambiente no gap, incluído o tempo de explosão da bolha de gases, após
o tempo de corrente ligada. Pode afetar drasticamente a velocidade do processo, mas é
fundamental para a estabilidade deste (GUITRAU, 1997).
O TOFF, segundo GUITRAU (1997), não influi no desgaste do eletrodo, uma vez que
este ocorre devido à energia disponibilizada apenas durante TON.
33
e) Duty time (DT)
O também chamado Duty factor (MARAFONA, 2007; MOHRI et al., 1995; FONDA
et al., 2008) ou Duty cicle (GUITRAU, 1997) ou ainda relação de contato τ
(WEINGAERTNER, 199-?; AMORIM, 2002) é uma relação entre o TON e o tempo total do
pulso, ou ciclo de uma faísca. É um valor que normalmente é inserido na máquina,
mantendo a relação entre TON e TOFF mostrada na equação 2.1 (ENGEMAC, 2002).
𝐷𝑇 =
𝑇𝑂𝑁
𝑇𝑂𝑁 +𝑇𝑂𝐹𝐹
× 100 (%)
(Eq. 2.1)
f) Tempo de retração (R) e tempo de sequência de descargas (U)
Em raras situações práticas, a usinagem por eletroerosão se desenvolve de
maneira contínua, sem que exista um período em que o eletrodo retroceda e facilite a
limpeza da região da usinagem.
A bibliografia raramente se refere a essa situação de retração. Amorim e Silva
(2010) e Amorim e Weingaertner (2007) citam o tempo de retração (R) e tempo de
sequência de descargas (U) como sendo os parâmetros a serem definidos durante a
usinagem. O tempo de sequências de descargas significa o tempo durante o qual as
descargas são disparadas sem que o eletrodo retroceda, seguido pelo tempo de
retração, que é o tempo que o eletrodo retrocede, portanto não disparando faíscas. Em
algumas máquinas é possível definir o tempo de sequência de descargas e a distância, ao
invés do tempo de retração.
2.1.3 Materiais de eletrodo
Podem ser usados como eletrodos de eletroerosão todos os materiais condutores
de corrente elétrica. Duas características, em conjunto, são desejáveis aos materiais de
eletrodo: alta condutividade elétrica e alto ponto de fusão.
Estas características levam ao encontro de dois materiais que são os mais
utilizados em eletroerosão: o cobre eletrolítico e o grafite (GUITRAU, 1997). Segundo
Amorim (2002), no Brasil e na Europa os eletrodos de cobre eletrolítico, que possuem
34
custo de material menor, são mais utilizados, ao passo que nos Estados Unidos o grafite
possui maior aplicação.
A tabela 2.1 mostra um comparativo das propriedades do cobre e do grafite.
Tabela 2.1 – Propriedades físicas de eletrodos de cobre e de grafite (CHE HARON et al., 2008).
Propriedades Físicas
Resistividade Elétrica (μΩ/cm)
Condutividade elétrica comparado com prata (%)
Condutividade Térmica (W/mK)
Ponto de Sublimação e Fusão (oC)
Calor Específico (cal/goC)
Peso Específico a 20 oC (g/cm3)
Coeficiente de expansão térmica (x10-6 oC-1)
Grafite
0,12
0,11
160
3500
0,17-0,2
1,75
7,8
Cobre
1,96
92
380,7
1083
0,092
8,9
6,6
Analisando-se a tabela 2.1 verifica-se que o cobre tem maior condutividade
térmica, mas o grafite suporta mais o dano na eletroerosão, devido ao seu alto ponto de
sublimação. O custo de eletrodos de grafite se situa entre R$ 120,00 e 280,00/kg,
dependendo da classe utilizada, enquanto que o cobre eletrolítico na faixa de R$ 45,00
(valores de 2009). Porém a facilidade em se usinar o grafite é maior e, devido à diferença
de peso específico, eletrodos de grafite possuem preços equivalentes, em relação ao
custo de material, que eletrodos de cobre eletrolítico de mesmos volumes.
O tipo de material utilizado tem influência especialmente sobre a taxa de
remoção de material e sobre o desgaste do próprio eletrodo (CHE HARON et al., 2008).
2.1.3.1 Grafite
O grafite possui custo mais elevado, especialmente para as classes mais nobres
(GUITRAU, 1997), porém devido à sua resistência ao dano térmico, pode ser utilizado em
condições mais agressivas de usinagem (maiores correntes e polaridade negativa no
eletrodo) e permitir com isso um processo mais rápido de eletroerosão.
O grafite é um metalóide que sublima à temperatura de 3500 oC, o que explica
sua maior resistência ao dano térmico. Também sua usinagem (durante a confecção do
eletrodo) é frágil, não resultando rebarbas desse processo, que são inadmissíveis em
eletrodos usados em eletroerosão (GUITRAU, 1997).
35
Os grafites utilizados como eletrodos de eletroerosão são classificados em
diversas classes, com granulometria diferenciada. Grafites com tamanhos de grão
extremamente pequenos aumentam a taxa de remoção de material, diminuem o
desgaste melhorando o acabamento superficial da peça eletroerodida (BENEDICT, 1987).
Os grafites utilizados em eletroerosão não são lubrificantes, ao contrário do que
se poderia supor, vistos que existem lubrificantes que são a base de grafite. Os grafites
puros são muito abrasivos e exigem cuidados durante a fabricação dos eletrodos, para
que os pós gerados não entrem em contato com partes móveis da máquina, gerando
desgaste (GUITRAU, 1997; MARINESCU et al, 2007).
Existem trabalhos que visam facilitar a fabricação de eletrodos, como
prototipagem rápida e sistemas abrasivos vibracionais, no caso do grafite (TANG et al.,
2005; HAUSERMANN ABRADING , 2008), além de modos de usinagem que usam
movimentação dos eletrodos de forma semelhante ao fresamento de cavidades,
diminuindo o tamanho destes (HO e NEWMAN, 2003).
2.1.4 Análise do processo de eletroerosão
Os resultados obtidos em eletroerosão são muito estocásticos, em função dos
complicados mecanismos envolvidos no processo (PANDIT e MUELLER, 1987 apud HO e
NEWMAN, 2003).
2.1.4.1 Integridade de superfície
Um dos pontos nos quais a usinagem decididamente está classificada como
processo importante de fabricação é justamente na qualidade de superfície obtida. Esse
é o parâmetro mais levado em conta na hora de escolher pelos processos de usinagem
de uma superfície técnica.
A análise de superfícies é um importante relato do resultado de um processo de
fabricação, e tem relações muito fortes com o desempenho técnico da superfície.
Apesar da aceitação da topografia de superfície como fator relevante para o
desempenho da superfície técnica em termos mecânicos, como na resistência a fadiga,
existem condições subsuperficiais e microestruturais alteradas durante a usinagem que
também contribuem no desempenho do componente (HIOKI, 2006).
36
Superfícies obtidas por eletroerosão apresentam características de crateras, que
são típicas do processo térmico, com possibilidades de microfissuras na superfície e
abaixo desta (LEE e TAI, 2003), e com possibilidades de grande variação estrutural,
devido às altas temperaturas e altas taxas de aquecimento e resfriamento repetitivos aos
quais a superfície está exposta (KIYAK e ÇAKIR, 2007).
A figura 2.7 mostra exemplos de superfícies obtidas na eletroerosão de diferentes
materiais de peça.
As superfícies geradas por eletroerosão possuem três camadas bastante claras: A
camada refundida, comumente chamada camada branca (white layer) (EKMEKCI, 2007),
ou raramente de camada escura (Black layer)(MARAFONA, 2007) (o que depende
basicamente do método de observação) mais externa; a camada termicamente afetada e
o material não afetado. (LEE et al., 1988 apud HO e NEWMAN, 2003; LEE et al., 1990
apud HO e NEWMAN, 2003). A figura 2.8 mostra as três camadas existentes em uma
superfície usinada por eletroerosão.
Figura 2.7 – Exemplos de superfícies obtidas em microscópio eletrônico de varredura para vários
materiais de peça em eletroerosão de penetração: (a) alumínio, (b) prata, (c) latão, (d) cobre, (e) níquel,
(f) aço, (g) platina, (h) titânio, (i) aço inoxidável, (j) tântalo, (k) molibdênio e (l) tungstênio. Material do
eletrodo: prata-tungstênio (MAHARDIKA, TSUJIMOTO e MITSUI, 2008).
37
Figura 2.8 – Camadas existentes em superfície gerada por eletroerosão de titânio Ti-6Al-4V com
eletrodos de grafite, TON 150 µs, corrente 3ª, DT 60%, polaridade negativa no eletrodo.
A figura 2.9 mostra a camada branca (que na figura o autor chama de camada
negra) obtida na eletroerosão de aço.
Camada negra
Camada negra
Figura 2.9 – Camada negra (Black layer) obtida na usinagem de aço BS 4695 D2, com eletrodo de
tungstênio-cobre (75-25) com polaridade positiva, DT = 80%, observado por EDS (energy dispersive
spectroscopy ) em SEM (microscópio eletrônico de varredura) (MARAFONA, 2007).
A camada branca possui uma influência bastante grande sobre o desempenho da
superfície gerada (HO e NEWMAN, 2003). Nela são encontradas micro-trincas e altas
tensões residuais causadas pelos altos gradientes de temperatura característicos do
processo (LIN, YAN e HUANG, 2001 apud HO e NEWMAN, 2003; RAMASAWMY e BLUNT,
2004; YADAV, JAIN e DIXIT, 2002)
Segundo o ASM Metals Handbook vol. 16 (1997), na utilização de eletroerosão de
componentes estruturais sujeitos à alta tensão, a camada termicamente afetada (que
38
geralmente não ultrapassa 0,13 mm no desbaste e 0,025 mm no acabamento) deve ser
sempre totalmente removida.
A resistência da superfície obtida é bastante influenciada pela quantidade de
fissuras que se propagam na camada branca, devido à energia das descargas elétricas
(ABU ZEID, 1997 apud HO e NEWMAN, 2003).
É natural um aumento da dureza superficial de materiais metálicos na camada
branca devido à formação de carbonetos complexos na superfície por reações a altas
temperaturas com o carbono presente no dielétrico (HO e NEWMAN, 2003; KRUTH et al.,
1995).
A medição da rugosidade da superfície é o parâmetro mais utilizado para
definição da superfície obtida. A maior parte das publicações se refere aos tradicionais
parâmetros bidimensionais de rugosidade. Destes, são mais utilizados o Ra e o Rt
embora outros parâmetros, como Ry, Rq, Rz, estejam ganhando espaço (FUKUZAWA et
al., 2004; HAN e KUNIEDA, 2004; LONARDO e BRUZZONE, 1999; TARNG, MA e CHUNG,
1995).
Um exemplo típico de gráfico analisando a relação de um parâmetro com a
rugosidade obtida pode ser visualizado na figura 2.10.
Figura 2.10 – Comportamento da rugosidade média Ra em função do TON para diversas correntes. TOFF =
2 µs, material da peça P20, eletrodo de cobre eletrolítico
(KIYAK e ÇAKIR, 2007).
A figura 2.11 mostra uma avaliação 3D de uma superfície obtida por eletroerosão.
39
O efeito combinado dos diversos parâmetros no processo de eletroerosão torna
complicado o controle do processo na produção das superfícies desejadas (KIYAK e
ÇAKIR, 2007).
Figura 2.11 – Plotagem axonométrica de superfície 3D obtida na eletroerosão de aço ferramenta
(0,38%C; 16% Cr), TON = 750 μs, TOFF = 100 µs, i= 11, 18 A (RAMASAWMY e BLUNT, 2004).
2.1.4.2 Taxa de remoção de material e desgaste do eletrodo
A taxa de remoção de material é definida como a quantidade de material
removida por espaço de tempo durante um processo de usinagem. É um parâmetro
muito importante do ponto de vista prático, pois interfere diretamente na produção,
tanto em termos de prazos para execução do trabalho, quanto em termos dos custos do
processo. Além disso, influencia na opção pelo processo no planejamento.
É usual se analisar o desgaste do eletrodo e a taxa de remoção de material em
função das variáveis de entrada em processos de eletroerosão (HO E NEWMAN, 2003).
A utilização de processos como a eletroerosão com faíscas múltiplas visam
aumentar a produtividade do processo (HAN e KUNIEDA, 2004; MOHRI et al., 1985 apud
HO e NEWMAN, 2003).
Já o desgaste do eletrodo influencia muito na precisão dimensional e de forma da
cavidade produzida, o que pode significar inviabilização do processo, em função das
necessidades pré-determinadas de tolerâncias ou a necessidade de pós-processamento
das superfícies.
Segundo CHE HARON et al. (2008), a elevada taxa de desgaste do eletrodo é um
dos problemas principais em eletroerosão.
40
O tipo e forma de aplicação do dielétrico influenciam a taxa de remoção do
material e o desgaste do eletrodo em operações de desbaste, enquanto influem na
rugosidade em operações de acabamento, além de influenciarem na camada branca
(LONARDO e BRUZZONE, 1999; WONG, LIM e LEE, 1995).
A melhoria da precisão das cavidades produzidas e a diminuição do desgaste do
eletrodo podem ser conseguidas pelo movimento orbital do eletrodo, que produz um
efeito de limpeza mais adequado do dielétrico, aumentando também a eficiência do
processo (SNOEYS, STAELENS e DEKEYSER, 1986 apud HO e NEWMAN, 2003).
A medição do desgaste pode ser obtida em função da perda percentual de
material em função do tempo de usinagem (CHE HARON et al., 2008; HASÇALIK e
ÇAYDAS, 2007) ou também através da medição em perfilômetros da área de desgaste,
com mostrado na figura 2.12. Porém é bastante razoável que se faça uma comparação
do desgaste do eletrodo relativamente ao material removido da peça. Esse parâmetro é
denominado de desgaste relativo.
Figura 2.12 - Exemplo de análise de desgaste em eletroerosão através de rugosímetro. Material da peça
Cobre e material do eletrodo Prata-Tungstênio (MAHARDIKA, TSUJIMOTO e MITSUI, 2008)
Além da análise do desgaste relativo, é possível a análise do desgaste localizado,
como em cantos, que levam, inevitavelmente, a erros de forma. A figura 2.13 mostra um
gráfico que analisa o desgaste dessa forma, em função do tempo de usinagem.
2.1.4.3 Gap
A medição do gap é importante no sentido da utilização prática da tecnologia. O
dimensionamento dos eletrodos e seu posicionamento na peça levam em consideração o
41
gap formado no processo. Segundo SCHUMACHER (2004), existem gaps medidos on-line
e o “gap a”, medido com a fenda de trabalho limpa. Todos são complicados de se medir,
sendo que os primeiros dependem de equipamentos especializados e são muito
influenciados pelas condições na fenda;
e o gap a é altamente influenciado pela
rugosidade e sua medição depende de se interromper o processo.
Figura 2.13 – Evolução do desgaste do eletrodo em comprimento e no raio de canto em função do
tempo de usinagem, eletrodos de cobre, polaridade positiva, peça de aço ABNT 1045, i= 8A, TON = 96 μs,
DT = 50% (MOHRI et al., 1995)
2.2 Titânio
O Titânio é nono material e o quarto metal mais abundante do planeta,
perfazendo 0,6% da crosta terrestre, perdendo apenas para o alumínio, o ferro e o
magnésio dentre os metais (LEYENS e PETERS, 2003).
2.2.1 Histórico do titânio
O titânio foi descoberto em 1791, na Inglaterra por William Justin Gregor, a partir
do mineral Ilmenita (FeTiO3), na época apenas uma areia preta. O químico alemão
Martin Klaproth isolou o óxido de titânio em 1795, agora no mineral húngaro rutilo (TiO2)
e o batizou com o nome de titânio, do grego titan (poderosos filhos de Urano e Gaia)
(LEYENS e PETERS, 2003; LIU, CHU e DING, 2004).
42
A utilização do titânio como metal só foi possível a partir de 1946, quando
Wilhelm J. Kroll, nascido em Luxemburgo, desenvolveu nos Estados Unidos um método
de produção ainda utilizado (chamado método Kroll), que consiste na redução de TiCl 4
com magnésio a 800oC em atmosfera de argônio (ASM HANDBOOK – v. 02, 1997; LEYENS
e PETERS, 2003). Não existe ainda um processo contínuo para sua produção, além do
processo ter um consumo energético elevado.
Existem desenvolvimentos de um
processo de redução de titânio por eletrólise, que esbarram no aspecto
econômico(LEYENS e PETERS, 2003).
Logo após a segunda guerra mundial, as ligas de titânio se estabeleceram como
material indispensável na indústria aeronáutica (LEYENS e PETERS, 2003).
2.2.2 Propriedades do titânio
O titânio é um metal de transição, ou seja, um metal que possui ao menos um
orbital d incompleto. Os metais de transição, entre outras, apresentam as seguintes
características (SILBERBERG, 2007, METAIS DE TRANSIÇÃO, 2010):
 Dureza elevada e alto ponto de fusão e ebulição.
 Alta condutividade térmica e elétrica.
 Brilho metálico e plasticidade.
 Formam ligas entre si.
O titânio possui como características a resistência a corrosão elevada, alta
condutividade elétrica (2,34 x 106/m) e baixa condutividade térmica (21,9 W/(m·K),
baixa densidade (4507 kg/m3), ponto de fusão e ebulição elevados (1668 °C e 3287 °C),
resistência à fadiga e alta resistência mecânica (duas vezes superior ao alumínio e
superior à de muitos aços), e manutenção dessa resistência em altas temperaturas (420
o
C) (SANDVIK COROMANT, 2004).
A tabela 2.2 mostra propriedades do titânio em comparação com outros metais.
43
Tabela 2.2 – Propriedades do titânio em comparação a outros metais (LEYENS e PETERS, 2003).
Ponto de Fusão °C
Ponto de Ebulição °C
Densidade g/cm3
Reatividade com Oxigênio
Custo de material
Módulo de Elasticidade à
temperatura ambiente (GPa)
Resistência à corrosão
Tensão de escoamento (MPa)
Estrutura
Ti
Fe
Ni
Al
1668
3287
4,51
Muito alta
Muito alto
115
1538
7,9
Baixa
Baixo
215
1455
8,9
Baixa
Alto
200
660
2,7
Alta
Médio
72
Muito alta
1000
HEX→CCC
882°C
α→β
Baixa
1000
CCC→CFC
912°C
α→γ
Média
1000
CFC
Alta
500
CFC
2.2.3 Ligas de titânio
O titânio na forma natural possui estrutura hexagonal compacta à temperatura
ambiente. Suas ligas que possuem esta estrutura são chamadas de ligas α. A 883 oC, a
estrutura do titânio passa para cúbica de corpo centrado, conhecida como fase beta. As
ligas com elementos que estabilizam esta fase são chamadas ligas β (ASM HANDBOOK –
v. 02, 1997). A figura 2.14 mostra as estruturas formadas.
Figura 2.14 – Estruturas α (à esquerda) e β (à direita), formadas nas ligas de titânio (LEYENS e PETERS,
2003)
A figura 2.15 mostra microestruturas formadas com as fases α e β de uma liga de
titânio.
44
a
b
c
Figura 2.15 – Estruturas formadas em Ti-8Al-1Mo-1V. Em (a) se observam grãos α (claros) em uma
matriz α+β (escura). Em (b) notam-se grãos da fase (claros) em uma matriz transformada (escura). Em
(c), fase β grosseira (escura) a fase α acicular fina (branca) (ASM HANDBOOK – v 02, 1997).
Elementos como alumínio e estanho estabilizam a fase α, e as ligas formadas são
resistêntes à fluência e portanto aplicadas em altas temperaturas. Também são
melhores para aplicações criogênicas que as ligas β, pois não possuem transição dúctilfrágil. Possuem boa resistência, soldabilidade e tenacidade, embora não tenham sua
dureza aumentada por tratamento térmico e tenham pouca deformabilidade. Um
exemplo de liga α é a liga Ti-5Al-2.5-Sn; e ligas próximas a α: Ti-8Al-1Mo-1V; Ti-11Sn1Mo-2.25Al-5.0Zr-1Mo-0.2 Si; Ti-6Al-2Sn-4Zr-2Mo; Ti-5Al-5Sn-2Zr-2Mo-0.25Si e Ti-6Al2Nb-1Ta-1Mo.
As ligas β possuem elementos de transição como vanádio, nióbio e molibdênio.
Essas ligas respondem muito bem a tratamentos térmicos e têm grande
conformabilidade. Exemplos de ligas β são: Ti-13V-11Cr-3Al; Ti-8Mo-8V-2Fe-3Al; 3Al-8V6Cr-4Mo-4Zr; Ti-11.5Mo-6Zr-4.5Sn; Ti-15V-3Cr-3Al-3Sn e Ti-5Al-2Sn-2Zr-4Cr (ASM
HANDBOOK – v 02, 1997).
Ligas α+β contém as duas fases, com cerca de 10 a 50% da fase β em temperatura
ambiente. Possuem boa conformabilidade e os tratamentos térmicos são usados para
controlar a quantidade de fase β presente. A principal liga de titânio, conhecida por
titânio aeronáutico e responsável por mais de 50% da produção de ligas de titânio. A liga
Ti-6Al-4V, desenvolvida em 1954, é uma liga α+β. Exemplos de ligas α+β, além da Ti-6Al4V, são: Ti-8Mn; 3Al-2.5V; Ti-6Al-6V-2Sn; Ti-7Al-4Mo; Ti-6Al-2Sn-4Zr-6Mo e Ti-6Al-2Sn2Zr-2Mo-2Cr-0.25Si (SANDVIK COROMANT, 2004; ASM HANDBOOK – v 02, 1997). Na
figura 2.16 são mostradas as microestruturas resultantes da obtenção da liga Ti-6Al-4V.
45
Lamelar, recozido β
Lamelar, forjado β
Duas fases, têmpera em água Duas fases, resfriado ao ar
Globular fino
Globular grosseiro
Figura 2.16 – Gráfico de resfriamento da liga Ti-6Al-4V, mostrando suas microestruturas (LEYENS e
PETERS, 2003)
2.2.3.1 Aplicações das ligas de titânio
Aproximadamente 60 % das ligas metálicas de titânio são usadas na indústria
aeroespacial e aeronáutica (para motores, turbinas, peças estruturais e fuselagem (ASM
HANDBOOK – v 02, 1997; EZUGWU e WANG, 1997), na indústria de processamento
químico, sua resistência à corrosão é apreciada; na indústria naval é utilizado para
equipamentos submarinos e de dessalinização; em indústrias nucleares em
recuperadores de calor e em produção e armazenamento de energia; em mísseis e peças
de artilharia; indústria papeleira. Ligado ao nióbio pode possuir propriedades
supercondutoras; ligado ao níquel pode ser usado em aplicações com memória (de
forma). Por sua relação de resistência-peso têm encontrado aplicações na indústria
automobilística. É também utilizado com pigmento para tintas e material para
revestimento de eletrodos (junto ao rutílio), material para óculos, bicicletas, protetores
solares para a pele, câmeras, joalheria, equipamentos esportivos e para instrumentos
musicais (ASM HANDBOOK – v 02, 1997; THOMAS, 2003).
As ligas de titânio têm biocompatibilidade superior a ligas de Cromo-Cobalto e
aços 316L em implantes ortopédicos e próteses, além de propriedades mecânicas
adequadas e alta resistência a corrosão (ALEIXO, BUTTON e CARAM, 2006; ASM
HANDBOOK – v 02, 1997; LIU, CHU e DING, 2004). Nestas ligas para implantes deve-se
evitar o vanádio, que é um elemento considerado como pouco tolerado pelo corpo
46
(ALEIXO, BUTTON E CARAM, 2006). Alguns autores também questionam o uso do
alumínio, uma vez que pode, assim como o vanádio, liberar íons com alta toxidade. O
alumínio é considerado, inclusive, um dos responsáveis pelo mal de Alzheimer (BAUER,
2007). Ligas de alta biocompatibilidade são do tipo β (NIINOMI, 1998), que possuem
módulo de elasticidade próximo ao de
ossos corticais, como as ligas Ti-13Nb-13Zr, a Ti-5Mo-5z-3Al e a Ti-29Nb-3Ta-4,5 Zr
(ALEIXO, BUTTON e CARAM, 2006).
As ligas com alumínio, cobre, vanádio e níquel melhoram as propriedades
mecânicas das ligas de titânio. A cuidadosa adição de elementos de liga e tratamentos
térmicos maximiza as propriedades do titânio e podem mudar suas características de
usinabilidade (SANDVIK COROMANT, 2004).
2.2.3.2 Usinabilidade das ligas de titânio
Quanto à usinabilidade, a baixa condutividade térmica do titânio, sua grande
tendência a ligar-se ou reagir quimicamente com materiais de ferramenta em altas
temperaturas, baixo módulo de elasticidade e grande ângulo de cisalhamento, além da
resistência mesmo em maiores temperaturas são fontes de problemas na usinagem com
ferramentas de geometria definida. As ligas de titânio são consideradas de baixa
usinabilidade (SANDVIK COROMANT, 2004; CHE-HARON e JAWAID, 2005)
Já na retificação, os maiores problemas das ligas de titânio dizem respeito à
tendência à ligação ou reação química com materiais de rebolos em altas temperaturas
(TRUCKS, 2008).
A baixa condutividade térmica e alta resistividade elétrica, cinco vezes maior que
o aço, além de um ponto de fusão relativamente alto em relação aos aços, são
decididamente aspectos negativos para o processo de eletroerosão usando ligas de
titânio como material de peça (FONDA et al., 2008).
Segundo FONDA et al. (2008), a utilização de altos duty times (DT), devido à
elevada quantidade de energia, vai causar um sobreaquecimento da peça e consequente
aumento da dissipação de calor, aliado ao fato que a resistividade do titânio é crescente
com o aumento da temperatura. Isto pode resultar em uma usinagem ineficiente e com
pobres características superficiais, isso quando há estabilidade no processo. A figura 2.17
mostra a influência do DT sobre a usinagem.
47
Figura 2.17 – Velocidade da usinagem e temperatura da peça em função do DT. Material da peça Ti-6Al4V, eletrodo de cobre com polaridade negativa e TON 20 μs (FONDA et al., 2008).
Ainda na eletroerosão de titânio, existe uma indicação que, mesmo utilizando
eletrodos metálicos, a polaridade negativa do eletrodo seja o único método de sucesso
na usinagem (GUITRAU, 1997).
48
3 PRÉ-ENSAIOS
Como etapa inicial do trabalho, foram realizados pré-ensaios de usinagem, com a
intenção de verificar as possibilidades de ensaio em diversos aspectos, uma vez que a
bibliografia é escassa para a situação de usinagem por eletroerosão de titânio.
Estes pré-ensaios foram realizados sem preocupação com a geometria e
alinhamentos dos corpos de prova e eletrodos, com a liga de titânio disponível (Ti-6Al4V) como material de corpos de prova e com um grafite de granulometria desconhecida
como material de eletrodo.
Foram considerados parâmetros e formas utilizadas na bibliografia, como em
Hasçalik e Çaydas (2007).
É sugerido (GUITRAU, 1997) que, tanto a usinagem de ligas
de titânio, quanto a usinagem com eletrodos de grafite sejam realizadas com polaridade
negativa no eletrodo, o que difere da forma mais convencional da eletroerosão. Decidiuse por fazer alguns pré-ensaios também em polaridade positiva.
Entre os aspectos dos quais se pretendia testar pode-se destacar:
 Faixa aproximada para os parâmetros de usinagem (polaridade, TON, DT, e
corrente).
 Geometria aproximada de corpos de prova e eletrodos.
 Regime de trabalho possível para a geometria aproximada de corpos de
prova e eletrodos.
 Opções de limpeza do gap.
 Critérios para avaliação do tempo de usinagem e do desgaste do eletrodo
Os pré-ensaios foram realizados nas condições mostradas na tabela 3.1.
Tabela 3.1 – Condições utilizadas nos pré-ensaios.
Parâmetro
Polaridade
Corrente (A)
TON (µs)
DT (%)
Regime
Limpeza
Variação
+e1,5 a 24
10 a 800
35 a 80
Contínuo e com retração do eletrodo 0,5 s x 0,5 mm
Jato lateral
Para se realizar os pré-ensaios, foi necessária a confecção de um suporte mais
adequado para os eletrodos, que possuem formatos parecidos com prismas, uma vez
49
que a máquina de eletroerosão usada possuía apenas um suporte com rosca interna
M10 para eletrodos. A figura 3.1 mostra o suporte.
Figura 3.1 – Suporte utilizado na fixação dos eletrodos.
Por se tratar de pré-ensaios, a preparação dos eletrodos não foi minunciosa,
apenas com corte em serra manual e limagem. A resistência do titânio ao corte é um
fator complicador da preparação dos corpos de prova.
Depois de serrados em sua forma final, os corpos de prova foram marcados. Uma
marcação com punção foi tentada, mas a resistência da liga foi impeditiva. Foram feitas
marcações em furadeira-fresadora com brocas de centro, como mostradas na figura 3.2.
Figura 3.2 – Marcação dos corpos de prova (feita em furadeira).
Com o novo dispositivo de fixação, a colocação dos eletrodos na máquina ficou
facilitada e é mostrada na figura 3.3.
50
Suporte
Eletrodo de
grafite
Figura 3.3 – Fixação dos eletrodos no suporte e na máquina de eletroerosão.
A fixação dos corpos de prova foi realizada em uma morsa dentro da cuba da
máquina de eletroerosão. Apesar das forças atuante no processo serem desprezíveis, as
pequenas dimensões dos corpos de prova, acrescidos do empuxo sofrido e do fluxo de
fluido podem movimentar os corpos de prova durante a usinagem. A colocação do fluido
foi feita da forma mais tradicional para cavidades abertas lateralmente, ou seja, com
fluxo lateral horizontal direcionado ao gap. Tanto a fixação dos corpos de prova quanto o
posicionamento do fluxo podem ser visualizados na figura 3.4.
Suporte
Corpo de
prova
Figura 3.4 – Fixação dos corpos de prova e posicionamento do jato de limpeza lateralmente.
Após os procedimentos de preparação da máquina, dos corpos de prova e dos
eletrodos realizados, foram executadas as usinagens conforme o planejamento inicial. A
figura 3.5 mostra a execução da usinagem.
51
Figura 3.5 – Usinagem dos corpos de prova nos pré-ensaios.
Em cada corpo de prova foram realizados cinco ensaios, e foi adotada uma
profundidade da usinagem de dois milímetros. As faixas dos parâmetros utilizados para
os ensaios levaram em consideração os valores encontrados na bibliografia (HASÇALIK e
ÇAYDAS, 2007) e as possibilidades da máquina utilizada. A tabela 3.2 mostra como foram
organizados os pré-ensaios.
Os pré-ensaios feitos no corpo de prova 01 foram realizados em regime de
penetração contínua. Os demais foram em regime de retração do eletrodo, com o tempo
de sequência de descargas sendo de 0,5 segundos e a retração de 0,5 mm a cada ciclo. A
diferença entre os pré-ensaios dos corpos de prova 02 e 03 consiste no fato de se
aumentar o gap e a velocidade do servo motor da máquina ao máximo, e os ensaios
seguintes utilizaram valores máximos de gap e velocidade do servomotor.
52
Tabela 3.2 – Organização dos pré-ensaios realizados. Os ensaios dos corpos de prova 1 foram os únicos
realizados sem retração do eletrodo. Os ensaios do corpo de prova 2 foram realizados com aumento do
gap e da velocidade do servomotor na máquina.
CP
1
1
1
1
1
CP
3
3
3
3
3
Pol. Elet.
Pol. Elet.
-
TON (µs)
50
50
50
50
50
TON (µs)
50
50
50
50
50
DT (%)
80
80
80
80
80
DT (%)
80
80
80
80
80
Corrente (A)
1.5
3
6
15
24
Corrente (A)
1.5
3
6
15
24
CP
5
5
5
5
5
5
CP
7
7
7
7
7
7
Pol. Elet.
Pol. Elet.
-
TON (µs)
10
20
30
50
80
100
TON (µs)
10
20
30
50
80
100
DT (%)
35
35
35
35
35
35
DT (%)
60
60
60
60
60
60
Corrente (A)
15
15
15
15
15
15
Corrente (A)
15
15
15
15
15
15
CP
2
2
2
2
2
CP
4
4
4
4
4
4
CP
6
6
6
6
6
6
CP
8
8
8
8
8
8
Pol. Elet.
Pol. Elet.
Pol. Elet.
+
+
+
+
+
+
Pol. Elet.
-
TON (µs)
50
50
50
50
50
TON (µs)
10
20
30
50
80
100
TON (µs)
10
20
30
50
80
100
TON (µs)
120
150
200
300
500
800
DT (%)
80
80
80
80
80
DT (%)
35
35
35
35
35
35
DT (%)
35
35
35
35
35
35
DT (%)
48
48
48
48
48
48
Corrente (A)
1.5
3
6
15
24
Corrente (A)
3
3
3
3
3
3
Corrente (A)
15
15
15
15
15
15
Corrente (A)
15
15
15
15
15
15
3.1 Influência dos parâmetros na macrogeometria dos eletrodos e corpos de prova.
Os pré-ensaios realizados no corpo de prova 01 tiveram uma usinagem instável,
atribuída particularmente a uma condição insuficiente de limpeza, agravada pelo uso de
DT elevado.
Todos os ensaios no corpo de prova 01 resultaram em formação de estalagmite,
mostrada na figura 3.6.
Figura 3.6 – Formação de estalagmites durante a usinagem do corpo de prova 01. A estalagmite
mostrada foi resultante de corrente 6A, Ton 50 μs, DT 80%, limpeza por jato lateral, polaridade negativa
no eletrodo e regime de usinagem contínuo.
53
A figura 3.7 mostra todas as tentativas de usinagem do corpo de prova 01.
Figura 3.7 – Resultado no corpo de prova 01.
Os resultados mostrados nas figuras 3.8 e 3.9 são referentes ao corpo de prova
03.
A usinagem deste corpo de prova não foi satisfatória e a superfície resultou
altamente irregular, melhorando apenas o fato da usinagem ser estável, em relação ao
corpo de prova 01. A Figura 3.8 mostra o desgaste dos eletrodos.
Figura 3.8 – Desgaste nos eletrodos no corpo de prova 03.
Apesar de a usinagem ter atingido a profundidade proposta, a variação da
topografia foi acima da faixa de medição do rugosímetro utilizado, exceção feita ao
primeiro ensaio.
54
Figura 3.9 – Resultado no corpo de prova 03.
Para a usinagem do corpo de prova 02, foi aumentado o gap e a velocidade do
servomotor. O aumento dos valores desses parâmetros na máquina não surtiu efeito
sobre a usinagem. Com a dificuldade de usinagem mais centrada na superfície, houve
formação de vazios nos eletrodos, resultando seu negativo, em forma de protuberâncias
na superfície do corpo de prova. Esses vazios formados na superfície dos eletrodos
podem ser visualizadas na figura 3.10.
Figura 3.10– Formação de protuberâncias nos corpo de prova e vazio nos eletrodos durante a usinagem
do corpo de prova 02.
Ainda na figura 3.10 notam-se as protuberâncias formadas no corpo de prova. A
medição de rugosidade foi possível fora das protuberâncias, apenas em nível de
informação.
A figura 3.11 compara os corpos de prova 02 e 03. Comparando-se os resultados
dos corpos de prova 02 e 03, nota-se que houve uma melhora da superfície,
provavelmente causada principalmente pela concentração das protuberâncias, do que
efetivamente o aumento do gap.
55
Figura 3.11 – Comparação entre os corpos de prova 02 (acima) e 03(abaixo).
Em conversa com o departamento técnico da Agie Charmilles do Brasil, (PEREIRA,
2009) foi indicado que a faixa de utilização de DT fosse entre 30 e 60%, assim como para
a usinagem de metal duro. A partir disso, foi utilizada essa faixa e a usinagem melhorou
sensivelmente, como pôde ser comprovado nos ensaios nos corpos de prova 04 a 08.
Não foram estabelecidas graficamente as relações entre parâmetros de entrada e
de saída para os corpos de prova 01, 02 e 03.
Já para os corpos de prova de 04 a 08 a usinagem ocorreu de forma adequada,
demonstrando que DT de 80% não é razoável para este tipo de usinagem.
Com os dados destes ensaios, foram analisados os parâmetros de saída em função
de parâmetros de entrada na usinagem, e estas correlações são mostradas adiante. A
figura 3.12 mostra desgastes de eletrodo típicos para estes ensaios.
Figura 3.12 – Marca de desgaste em eletrodo usado para o corpo de prova 04. Condições de ensaio:
polaridade negativa no eletrodo, limpeza com jato lateral, sistema de usinagem com retração de 0,5
mm e 0,5 s de tempo de usinagem, TON 50 μs, corrente 3A e DT 35%.
56
Os corpos de prova 04 a 08 também apresentaram superfícies possíveis de serem
quantificadas, sem formação de nenhum tipo de estrutura na superfície. A figura 3.13
mostra resultados típicos nesses corpos de prova.
Figura 3.13 – Corpo de prova 04 após usinagem em pré-testes.
A tabela 3.3 mostra os resultados obtidos para as situações propostas, assim
como as combinações testadas dos parâmetros mostrados na tabela 3.2. O desgaste
máximo foi obtido com medição direta com paquímetro, utilizando-se a haste de
profundidade na posição mais profunda da cavidade obtida nos corpos de prova.
Tabela 3.3 – Resultados obtidos nos pré-ensaios realizados. (continua)
CP
Pol.
Elet.
TON
(µs)
DT
(%)
Corrente Tempo
(A)
(min)
1
-
50
80
1.5
1
1
-
50
50
80
80
3
6
1
-
50
80
1
2
-
50
50
80
80
2
-
50
2
2
-
50
50
2
-
50
80
3
3
-
50
50
80
80
3
3
-
50
50
80
80
3
4
-
50
10
4
-
4
4
-
4
4
Desgaste
Max (mm)
Regime e limpeza
Ra
(µm)
Rt
(µm)
Rz
(µm)
Obs
Contínuo/ jato lateral
-
-
-
Estalagmite no início
Contínuo/ jato lateral
Contínuo/ jato lateral
-
-
-
Estalagmite no início
Estalagmite no início
15
Contínuo/ jato lateral
-
-
-
Estalagmite no início
24
1.5
16,5
0,60
Contínuo/ jato lateral
Retração 0,5x0,5/ jato lateral
12,26
95,5
60,2
80
3
15,5
1,80
Retração 0,5x0,5/ jato lateral
13,13
96,0
65,1
80
80
6
15
15,5
11,5
1,85
1,80
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
14,26
15,40
82,8
102,4
64,1
75,4
24
12
1,80
Retração 0,5x0,5/ jato lateral
?
?
?
1.5
3
16,5
34,5
1,00
1,40
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
25,89
?
125,4
?
108,4
?
6
15
40
56,5
1,08
1,60
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
?
?
?
?
?
?
80
35
24
3
60
88
1,30
0,70
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
?
5,46
?
34,4
?
24,8
20
35
3
125
0,80
Retração 0,5x0,5/ jato lateral
4,16
34,1
26,5
30
50
35
35
3
3
157
118
0,60
1,05
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
5,51
5,51
36,6
34,4
25,8
27,7
-
80
100
35
35
3
3
97
59
1,05
0,54
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
4,85
7,51
29,1
47,8
25,9
36,4
5
-
10
35
15
46
0,54
Retração 0,5x0,5/ jato lateral
4,07
33,6
24,9
5
5
-
20
30
35
35
15
15
33
33
0,50
0,46
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
6,82
7,46
44,2
53,6
34,4
40,2
5
5
-
50
80
35
35
15
15
23
10,5
?
0,30
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
11,29
9,67
62,2
58,8
57,0
47,9
5
-
100
35
15
10,5
0,40
Retração 0,5x0,5/ jato lateral
13,52
88,6
70,6
Estalagmite no início –
inclusão
clara
Aumentado
o de
gaptitânio
(daquino
grafite.
para
frente todos usaram
gap máximo)
57
CP
Pol.
Elet.
TON
(µs)
DT
(%)
Corrente Tempo
(A)
(min)
Desgaste
Max (mm)
6
+
10
35
15
304*
1,50*
6
6
+
+
20
30
35
35
15
15
370*
318*
6
+
50
35
15
6
6
+
+
80
100
35
35
15
15
7
7
-
10
20
60
60
15
15
7
7
-
30
50
60
60
7
-
80
7
8
-
100
120
8
8
Regime e limpeza
Ra
(µm)
Rt
(µm)
Rz
(µm)
Obs
Retração 0,5x0,5/ jato lateral
2,21
13,0
10,6
* estimado (foi metade para
profundidade de 1 mm,
devido á lentidão)
1,54*
1,48*
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
1,78
2,98
13,1
18,8
10,7
15,9
82*
1,08*
Retração 0,5x0,5/ jato lateral
1,86
23,0
11,2
106*
-
1,80*
0,60*
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
3,37
7,51
31,7
49,1
24,2
40,4
23
18
0,60
0,53
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
5,06
9,96
68,0
70,5
31,3
50,0
15
15
18
16
0,70
0,60
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
10,24
8,21
65,9
60,6
46,3
45,3
60
15
13
0,54
Retração 0,5x0,5/ jato lateral
12,21
66,0
62,1
60
48
15
15
12
9
0,80
0,75
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
12,33
13,10
76,0
84,8
59,4
64,6
150
200
48
48
15
15
10
?
0,60
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
15,33
14,65
102,8
102,0
79,4
73,8
8
300
48
15
9
0,80
Retração 0,5x0,5/ jato lateral
21,73
116,4
100,3
8
8
500
800
48
48
15
15
10
14
0,76
0,90
Retração 0,5x0,5/ jato lateral
Retração 0,5x0,5/ jato lateral
20,29
20,36
116,8
100,9
102,4
84,0
eletrodo solto
3.2 Influência dos parâmetros sobre a rugosidade
Foi medida a variação da rugosidade para as condições ensaiadas. Para estes préensaios foram realizadas medições dos parâmetros Ra, Rt e RzDIN em um rugosímetro
Mitutoyo Surftest 301, com 3 comprimentos de amostra e cutoff = 0,8 mm. A figura 3.14
mostra a maneira segunda a qual a rugosidade foi medida.
Figura 3.14 – Método de medição de rugosidade utilizado nos pré-ensaios. Cutoff = 0,8 mm e 3
comprimentos de amostra.
Para as condições dos primeiros ensaios, com regime contínuo, e onde ocorreram
estalagmites, naturalmente não se pode medir a rugosidade, e algumas condições de
rugosidade muito elevada, como em DT = 80%, o rugosímetro não conseguiu realizar a
leitura. Nas situações onde se observaram os vazios formados nos eletrodos (que
58
correspondem a protuberâncias na superfície usinada), a rugosidade foi obtida, quando
possível de se medir, fora das protuberâncias resultantes.
Para as condições mais ensaiadas, com DT entre 35 e 60%, T ON entre 10 e 100 μs e
correntes de 3 e 15 A, foi realizada uma plotagem do comportamento da rugosidade,
que pode ser visualizada na figura 3.15.
Figura 3.15 – Comportamento da rugosidade com o TON para diversas situações. Salvo indicação em
contrário, a limpeza foi por jato lateral, com regime de retração da máquina (0,5 s x 0,5 mm),
polaridade negativa no eletrodo e DT = 35%.
Os parâmetros Rt e RzDIN tiveram um comportamento similar a Ra. Como a
superfície é formada basicamente de crateras e não existe vibração no processo, isso
seria de se esperar. Também indica que, dentro dos parâmetros ensaiados, a superfície
não sofreu alteração dos fenômenos de sua formação.
Também o aumento da rugosidade com o aumento de TON é previsível. A maior
energia dissipada com maiores TON forma crateras com raio maior, o que reflete
diretamente na rugosidade, que parece não ser influenciada pelo DT.
Foi obtida baixa rugosidade com polaridade positiva no eletrodo. Apesar do baixo
rendimento e grande desgaste do eletrodo nessa situação a rugosidade, especialmente
para baixos TON é uma opção viável.
A Figura 3.16 mostra o comportamento da rugosidade Ra para maiores TON (até
800 μs).
59
Figura 3.16 – Comportamento da rugosidade Ra para três valores de DT e para uma ampla faixa de TON.
A corrente é de 15 A e o eletrodo tem polaridade negativa.
Além de confirmar a não influência do DT sobre a rugosidade, a figura 3.16
também mostra a continuidade do comportamento da rugosidade com o aumento de
TON.
3.3 Influência dos parâmetros no tempo de usinagem e no desgaste do eletrodo
Para a análise de remoção de material, como se tratavam de ensaios preliminares,
foi observado o tempo para se atingir a profundidade estabelecida de dois milímetros.
Este processo de medição é muito pouco preciso, em comparação com a medição das
massas do corpo de prova antes e depois do ensaio, porém é muito mais rápido e fácil,
servindo de base para a análise inicial.
Alguns ensaios resultaram em formação de estalagmite, não sendo possível
atingir a profundidade estabelecida. Os ensaios com polaridade positiva no eletrodo
foram interrompidos com um milímetro de profundidade, devido ao alto tempo de
usinagem, e o valor para profundidade de dois milímetros (para comparação com os
demais ensaios) foi estimado com sendo o dobro do tempo para profundidade de 1 mm.
Como a máquina utilizada dispõe de um cronômetro parcial e zerável, este foi o
utilizado para contagem.
Para a faixa de DT 35 a 60%, foi possível elaborar o gráfico apresentado na figura
3.17, que mostra as relações de tempo para diversos TON.
60
Figura 3.17 – Relação do tempo para atingir a profundidade de 2 mm no corpo de prova em função de
TON. Condições de ensaio, salvo indicações em contrário: polaridade negativa no eletrodo, limpeza com
jato lateral, sistema de usinagem com retração de 0,5 s x 0,5 mm e DT 35%.
Na figura 3.17 observa-se que a polaridade positiva no eletrodo aumenta muito o
tempo de usinagem, especialmente para baixos tempos de onda ligados. Como seria de
se esperar, correntes menores aumentam o tempo de usinagem, pois os níveis de
energia aplicada por descarga são baixos e removem menor quantidade de material.
A figura 3.18 mostra o comportamento do tempo de usinagem para maiores
valores de TON.
Aparentemente existe uma diferenciação no comportamento do tempo de
usinagem com a variação do DT, especialmente para menores TON. Também mostra uma
tendência ao decréscimo do tempo de usinagem com o aumento de TON.
No que diz respeito ao desgaste do eletrodo, foi verificada a maior profundidade
de desgaste no eletrodo com um paquímetro, em uma usinagem prevista de 2 mm de
profundidade em titânio Ti-6Al-4V. Nos ensaios que resultaram estalagmite não
permitiram a medição do desgaste. Quando houve a formação de vazios nos eletrodos, o
desgaste máximo está associado à profundidade dos vazios.
61
Figura 3.18 – Evolução do tempo de usinagem com o aumento de TON, para três DT. Condições de
ensaio: polaridade negativa no eletrodo, limpeza com jato lateral e sistema de usinagem com retração
de 0,5 s x 0,5 mm.
A figura 3.19 mostra o comportamento do desgaste máximo nos eletrodos para
diversos TON em algumas situações.
Figura 3.19 – Relação do desgaste máximo no eletrodo para atingir a profundidade de 2 mm
no corpo de prova em função de TON. Condições de ensaio, salvo indicações em contrário: polaridade
negativa no eletrodo, limpeza com jato lateral, sistema de usinagem
com retração 0,5 s x 0,5 mm e DT 35%.
Através da figura 3.19 percebe-se o elevado desgaste do eletrodo para polaridade
positiva no eletrodo. A polaridade positiva no eletrodo deixa o processo de eletroerosão
mais lento, porém protege o eletrodo (GUITRAU, 1997). No caso da usinagem de corpos
de prova de liga de titânio com eletrodos de grafite, essa proteção é inexistente, ou o
62
demasiado tempo em usinagem (baixa eficiência) faz com que o grafite sofra alto
desgaste.
A figura 3.20 mostra o comportamento do desgaste para uma maior faixa de TON.
Figura 3.20 – Relação do desgaste máximo no eletrodo para atingir a profundidade de 2 mm no corpo
de prova para uma maior faixa de TON e três DT. Condições de ensaio: polaridade negativa no eletrodo,
limpeza com jato lateral e sistema de usinagem com retração de 0,5 s x 0,5 mm.
Na figura 3.20 demonstra-se a pouca ou nenhuma influência do DT sobre o
desgaste do eletrodo, e aumento do desgaste com o aumento de TON.
3.4 Aspectos identificados nos pré-ensaios
Certos aspectos ficaram mais claros nos pré-ensaios. Alguns deles dizem respeito
aos parâmetros a serem utilizados, tanto os pré-definidos como os variáveis.
Na questão de parâmetros inicialmente definidos, como se trata de um processo
de difícil realização, a utilização de regime de retração do eletrodo na máquina e jato de
fluido lateral é imprescindível. Sem isso ocorrem estalagmites no processo.
O tamanho aproximado dos eletrodos e corpos de prova foi satisfatório e permite
a medição de rugosidade, desgaste, taxa de remoção e outros parâmetros de interesse
como a espessura da camada branca.
Nos parâmetros variáveis, é interessante se testar a polaridade positiva no
eletrodo. A usinagem é possível e resulta em melhora do acabamento superficial, apesar
do desgaste elevado e da baixa taxa de remoção.
63
Também a faixa de DT deve chegar apenas a 60 ou 70%. Acima desses valores, a
usinagem (pelo menos com polaridade negativa no eletrodo) não possui resultados
aplicáveis na prática.
A faixa de TON a ser utilizada pode ser grande, assim como a faixa de corrente,
sendo possíveis vantagens em termos de produção com TON elevado.
64
4 MATERIAIS E MÉTODOS
O método de ensaios seguiu a experimentação usada normalmente em pesquisa
na área da usinagem, que é baseada na sequência de ensaios com condições iniciais fixas
e variação de parâmetros controláveis, observando-se o processo e comportamento dos
parâmetros de saída e posteriormente medindo de forma confiável elementos que
representem o resultado do processo, correlacionando-os com os parâmetros e
condições de entrada.
As condições fixas para este trabalho dizem respeito ao tamanho e material dos
eletrodos e corpos de prova, o tipo, pressão, forma de aplicação e vazão do dielétrico, os
valores de retração do eletrodo e a máquina a ser utilizada.
Os pré-ensaios realizados indicaram quais parâmetros deveriam ser variados e,
com auxílio da literatura, especialmente o trabalho de Hasçalik e Çaydas (2007), quais as
faixas de variação correspondentes.
O planejamento dos experimentos foi feito através de um projeto de
experimentos, que foi determinante não só na ordem dos ensaios, como na quantidade
destes, levando-se em consideração o tempo estimado por ensaio, incluindo preparação.
Os parâmetros utilizados foram a corrente elétrica, o TON, o DT e a polaridade
utilizada.
Foram adotadas três repetições para cada ensaio. Um número maior seria
interessante do ponto de vista de redução das incertezas, porém acarretaria em maior
número de ensaios, o que não seria viável em função das limitações de uso de
equipamento e material.
4.1 Projeto dos experimentos
Optou-se por realizar um projeto de experimentos (DOE – design of experiments)
fatorial.
As opções consideradas foram a utilização de fatorial geral completo, de fatorial
completo de dois níveis e fatorial de dois níveis com meia fração. Analisando-se as três
possibilidades foi verificado que a utilização dos dois primeiros modos, especialmente do
65
fatorial geral completo, embora interessante do ponto de vista da quantidade de fatores
e níveis ensaiados, era impeditiva do ponto de vista de quantidade de ensaios.
Por conseguinte, a opção julgada mais adequada foi a utilização de fatorial de dois
níveis com meia fração. O número de experimentos para um projeto desses é
determinado por (CARPINETTI, 2000; BARROS NETO, SCARMINIO e BRUNS, 1995):
N = 2k−p
(eq. 4.1)
Onde N= número de experimentos
k = número de variáveis
p = 1 para meia fração.
As variáveis escolhidas para análise são as mais comuns em eletroerosão
(HASÇALIK e ÇAYDAS, 2007; WEINGAERTNER, 199?, GUITRAU, 1997; BENEDICT, 1987) e
demonstradas como influentes nos pré-ensaios, e são mostradas na tabela 4.1, bem
como os níveis adotados. Com a definição de dois níveis para cada parâmetro, tem-se
oito ensaios, com três repetições, chegando-se a um total de 24 ensaios.
Tabela 4.1– Níveis especificados para os parâmetros a serem analisados.
PARÂMETRO
POLARIDADE
TON (μs)
DT (%)
CORRENTE (A)
NÍVEL 1
10
30
3
NÍVEL 2
+
150
60
24
Os valores escolhidos como níveis para os ensaios foram determinados através
dos pré-ensaios. A faixa escolhida para DT foi baseada em informações da assistência
técnica da Agie Charmilles (PEREIRA, 2009); e Amorim e Silva (2010), em seu trabalho de
furação por eletroerosão de Ti-6Al-4V, que também concluem que valores muito acima
de DT 50% não são recomendáveis.
O programa utilizado para geração dos experimentos foi o MINITAB ®, versão
15.1.1.0 da Minitab Inc. Com a inserção dos dados anteriormente especificados, o
programa gerou a sequência aleatória dos ensaios mostrada na tabela 4.2.
66
Tabela 4.2 – Sequência determinada para os ensaios.
Ordem padrão Ordem do ensaio Corrente (A) TON (µs) DT (%)
3
1
3
150
30
21
2
3
10
60
5
3
3
10
60
4
4
24
150
30
1
5
3
10
30
23
6
3
150
60
17
7
3
10
30
10
8
24
10
30
8
9
24
150
60
11
10
3
150
30
7
11
3
150
60
15
12
3
150
60
18
13
24
10
30
16
14
24
150
60
22
15
24
10
60
19
16
3
150
30
6
17
24
10
60
12
18
24
150
30
9
19
3
10
30
20
20
24
150
30
24
21
24
150
60
13
22
3
10
60
14
23
24
10
60
2
24
24
10
30
Polaridade
Positiva
Positiva
Positiva
Negativa
Negativa
Negativa
Negativa
Positiva
Positiva
Positiva
Negativa
Negativa
Positiva
Positiva
Negativa
Positiva
Negativa
Negativa
Negativa
Negativa
Positiva
Positiva
Negativa
Positiva
4.2 Preparação dos corpos de prova e dos eletrodos
Os corpos de prova foram confeccionados em titânio Ti-6Al-4V, mesmo material
utilizado nos pré-ensaios. Nesta fase da pesquisa, o cuidado no corte dos corpos de
prova foi maior, o que modificou a forma de preparação. Essa preparação é descrita no
apêndice 01.
O material escolhido para os eletrodos foi o grafite, por se tratar de um material
com boas características do ponto de vista de resistência e produtividade, uma vez que
se esperava dificuldade na usinagem.
O grafite utilizado foi o EC 14 da MWI Inc., que possui um custo de cerca de R$
110,00/kg (valores de 2009). Outras possibilidades seriam os importados EC 15 e EC 17,
do mesmo fabricante, a um custo de R$ 180,00/kg e R$ 200,00/kg, respectivamente.
Esses materiais têm como principal característica a facilidade de fabricação de paredes
67
finas (CABRAL, 2009). Esta característica não é relevante para os ensaios em função da
geometria escolhida, então optou-se pelo EC 14, em função do custo-benefício, além da
maior facilidade de obtenção.
A tabela 4.3 mostra uma comparação de propriedades entre o grafite EC 14 com
outros grafites do mesmo fabricante.
Tabela 4.3 – Propriedades de várias grades de grafite (METGRAPHITE, 2009).
GRADE
EC2
EC3
EC4
EC12
EC14
EC15
EC17
Densidade
(g/cm3)
1,70
1,76
1,79
1,85
1,83
1,85
1,84
Porosidade
(%)
15
15
15
13
14
14
12
Resistência à
flexão (kgf/cm2)
270
330
420
520
550
660
900
Dureza
Shore
42
50
56
62
64
66
81
Resistividade
Elétrica (μΩ/cm)
1500
1350
1250
1100
1150
1250
1450
Tamanho médio do
Grão (µm)
20
15
13
11
7
7
7
A preparação dos eletrodos também é descrita no apêndice 01.
Para se evitar os efeitos de falta de limpeza devido a complicações no fluxo de
fluido, os eletrodos devem possuir maiores seções transversais que os corpos de prova
de titânio. Esta técnica, embora improvável na utilização industrial, foi empregada por
Hasçalik e Çaydas (2007), e facilita o fluxo de dielétrico na região do corte, diminuindo a
influência da limpeza sobre o processo.
Desta forma, os eletrodos ficaram com as dimensões mostradas na figura 4.1, (10
x 16 x 36 mm), e foram marcados com riscador manual.
Superfície virada para a
frente da máquina
Superfície para a
eletroerosão
Figura 4.1 – Eletrodo com dimensões, marcação e posicionamento para os ensaios.
68
A posição da marcação feita com o riscador nos eletrodos também indica a
melhor superfície do eletrodo, em termos de acabamento, lascamentos nas quinas e
perpendicularismo, que é a superfície menor oposta à marcação. Isso indica a forma
como o eletrodo deveria ser fixado no cabeçote da máquina para os ensaios.
Os eletrodos foram então também acondicionados em caixas plásticas com
algodão.
4.3 Medição da massa inicial dos corpos de prova e dos eletrodos
Antes dos ensaios de usinagem, foram medidas as massas dos corpos de prova de
titânio e dos eletrodos de grafite, visando o cálculo do material consumido de ambos
durante a usinagem.
Foram realizadas cinco leituras para cada corpo de prova, em ordem aleatória, em
balanças analíticas eletrônicas modelo Chyo 180, fabricadas pela YMC Co. Ltd., com
incremento de escala 0,001 g e capacidade máxima de 180 g, calibradas, pertencentes ao
laboratório de Química Analítica da UTFPR campus Ponta Grossa. Os corpos de prova de
titânio tiveram todas suas rebarbas retiradas e foram limpos com algodão e álcool para
sua pesagem. Na limpeza foram utilizadas luvas cirúrgicas de látex, e durante a pesagem
os corpos de prova foram manuseados com uma pinça, como mostrado na figura 4.2.
Figura 4.2 - Medição da massa inicial dos corpos de prova.
Assim como foi feita a medição da massa inicial para os corpos de prova de
titânio, também o foi para os eletrodos de grafite. Devido à característica higroscópica
do grafite, depois da preparação e marcação, os eletrodos foram levados a um forno
mufla para secagem. O procedimento utilizado foi a manutenção por quatro horas a uma
temperatura de 300 ± 10 oC. Esse foi o procedimento utilizado por Hasçalik e Çaydas
69
(2007) para sua experimentação na usinagem da liga de titânio Ti-6Al-4V com diversos
materiais de eletrodo, incluindo o grafite, com a finalidade de eliminar o dielétrico
absorvido pelo grafite, que representaria um erro na medição da massa das amostras,
porém Hasçalik e Çaydas (2007) não utilizaram este procedimento para medição da
massa inicial dos eletrodos, e sim para a massa final. Neste trabalho esse procedimento
foi utilizado também para a medição prévia (antes dos ensaios) dos eletrodos de grafite.
A figura 4.3 mostra a disposição dos eletrodos e também o forno mufla utilizado,
da marca Jung, modelo LF 0612, de 3 KW, pertencente ao laboratório de Ensaios de
Materiais da UTFPR, campus Ponta Grossa.
Figura 4.3 – Forno mufla e disposição utilizadas para secagem dos eletrodos.
Depois da secagem, os eletrodos foram colocados em um dessecador com sílica
gel, e levados para medição.
A medição da massa inicial dos eletrodos seguiu os mesmos passos usados para
os corpos de prova.
Os eletrodos foram medidos nas mesmas balanças que foram medidos os corpos
de prova de titânio. As cinco leituras obtidas para a medição da massa inicial, tanto dos
eletrodos como dos corpos de prova, bem como suas médias e desvio padrão podem ser
visualizadas no apêndice 02.
Realizadas as leituras da massa inicial, tanto os corpos de prova quanto os
eletrodos foram novamente acondicionados em suas respectivas caixas plásticas, e
movimentados com cuidado, especialmente os eletrodos, em virtude da fragilidade do
grafite e a possibilidade de perda de massa devida a uma quebra ou desgastes indevidos.
70
4.4 Medição da massa final dos corpos de prova e dos eletrodos
Para o cálculo dos parâmetros referentes aos materiais de eletrodo e corpo de
prova consumidos, faz-se necessária a medição das massas finais tanto do eletrodo
quanto de corpo de prova. O método e equipamentos utilizados para medição da massa
final foram exatamente os mesmos da medição da massa inicial, descritos no item 4.3, e
as leituras obtidas podem ser visualizadas no apêndice 02.
Os valores obtidos da massa de corpos de prova inicial e final e massa dos
eletrodos inicial e final foram transformados em valores de volumes iniciais e finais,
sabendo-se que a densidade do grafite utilizado é de 1,83 g/cm3 (tabela 4.3) e do titânio
e da liga Ti-6Al-4V é 4,34 g/cm3 (ASM HANDBOOK – v 02, 1997).
A taxa de remoção será dada por:
𝑀𝑅𝑅 =
Onde:
𝑉𝑖𝑐 −𝑉𝑓𝑐
𝑡
(eq. 4.2)
MRR – taxa de remoção (mm3/min).
Vic - volume inicial do corpo de prova (mm3).
Vfc - volume final do corpo de prova (mm3).
t – tempo da usinagem (min).
O desgaste relativo será dado por:
𝜗=
Onde:
𝑉𝑖𝑒 − 𝑉𝑓𝑒
𝑉𝑖𝑐 −𝑉𝑓𝑐
.100
 - desgaste relativo (%).
Vie - volume inicial do eletrodo (mm3).
Vfe - volume final do eletrodo (mm3).
(eq. 4.3)
71
4.5 Preparação da máquina
A máquina utilizada foi a máquina de usinagem por eletroerosão de penetração
ENGEMAC EDM 440 NC com potência total de 6,5 kVA, disponível no laboratório de
usinagem da UTFPR, campus Ponta Grossa, esta já usada nos pré-ensaios (figura 4.4).
A máquina possui variação da corrente entre 0 e 36 A, do TON até 999 µs, e com
DT entre 1 e 99%.
Figura 4.4 – Máquina de eletroerosão disponível no laboratório de usinagem da UTFPR, campus
Ponta Grossa.
.
Alguns sistemas foram melhorados para os ensaios, especificamente os sistemas
de fixação e de limpeza.
4.5.1 Sistema de fixação
Existem dois sistemas de fixação a serem considerados: o sistema de fixação do
eletrodo e o sistema de fixação dos corpos de prova.
Para os corpos de prova foi utilizada uma morsa presa à base da máquina, e com
dois calços para se atingir a altura necessária à correta fixação dos corpos de prova,
como pode ser visualizado na figura 4.5.
Embora a eletroerosão se desenvolva sem contato entre eletrodo e corpo de
prova, o corpo de prova foi fixado em uma morsa pelos motivos já esclarecidos no
capítulo 3 – pré-ensaios.
72
Figura 4.5 – Sistema de fixação dos eletrodos e corpos de prova utilizados nos ensaios.
Para a correta fixação dos eletrodos, foi utilizado o mesmo suporte construído
para os pré-ensaios. Como o suporte foi projetado e fabricado para manter paralelismos
e perpendicularismos entre suas superfícies, foi suficiente fixá-lo através de
rosqueamento no cabeçote da máquina, e através dos parafusos de ajuste deste, e do
auxílio de um relógio comparador, foi diminuído o erro de paralelismo entre eletrodo e
corpo de prova, com o objetivo de reduzir influências externas aos parâmetros
determinados. A figura 4.6 mostra esse procedimento.
Figura 4.6 – Alinhamento do suporte dos eletrodos.
73
4.5.2 Sistema de limpeza
O sistema de limpeza diz respeito aos filtros, tanque do dielétrico, mangueiras e
bombas de fluido dielétrico. Foram realizadas manutenções nos filtros da máquina. Em
um primeiro momento, foram limpos algumas vezes os filtros existentes e feito o fluxo
de fluido pela máquina. Esse procedimento visava que os filtros existentes absorvessem
a maior quantidade de resíduos existentes no sistema. Os filtros principais foram então
trocados por filtros novos. Esse procedimento visou uma maior limpeza de partículas
geradas durante os testes.
Ainda no sistema de limpeza, foi instalada uma bomba em paralelo com a bomba
da máquina. A bomba utilizada na máquina é a mesma para o enchimento da cuba e
limpeza do gap, o que a prejudica em termos de pressão e vazão, pois as tornam
dependentes do nível de fluido na cuba e no reservatório.
O sistema em paralelo, composto basicamente de motor elétrico, bomba de
engrenagens, manômetro, válvula de agulha, válvula de segurança e bico de limpeza. O
esquema do sistema de limpeza auxiliar pode ser visualizado na figura 4.7.
NV
R
S
T
M
Figura 4.7 – Esquema do sistema auxiliar de limpeza montado para os ensaios.
Na figura 4.8 podem ser vistas as partes que compõem e sistema auxiliar de
limpeza.
74
a
b
c
d
Figura 4.8 – Sistema auxiliar de limpeza montado na máquina. Em cima se observa a ligação elétrica
(a)(disjuntor), bomba de engrenagens, acoplamento, válvula de segurança e mangueiras (b) e o
conjunto válvula de agulha, manômetro e mangueiras (c e d).
Com a regulagem da válvula de segurança foi possível se manter uma pressão de
1 ± 0,1 kgf/cm2 disponível na linha, a uma vazão de 4,0 ± 0,2 litros/minuto. A variação da
pressão está associada com o fato de a bomba ser de engrenagens, o que resulta em
pulsação da linha.
O dielétrico usado foi o hidrocarboneto Electron, fabricado pela Archem Química
Ltda. Esse é o dielétrico indicado pelo fabricante da máquina (ENGEMAC, 2002) como
sendo o de uso geral. As características do dielétrico podem ser visualizadas na tabela
4.4. A máquina recebeu dielétrico novo.
Tabela 4.4 – Propriedades físico-químicas do fluido dielétrico Electron, da Archem Química Ltda.
(ARCHEM, 2010)
Aspecto
Líquido transparente
Ponto de Ebulição
250 oC
Ponto de Fulgor (NBR 11341)
100 oC mínimo
0
Densidade 20/24 C
0,760 - 0,820 (g/ml)
o
Viscosidade Cinemática (ASTM D445 – 40 C)
1,5 - 4,5 cSt
Rigidez Dielétrica
20 kV
75
4.6 Sequência e ajustes gerais dos ensaios
Uma vez definidos os parâmetros, a sequência de ensaios e preparados máquina
corpos de prova e eletrodos, a realização dos ensaios se deu de forma satisfatória e
seguiu sempre a sequência dos seguintes passos:
 Fixação do corpo de prova na morsa de acordo com as indicações de
superfícies.
 Fixação do eletrodo no suporte fixo no cabeçote da máquina, de
acordo com as indicações de superfícies.
 Alinhamento entre eletrodo e corpo de prova.
 Início do bombeamento de limpeza.
 Alinhamento do bocal de limpeza.
 Referenciamento da máquina.
 Inserção dos parâmetros de corte corretos ao ensaio.
 Zeragem dos indicadores de tempo de usinagem da máquina.
 Enchimento da cuba.
 Início da usinagem e da cronometragem.
 Término da usinagem e da cronometragem.
 Desligamento do sistema auxiliar de limpeza.
 Esvaziamento da cuba.
 Retirada de eletrodo e corpo de prova.
 Acondicionamento de eletrodos e corpos de prova em caixas plásticas
com algodão.
A fixação dos corpos de prova na morsa foi feita sempre na mesma posição, que
foi determinada pela posição da marcação do eletrodo, como mostra a figura 4.9. A
marcação do eletrodo foi realizada levando-se em consideração a melhor superfície
obtida em cada eletrodo, no que diz respeito a quebras e perpendicularismo com as
outras superfícies.
76
Superfície virada para a
frente da máquina
(fixada na morsa)
Superfície a ser usinada
Figura 4.9 – Posicionamento dos corpos de prova para os ensaios.
Como os eletrodos foram concebidos para serem cerca de um milímetro em cada
dimensão maiores que a superfície a usinar no corpo de prova, o alinhamento entre os
dois foi feito visualmente e sem dificuldade.
O método de limpeza utilizado foi o de jato lateral, em função da geometria
simples da superfície gerada e por ser o método mais utilizado de limpeza do gap.
Com o sistema auxiliar de limpeza ligado, foi feito o alinhamento do fluido para
limpeza do gap. Este procedimento foi executado de tal forma que a limpeza fosse a
melhor possível na região de corte. A figura 4.10 mostra o alinhamento do bocal de
limpeza da mangueira com o corpo de prova.
Figura 4.10– Alinhamento do bocal de limpeza sobre o corpo de prova momentos
antes dos ensaios.
Foi estabelecido que a máquina trabalhasse com retração do eletrodo. Na
indústria o regime contínuo quase não é utilizado. Com exceção dos trabalhos de
77
Amorim e Silva (2010), Amorim e Weingaertner (2007) e Simao et al (2003) , os artigos
pesquisados não citam a condição, de onde se poderia presumir que o regime é
contínuo.
O referenciamento da máquina também é feita de forma automática, uma vez
alinhados os eletrodos. A profundidade de usinagem usada foi de 2 mm. Desta forma, os
parâmetros fixos usados em todos os ensaios ficaram definidos como visto na tabela 4.5.
Tabela 4.5 – Parâmetros fixos utilizados nos ensaios.
PARÂMETRO
VALOR UTILIZADO
Profundidade da usinagem
2,00 mm
Tempo de usinagem
0,5 s
Retração do eletrodo
2,5 mm
Pressão disponível do fluido de 1 ±0,1 kgf/cm2
limpeza
Vazão do fluido de limpeza
4,0 ± 0,2 l/min
Dielétrico
Electron
O método de ensaio, mesmo para os ensaios cujos tempos de usinagem
excederam um dia, foi a de se usinar continuamente.
Apesar de a máquina possuir um cronômetro incremento digital de minutos, foi
considerado excessivo para ensaios mais rápidos. Então foi utilizado em paralelo um
cronômetro digital, com incremento digital de segundos. Esse procedimento minimizou
as variações decorrentes da medição com incrementos grandes para ensaios rápidos e
serviu de sistema de segurança e comparativo em relação à medição de tempo. Os
valores de tempo medido para os ensaios encontram-se no apêndice 03.
4.7 Medição da rugosidade
A rugosidade dos corpos de prova foi medida em um rugosímetro da marca Taylor
Hobson Precision, modelo Surtronic 25, com software Tale profile
versão 3.1, no
Laboratório de Superfícies e Contato da UTFPR, campus Curitiba.
Devido à natureza aleatória da formação de uma superfície eletroerodida, as
leituras da rugosidade também seguiram direções aleatórias, suficientemente com
pontos de início aleatórios, perfazendo cinco leituras.
Foram utilizados cinco comprimentos de amostra para cada leitura e cut-off de
0,8 mm. A figura 4.11 mostra a medição da rugosidade nos corpos de prova.
78
Figura 4.11 – Medição de rugosidades dos corpos de prova.
Foram medidos cinco parâmetros de rugosidade, a saber: Ra, Rq, Rz, Ry DIN e Rt. As
médias e o desvio padrão das leituras desses parâmetros para cada corpo de prova
encontram-se no apêndice 04.
4.8 Medição da camada branca
Os corpos de prova, depois de feitas as medições não destrutivas, foram cortados
em uma cortadeira metalográfica de precisão ISOMET 4000, da Buehler, pertencente ao
Laboratório de Caracterização de Materiais da UTFPR, campus Ponta Grossa, mostrada
na figura 4.12 e embutidos para ensaio metalográfico de medição da camada branca.
As amostras foram cortadas com profundidades na ordem de 1,5 mm a partir da
lateral. Para situações onde houve formações de protuberâncias, os corpos de prova
tiveram seu corte realizado sobre as protuberâncias.
Figura 4.12 - Cortadeira metalográfica de precisão ISOMET 4000, da Buehler,
utilizada no corte dos corpos de prova.
79
Após o corte, as amostras foram embutidas em baquelite, em uma embutidora
metalográfica modelo Maxipress, da Metalotest, conforme mostrado na figura 4.13.
Figura 4.13 – Embutidora utilizada e posicionamento das amostras para embutimento e posterior
lixamento e polimento.
O embutimento de várias amostras ao mesmo tempo foi utilizado para facilitar o
apoio durante lixamento e o polimento. As posições dos corpos de prova foram anotadas
e também marcadas no verso do embutido, para identificação. A figura 4.14 mostra
essas marcações.
Figura 4.14 - Marcação com caneta gravadora elétrica das posições dos corpos de prova para posterior
análise metalográfica.
80
Após o embutimento, foram realizados o lixamento e o polimento. Ambos foram
realizados em uma lixadeira/politriz metalográfica semiautomática Buehler, modelo
Beta, também do Laboratório de Caracterização de Materiais da UTFPR, campus Ponta
Grossa, mostrada na figura 4.15.
Figura 4.15 – Lixadeira/politriz metalográfica semiautomática Buehler, modelo Beta, utilizada na
preparação metalográfica dos corpos de prova.
A sequência adotada de lixamento e polimento foi a mostrada na tabela 4.6.
Tabela 4.6 - Sequência adotada de lixamento e polimento na preparação metalográfica.
Passo
1
2
3
4
5
Descrição
Lixamento com lixa 400 mesh, carbeto de silício, 500 rpm, 15 N de força, modo discordante.
Lixamento com lixa 600 mesh, carbeto de silício, 500 rpm, 15 N de força, modo discordante.
Lixamento com lixa 1200 mesh, carbeto de silício, 300 rpm, 15 N de força, modo discordante.
Polimento com pasta de diamante 1μm, 300 rpm, modo discordante.
Polimento com sílica coloidal a 300 rpm, modo discordante, com 15 N de força.
Tempo
8 minutos
8 minutos
12 minutos
10 minutos
10 minutos
Depois do polimento, as amostras foram atacadas com uma solução de ácido
nítrico, ácido fluorídrico e água (2 ml HF, 8 ml HNO3, 90 ml água) por 15 segundos. Essa
solução foi sugerida pela equipe do Centro de Competência em Manufatura do ITA
(ALMEIDA JÚNIOR, 2009) e também é semelhante à usada por Hasçalik e Çaydas (2007).
81
Depois do ataque, os corpos de prova foram visualizados em um microscópio
ótico Olympus BX 60. Foi também utilizado o software AnaliSYS, versão 5.1, Da Olympus
Soft Imaging GMbH, para análise de imagens e medição da espessura média da camada
branca. Cada visualização teve a medição em cinco pontos da espessura da camada
branca, e sua média calculada.
A figura 4.16 mostra uma das imagens obtidas nesse processo. As demais imagens
obtidas, bem como as leituras e o valor da espessura média da camada limite por ensaio
realizado podem ser visualizados no apêndice 05.
Ainda foram medidas as espessuras das camadas brancas nas protuberâncias
formadas durante o processo, da mesma forma que as regiões fora das protuberâncias,
diferindo apenas na ampliação utilizada, menor nas protuberâncias, em função das
dimensões apresentadas.
Figura 4.16 – Micrografia obtida no corpo de prova A17. Aumento de 500x.
4.9 Problemas ocorridos nos ensaios e soluções adotadas
Durante a usinagem, apenas um problema se apresentou como inesperado: a
formação de protuberâncias, semelhantes a bolhas na superfície dos corpos de prova
82
usinados com eletrodos de polaridade negativa. Exemplos desse fato podem ser vistos
na figura 4.17.
Figura 4.17 – Exemplos de protuberâncias nas superfícies dos corpos de prova nos ensaios. Os corpos de
prova mostrados estão na mesma posição em relação à usinagem.
Nos eletrodos aparecem como vazios, como mostrado na figura 4.18.
Figura 4.18 – Vazios formados nos eletrodos.
.
Estas “protuberâncias” também ocorreram nos pré-ensaios, mas foram naquele
momento atribuídas ao pobre controle das condições de ensaio utilizadas, como o
alinhamento entre eletrodo e corpo de prova e sistema de limpeza da fenda.
Porém, como se constataram também nos ensaios, onde o controle dessas
situações foi bem maior, não foi possível descartar, em um primeiro momento, que a
condição de limpeza fixada fosse responsável pela estranha formação.
Como isso foi detectado até o sétimo ensaio, foi tomada a decisão de se mudar as
condições de limpeza, e o único parâmetro relacionado diretamente com uma
dificuldade na limpeza do gap foi o valor da retração do eletrodo.
Imaginou-se que, em situações de desgaste excessivo do eletrodo, como a área
deste era sempre maior que o corpo de prova, poderia se formar um “pocket” no
83
eletrodo com no máximo dois milímetros de profundidade. Este “pocket” poderia
interromper o fluxo lateral de dielétrico advindo do bocal de limpeza, prejudicando o
processo, como mostrado na figura 4.19.
Portanto, foi modificado o valor da retração do eletrodo para dois milímetros e
meio. Essa situação seria muito pouco usual na indústria, pois acarreta em aumento do
tempo de usinagem, para um processo inerentemente lento, porém evita o problema
mostrado na figura 4.19.
Como isso poderia interferir no processo, os ensaios de 01 a 07 foram refeitos
segundo a nova condição. A sequência normal dos ensaios foi mantida (o ensaio seguinte
foi o 08 e assim por diante), e findo o 24º ensaio, foram refeitas as condições de ensaios
de 01 a 07, apenas com a numeração agora de 25 a 31, como mostra a tabela 4.7.
Figura 4.19 – Possibilidade de interrupção do fluxo de limpeza em função do pocket formado
no eletrodo com retração menor que a profundidade de usinagem.
Os valores de massa inicial dos novos eletrodos e corpos de prova utilizados
foram medidos da mesma forma anteriormente descrita.
Tabela 4.7 – Ensaios substituídos em função da modificação do valor da retração do eletrodo.
Ensaio desconsiderado
Substituído por ensaio número
E01
E25
E02
E26
E03
E27
E04
E28
E05
E29
E06
E30
E07
E31
84
Apesar da possível melhora das condições de limpeza, o aparecimento das
protuberâncias persistiu, em maior ou menor grau em vários ensaios com polaridade
negativa no eletrodo.
Para se testar a influência do fato do eletrodo ter uma seção transversal maior
que o corpo de prova, já citada como incomum na indústria, sobre a formação dessas
protuberâncias, foram realizados ensaios adicionais, denominados 101, 102 e 103, com
situação inversa de seção transversal, e nas condições de ensaio onde foram mais claras
as formações. Disso resultaram as mesmas protuberâncias já observadas, como pode ser
visto na figura 4.20.
Figura 4.20 – Formação de protuberâncias para situação de eletrodo com seção transversal menor que
os corpos de prova.
4.10 Tratamento dos dados
Para tornar possível a análise dos dados, estes devem ser tratados
adequadamente para cada parâmetro de saída. Uma das relações iniciais realizadas diz
respeito à correlação de dados com dados de entrada, não mais com dados de sequência
de ensaios, como tratado nos capítulos anteriores. A tabela 4.8, em conjunto com os
valores médios da tabelas de resultados existentes nos apêndices, serve de base para o
tratamento de dados.
85
Tabela 4.8 – Distribuição dos ensaios realizados em função das condições de ensaio.
Condição
01
02
03
04
05
06
07
08
Corrente (A)
3
24
3
24
3
24
3
24
TON (µs)
10
10
150
150
10
10
150
150
DT (%)
30
30
30
30
60
60
60
60
Polaridade do Eletrodo
Negativa
Positiva
Positiva
Negativa
Positiva
Negativa
Negativa
Positiva
Ensaios (substitutos)
05(29);07(31);19
08;13;24
01(25);10;16
04(28);18;20
02(26);03(27);22
15;17;23
06(30);11;12
09;14;21
Aqui, os ensaios 25 a 31 substituíram os ensaios 01 a 07, conforme a tabela 4.7.
São também avaliadas as medições de parâmetros realizados. Como se trata
sempre de medições diretas, essa avaliação é feita em termos de incerteza de resultado,
conforme a norma ISO GUM, de 1986, que baliza o cálculo desse tipo de incerteza,
mostrado na equação 4.4 (LIRA, 2002; BELL, 1999).
𝑈𝐴 =
𝑆
𝑛
(eq. 4.4)
Onde:
UA = Incerteza de resultado tipo A.
S = desvio padrão amostral.
n = número de medições.
Durante as medições dos parâmetros de saída, sempre foram realizadas cinco
leituras, portanto, para todos os cálculos da incerteza de resultado, n = 5.
As incertezas de resultado foram calculadas para cada ensaio realizado e
quantificadas como uma porcentagem em relação à média dos valores obtidos em cada
ensaio, objetivando uma comparação geral entre as incertezas obtidas para os vários
parâmetros analisados.
Foram analisadas as influências de efeitos principais dos parâmetros de entrada
sobre os parâmetros de saída, e são dispostos graficamente para cada parâmetro. Para
esta análise, foram também calculados os intervalos de confiança para os pontos, com o
intuito de obter análises consistentes do ponto de vista estatístico.
Os intervalos de confiança foram calculados para o número de valores
considerados e para 95% de confiança, através da equação 4.5 (TRIOLA, 1999):
86
𝐸=𝑡∙
𝑆
𝑛
(eq. 4.5)
Onde:
E = intervalo de confiança para a estimativa da média.
t= coeficiente de Student.
S= desvio padrão amostral.
Também foram analisados os efeitos de interação dos parâmetros de entrada
sobre os parâmetros de saída. Para os gráficos construídos de interação de parâmetros
de entrada não foram marcados os intervalos de confiança, por uma questão de
visualização. Portanto estes gráficos apenas indicam indícios, sem sustentação estatística
dos dados, ao contrário dos efeitos principais.
87
5 RESULTADOS E DISCUSSÃO
Os resultados foram analisados em termos de qualidade superficial obtida,
desgaste relativo entre eletrodo e corpo de prova, taxa de remoção e espessura da
camada branca.
5.1 Tratamento e análise de dados para a rugosidade
A tabela 5.1 faz a associação dos parâmetros de entrada e as leituras de
rugosidade.
Tabela 5.1 – Ensaios e valores dos parâmetros utilizados nos ensaios,
com a média das rugosidades Ra associada.
I (A)
TON (µs)
DT (%)
Polaridade
Ensaios
Média Ra (µm)
3
10
30
Negativa
05(29);07(31);19
2,94
24
10
30
Positiva
08;13;24
2,64
3
150
30
Positiva
01(25);10;16
3,11
24
150
30
Negativa
04(28);18;20
12,35
3
10
60
Positiva
02(26);03(27);22
2,85
24
10
60
Negativa
15;17;23
5,52
3
150
60
Negativa
06(30);11;12
6,09
24
150
60
Positiva
09;14;21
4,74
A figura 5.1 mostra os efeitos principais dos parâmetros de corte sobre a
Ra (μm)
Ra (μm)
rugosidade Ra.
10
10
8
6
6
4
4
2
2
0
0
Corrente (A)
24
10
Ra (μm)
3
Ra (μm)
8
10
150
TON (μs)
10
8
8
6
6
4
4
2
2
0
30%
60%
DT
0
Negativa (-)
Polaridade
Positiva (+)
Figura 5.1 – Gráfico dos efeitos principais sobre a média de rugosidade média Ra (μm), com intervalos
de confiança calculados para probabilidade de 95%.
88
Da figura 5.1, pode–se assegurar, com 95% de certeza, que a polaridade positiva
apresenta redução da rugosidade Ra, em relação à polaridade negativa. Isso pode ser
explicado pelos estudos de Mukund et al (1989) e DiBitonto et al (1989), onde o anodo
mostra um craterização menos profunda que o catodo, sem evolução da profundidade
com o tempo de onda ligado, embora Simão et al (2003) tenham encontrado um
resultado inverso para a usinagem de aço com eletrodos de carboneto de tungstênio.
Também pela análise da figura 5.1 percebem-se indicativos de que a rugosidade
Ra cresce com o aumento da corrente e do TON, o que é coerente com a formação de
crateras maiores devido à maior energia empregada e corrobora os resultados obtidos
por Hasçalik e Çaydas (2007) para o titânio, de Lee e Tai (2003), Singh, Maheshwari e
Pandey (2004), Amorim e Weingaertner (2007), Simao et al (2003) e Olinik (2009) para o
aço e de Lee e Li (2001) e Puertas, Luis e Álvarez (2004) para o carboneto de tungstênio.
Os níveis de rugosidade obtidos por Hasçalik e Çaydas (2007) são aproximadamente
iguais aos obtidos aqui neste trabalho.
Também há indicativos que a variação do DT não influencia a rugosidade Ra,
resultado também obtido por Fonda et al (2008) para a mesma liga de titânio e por
Puertas, Luis e Álvarez (2004) para o carboneto de tungstênio, o que permite liberdade
para que se possam priorizar outros parâmetros de saída sem prejuízo da rugosidade
média.
Observa-se também que, para a rugosidade Ra, e dentro dos valores ensaiados,
menores correntes e tempos de onda ligados, assim como maiores DT e polaridade
positiva apresentam resultados menos dispersos.
Como seria de se esperar, a julgar pelos resultados obtidos nos pré-ensaios e
devido ao mecanismo prioritariamente térmico que rege a formação de superfícies
eletroerodidas, o comportamento das demais rugosidades (Rq, Rz, RyDIN e Rt) em relação
aos efeitos principais é exatamente o mesmo da rugosidade média Ra, o que é típico de
superfícies isotrópicas. Os gráficos relativos a esses outros parâmetros de rugosidade se
encontram no apêndice 06.
A figura 5.2 traz a interação dos parâmetros ensaiados para a rugosidade. Através
de sua análise, observa-se que o aumento de DT e o uso de polaridade positiva fazem
89
com que a influência dos demais parâmetros de entrada sobre a rugosidade seja menos
nítida. Existem indicativos também que o DT influi pouco sobre a rugosidade, invertendo
sua pequena influência em função dos outros parâmetros testados.
Durante as medições de rugosidade para cada ensaio, a maior incerteza tipo A foi
de 15% da média e a média das incertezas tipo A foi de 7%. Os intervalos de confiança
obtidos ultrapassam esses valores, mostrando que as medições da rugosidade não
afetaram os resultados do processo.
Interaction
Ra (um) Ra (µm)
Interação dos
parâmetrosPlot
parafor
a rugosidade
Data Means
10
150
Negativa
Positiva
8
6
Corrente (A)
4
Ton (us)
10
150
8
6
Corrente
(A )
3
24
Ton (us)
4
8
6
DT (%)
DT (%)
30
60
4
8
6
Polaridade
Polaridade
Negativ a
Positiv a
4
3
24
30
60
Figura 5.2 – Interação de parâmetros de entrada sobre a rugosidade Ra em μm.
Portanto, em resumo, a utilização de polaridade positiva no eletrodo resulta em
rugosidades menores que a polaridade negativa. Indicativos mostram que esse efeito é
mais visível para maiores correntes e tempos de onda ligados e levemente maior para DT
menores, sempre dentro da faixa ensaiada. Em correntes e tempos de onda maiores é
mais perceptível a constância na penetração da energia no catodo, já estudada por
Mukund et al (1989) e DiBitonto et al (1989).
5.2 Tratamento e análise de dados para a taxa de remoção
A taxa de remoção foi calculada segundo a equação 4.2 e, da mesma forma que a
rugosidade, foi analisada em função das médias obtidas para cada ensaio. A figura 5.3
mostra a influência dos principais efeitos na taxa de remoção de material.
90
No que diz respeito ao aumento do DT, Puertas, Luis e Álvarez (2004), na
usinagem de carboneto de tungstênio encontraram aumento da taxa de remoção e
Simao et al (2003) encontraram redução da taxa de remoção para o aço.
Nota-se uma menor dispersão dos dados, diminuindo o intervalo de confiança,
Taxa de remoção
(mm3/min)
Taxa de remoção
(mm3/min)
para correntes menores e para a polaridade positiva do eletrodo.
4
3
2
1
0
4
3
2
1
0
30%
60%
DT
3
2
1
0
Corrente (A)
24
10
Taxa de remoção
(mm3/min)
Taxa de remoção
(mm3/min)
3
4
150
TON (μs)
4
3
2
1
0
Negativa (-)
Polaridade
Positiva (+)
Figura 5.3 – Gráfico dos efeitos principais sobre a média da taxa de remoção (mm3/min), com intervalos
de confiança calculados para probabilidade de 95%.
A figura 5.4 mostra a influência conjugada dos parâmetros ensaiados sobre a taxa
de remoção de material.
91
Interaction
Plot forpara
Taxa
de remoção
(mm3/min)
Interação
dos parâmetros
a taxa
de remoção
(mm3/min)
Data Means
10
150
Negativa
Positiva
4
2
Corrente (A)
Corrente
(A )
3
24
0
4
2
Ton (us)
10
150
Ton (us)
0
4
2
DT (%)
DT (%)
30
60
0
4
2
Polaridade
Polaridade
Negativ a
Positiv a
0
3
24
30
60
Figura 5.4 – Interação de parâmetros de entrada sobre a taxa de remoção de material
em mm3/min.
Da figura 5.4 pode-se concluir que o efeito descrito para a influência da corrente
sobre a taxa de remoção é mais nítido em polaridade negativa do eletrodo e em maiores
TON.
Para a influência da polaridade, já constatada na análise da figura 5.3, notam-se
indícios que essa influência é mais clara para maiores correntes e menores DT.
Na medição da taxa de remoção para cada ensaio, as incertezas tipo A calculadas
foram em média 0,015 % do valor médio e no máximo 0,05 %.
5.3 Tratamento e análise de dados para o desgaste relativo
O desgaste relativo foi calculado segundo a equação 4.3. A figura 5.5 mostra os
principais efeitos dos parâmetros testados e sua relação com o desgaste relativo.
Desgaste relativo (%)
Desgaste relativo (%)
92
250
200
150
100
50
0
250
200
150
100
50
0
30%
60%
DT
200
150
100
50
0
10
Desgaste relativo (%)
Desgaste relativo (%)
3
Corrente (A)
24
250
150 TON (μs)
250
200
150
100
50
0
Negativa (-)
Polaridade
Positiva (+)
Figura 5.5 – Gráfico dos efeitos principais sobre a média de desgaste relativo (%), com intervalos de
confiança calculados para probabilidade de 95%.
Como os intervalos de confiança de todos os efeitos possuem interseções entre os
dois níveis testados, para o desgaste relativo não é possível afirmar sobre nenhum
parâmetro.
Existem menores dispersões dos dados de desgaste relativo, resultando em
menores intervalos de confiança, para menores correntes e maiores tempos de onda e
DT, bem como para a polaridade negativa.
Ainda verificando os gráficos mostrados na figura 5.5 notam-se indicativos da
diminuição do desgaste relativo com a diminuição da corrente, bem como com o
aumento do TON e do DT. O mesmo indicativo é mostrada para a polaridade negativa.
Hasçalik e Çaydas (2007) encontraram a mesma relação do desgaste com a
corrente, porém apenas com polaridades negativas, o que resultou em menores níveis
de desgaste relativo.
Já com relação do desgaste com o aumento do TON corrobora os resultados
encontrados por Chow et al (2000), embora Hasçalik e Çaydas (2007) tenham obtido
resultados contrários, ambos para titânio. Para a usinagem de aço, Amorim e
Weingaertner (2007) e Simao et al (2003) mostram resultados semelhantes aos aqui
apresentados para o comportamento do desgaste relativo com o TON. Lee e Li (2001) e
93
Puertas, Luis e Álvarez (2004) mostram que não existe influência entre estes parâmetros
para a usinagem de carboneto de tungstênio.
Da mesma forma que os resultados aqui obtidos, Chen, Yan e Huang (1999)
observaram diminuição do desgaste relativo com o aumento do DT na usinagem de
titânio e assim também foi descrito por Simao et al (2003) para a usinagem de aço. Para
a usinagem de carboneto de tungstênio, Puertas, Luis e Álvarez (2004) observaram que o
DT não influencia o desgaste relativo do eletrodo.
As influências conjugadas dos parâmetros ensaiados sobre o desgaste relativo são
mostradas na figura 5.6.
Interaction
Plot for
Desgaste
relativo
(%)
Interação
dos parâmetros
para
a o desgaste
relativo
(%)
Data Means
10
150
Negativa
Positiva
200
Corrente (A)
100
0
200
Ton (us)
100
0
200
DT (%)
100
C orrente
(A )
3
24
Ton (us)
10
150
DT (%)
30
60
0
200
Polaridade
100
Polaridade
Negativ a
Positiv a
0
3
24
30
60
Figura 5.6 – Interação de parâmetros de entrada sobre o desgaste relativo em %.
Na figura 5.6 notam-se indicativos que o aumento da corrente leva a um aumento
do desgaste relativo, porém apenas para baixos tempos de onda ligados e DT, e para a
polaridade positiva.
Também há indicativos que para altas corrente, baixos DT e polaridade positiva, a
diminuição do TON aumenta o desgaste relativo. Em pequenos tempos de onda, com
polaridades positivas no eletrodo, os elétrona acelerados pelo campo magnético
formado causam um desgaste maior no anodo, antes que os íons positivos desgastem o
catodo, o que é previsto por DiBitonto et al (1989) para o anodo em baixos tempos de
onda e fica evidenciado para maiores níveis de energia, obtidos em maiores correntes.
94
A polaridade positiva apresenta indicativos de aumento do desgaste relativo, para
maiores correntes, menores tempos de onda ligados e menores DT.
Na medição do desgaste relativo para cada ensaio, os cálculos das incertezas tipo
A resultaram em média 0,1 % do valor médio e no máximo 0,3 %.
5.4 Tratamento e análise de dados para a espessura da camada branca
A formação da camada branca, mais especificamente sua espessura, foi
relacionada com os parâmetros de entrada. Na maior parte dos ensaios, a camada foi
muito desuniforme. A figura 5.7 mostra os principais efeitos sobre a espessura da
Camada branca (μm)
Camada branca (μm)
camada branca.
60
50
40
30
20
10
0
Corrente (A)
24
10
Camada branca (μm)
Camada branca (μm)
3
60
50
40
30
20
10
0
60
50
40
30
20
10
0
30%
60%
DT
60
50
40
30
20
10
0
Negativa (-)
150
TON
Polaridade
Positiva (+)
Figura 5.7 – Gráfico dos efeitos principais sobre a espessura média da camada branca formada (μm),
com intervalos de confiança calculados para probabilidade de 95%.
A camada branca é muito variável no geral nos corpos de prova analisados, o que
é uma situação comum na eletroerosão, e devida à sobreposição de faíscas na superfície
(EKMEKCI, ELKOCA e ERDEN, 2005). A variação tipicamente encontrada é mostrada na
figura 5.8.
95
Camada
branca
Figura 5.8 – Micrografia do corpo de prova A26, mostrando a variação da camada branca obtida.
Ampliação de 500 x.
Esta variação acarreta interseções dos intervalos de confiança dos dois níveis
para todos os parâmetros testados, não se podendo afirmar consistentemente sobre as
influências. Lee et al (2004) também citam o fato da variação obtida para a camada
branca ser muito elevada.
Existem indícios que a espessura média da camada refundida aumente com os
aumentos da corrente, do TON e do DT, o que condiz com o aumento da energia
empregada com o aumento destes parâmetros. Ekmekci, Elkoca e Erden (2005)
observaram uma estabilidade da camada branca com o aumento da corrente para o aço.
Oliniki (2009), em eletroerosão de aço observou aumento da espessura da camada
branca com o aumento de TON, especialmente para hidrocarboneto como dielétrico e
para eletrodos de grafite.
Para Hasçalik e Çaydas (2007), os valores das espessuras médias são semelhantes
aos aqui obtidos; e a influência do aumento da corrente sobre a espessura média da
camada refundida não é tão relevante quanto o aumento do TON, apesar do fato que do
TOFF ter sido mantido constante para os ensaios de Hasçalik e Çaydas (2007). Desta
forma, em menores TON, os DT correspondentes são aproximadamente equivalentes aos
aqui apresentados; porém, para maiores TON, os DT ultrapassam valores recomendados
96
para a eletroerosão de titânio (Engemac, 2009), gerando maior dificuldade de usinagem
e concentrando uma maior quantidade de energia na superfície do material usinado.
Também se observa na figura 5.7 que, apesar de terem sido desconsiderados os
valores da espessura média da camada refundida sobre as protuberâncias formadas,
valores que são elevados, e que ocorreram apenas em polaridade negativa, existe um
indicativo que a polaridade negativa produz camadas refundidas mais espessas.
Notam-se menores dispersões nos resultados obtidos em maiores tempos de
onda.
A figura 5.9 mostra a influência conjugada dos parâmetros ensaiados sobre a
espessura da camada branca.
Interaction
Plot for para
Espessura
da camada
branca
(um)
Interação
dos parâmetros
a espessura
da camada
branca
(µm)
Data Means
10
150
Negativa
Positiva
50
30
Corrente (A)
10
50
30
Ton (us)
10
50
30
DT (%)
C orrente
(A )
3
24
Ton (us)
10
150
DT (%)
30
60
10
50
30
Polaridade
Polaridade
Negativ a
Positiv a
10
3
24
30
60
Figura 5.9 – Interação de parâmetros de entrada sobre a espessura da camada branca em μm.
Da figura 5.9 notam-se indicativos das influências já comentadas, sendo que as
influências são menos nítidas para menores DT e correntes.
Na medição da camada branca, apesar de sua irregularidade, a medição se
mostrou precisa, com incertezas tipo A de no máximo 23% e em média 10,5%.
97
5.5 Tratamento e análise de dados para a formação de protuberâncias
Apesar das formações diferenciadas nas superfícies das peças, aqui designadas
como protuberâncias em função de seu formato mais aparente, terem ocorrido já nos
pré-ensaios, o fato de apresentarem relações, à primeira vista, com os parâmetros de
entrada levou a um método para análise.
Foram atribuídos valores para essa formação para avaliação qualitativa, com
números inteiros de 0 a 3, sendo que 0 significa nenhuma formação aparente, 1 pequena
formação, 2 para formações médias e 3 para formações maiores.
A tabela 5.2 mostra as características de protuberâncias para os ensaios
realizados, dividido pelas condições de ensaio.
Nota-se que as protuberâncias aconteceram em condições bem definidas de
ensaio. Comparando-se as imagens e valores da tabela 5.2 com a tabela 5.1, percebe-se
que as protuberâncias acontecem sempre em polaridade negativa do eletrodo.
Como houve uma preocupação em relação à limpeza do eletrodo, mais
especificamente sobre o fato do eletrodo ser maior que o corpo de prova, situação esta
muito razoável do ponto de vista da limpeza do processo, mas incomum na prática; a
condição com maior formação de protuberâncias (24 A, DT 30% e TON 150 A e polaridade
negativa no eletrodo) foi repetida para uma situação mais usual, que é a do eletrodo
menor que o corpo de prova (ou peça a usinar). A figura 5.10 mostra os resultados
obtidos.
98
Tabela 5.2 – Corpos de prova ensaiados e atribuição de valor (v) aos defeitos superficiais
(protuberâncias) encontrados. Os eletrodos forma fotografados na mesma posição em
relação à montagem para o ensaio.
v
Média
v
1
1
0,667
0
0
0
0
01(25);10;16
0
0
0
0
04
04(28);18;20
3
3
3
3
05
02(26);03(27);22
0
0
0
0
06
15;17;23
0
0
0
0
07
06(30);11;12
2
2
2
2
08
09;14;21
0
0
0
0
Condição
Ensaios
CP
v
01
05(29);07(31);19
0
02
08;13;24
03
CP
v
CP
Da figura 5.10 conclui-se que o efeito do tamanho menor da seção transversal do
eletrodo não é responsável pela formação das protuberâncias.
99
Figura 5.10 – Corpos de prova obtidos com a repetição dos ensaios com i =24 A, DT = 30%, TON = 150 A e
polaridade negativa no eletrodo; com eletrodo menor que o corpo de prova. Os eletrodos forma
fotografados na mesma posição em relação à montagem para o ensaio.
As condições de limpeza do gap (posição, pressão disponível e vazão) poderiam
ser consideradas como responsáveis pelas formações, e o fato de não terem variado
durante os ensaios impedem uma análise mais aprofundada. Porém, essas formações
foram detectadas também nos pré-ensaios, sempre em polaridades negativas do
eletrodo e com parâmetros de usinagem diferentes e em especial, com condições de
limpeza muito diferentes das utilizadas nos ensaios. Este fato mostra que a limpeza não
é o principal fator formador das protuberâncias.
Para os parâmetros testados, e com os valores atribuídos na tabela 5.2 foi
realizada a análise dos efeitos principais, que pode ser visualizada na figura 5.11. Como
os valores atribuídos não refletem valores mensuráveis, para esta figura não foram
Formaçào de
protuberâncias
Formaçào de
protuberâncias
calculados intervalos de confiança.
2
1,5
1
0,5
1,5
1
0,5
0
0
Corrente (A)
24
10
Formaçào de
protuberâncias
3
Formaçào de
protuberâncias
2
2
1,5
1
0,5
150 TON (μs)
2
1,5
1
0,5
0
30%
60%
DT
0
Negativa (-)
Polaridade
Positiva (+)
Figura 5.11 – Gráfico dos efeitos principais sobre a formação de protuberâncias.
100
Os gráficos mostrados na figura 5.11 contêm indicativos da formação de
protuberâncias para polaridades negativas, apenas, e com influência mais significativa do
TON. Tempos de onda ligados maiores geram protuberâncias maiores.
Na faixa ensaiada, a corrente é menos influente que o TON, embora correntes
maiores gerem maiores protuberâncias. O mesmo pode ser evidenciado para a
diminuição do DT.
A figura 5.12 mostra a influência conjugada dos parâmetros ensaiados sobre a
formação de protuberâncias, com os valores atribuídos pela tabela 5.2.
Levando-se em consideração que não foram calculados intervalos de confiança
para nenhum dos dados, mesmo nos efeitos principais, existem indicativos que podem
ser detectados.
Somente são geradas protuberâncias em polaridades negativas, e são mais
aparentes para maiores tempos de onda. O aumento do DT diminui a formação das
protuberâncias.
Interaction
Plot for
dedeverruga
Interação
dos parâmetros
paraFormação
a formação
protuberâncias
Data Means
10
150
Negativa
Positiva
2
Corrente (A)
1
C orrente
(A )
3
24
0
Ton (us)
10
150
2
Ton (us)
1
0
2
DT (%)
1
DT (%)
30
60
0
2
Polaridade
1
Polaridade
Negativ a
Positiv a
0
3
24
30
60
Figura 5.12 – Influência da interação de parâmetros de entrada sobre a formação de protuberâncias.
Esse efeito não é mencionado por nenhum autor consultado, dificultando sua
análise. Nota-se que em quase todas as protuberâncias analisadas (à exceção de uma), as
camadas brancas existentes nas protuberâncias são bem mais espessas que nos locais
101
onde não houve a formação. A figura 5.13 mostra exemplos de camadas formadas nas
protuberâncias e fora delas, para alguns ensaios.
Percebe-se a grande diferença nas espessuras da camada limite sobre a
protuberância e fora dela. Isto indica uma região com dificuldade de evaporação do
material do corpo de prova, e que acumulou energia, sem ser removido, ao menos por
completo. Algum fenômeno impediu a retirada de material e esse material aquecido
espessou sua camada, levando inclusive a uma mistura com as fases da base. Uma
explicação pode ser a incrustação de grafite sobre a superfície. Guitrau (1997) cita
fenômenos de plating em usinagens de desbaste usando elevados TON. O fato de o
fenômeno ocorrer em apenas um sentido da descarga (em polaridade negativa)
corrobora a possibilidade do exposto acima. Lima e Corrêa (2006) também mostram que
eletrodos de grafite promovem maiores irregularidades na superfície da eletroerosão de
aços, aspectos estes que podem estar ligados ao fenômeno de plating. A análise feita por
Hasçalik e Çaydas (2007) não se referiu em momento algum a este tipo de fenômeno,
embora a pequena largura de seus corpos de prova (4,7 mm) possa ter impedido a
visualização da ocorrência.
102
Figura 5.13 – Comparação entre regiões de protuberância (à esquerda, com ampliação de 200 x) e
regiões fora da protuberância (à direita, com ampliação de 500x), para ensaios 12 (em cima, com
i = 3 A, TON = 150 μs, DT = 60% e polaridade negativa), 18 e 20 (demais, com i = 24 A, T ON = 150 μs, DT =
30% e polaridade negativa).
103
6 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS
As conclusões obtidas dizem respeito a duas situações: os métodos empregados e
os resultados obtidos em função dos parâmetros de entrada.
6.1 Resultados obtidos
Em toda a bibliografia consultada, a única recomendação de polaridade para
usinagem de titânio com eletrodos de grafite apontava o uso de polaridade negativa nos
eletrodos ferramenta. A utilização de polaridade positiva no eletrodo mostrou
significativamente diminuição da rugosidade e na espessura da camada branca formada,
e na ausência de defeitos na superfície (protuberâncias). Também consistentemente
pode-se observar uma grande queda na taxa de remoção de material para esta situação.
Indícios apontam que o desgaste relativo aumenta para a polaridade positiva. Desta
forma, o uso da polaridade positiva no eletrodo apresenta desvantagens em termos de
produção, porém a torna atrativa para operações de acabamento de peças de titânio
usando eletrodos de grafite, com cuidados em relação ao erro de forma da superfície
gerada, devido ao desgaste do eletrodo.
Mesmo com a impossibilidade de afirmação devido à sobreposição de intervalos
de confiança, há indícios que o aumento da quantidade de energia, composto
basicamente pelo aumento da corrente e do TON aumentam a rugosidade, a taxa de
remoção e a espessura na camada branca. Isso é explicado pelo fato que a cratera
formada é mais profunda e a quantidade de material removido é maior, bem como a
quantidade de material impresso em sua superfície quando do colapso da bolha, quando
níveis maiores de energia são empregados por descarga.
Ainda há indicativos que o aumento do TON diminui o desgaste relativo entre
eletrodo e peça, o que é mais nítido para polaridades positivas no eletrodo e é
ocasionado pela menor velocidade de remoção no catodo pelos íons positivos, em
relação à remoção causada pelos elétrons no anodo.
Também existem indicativos que o aumento DT também diminua o desgaste
relativo e sem influenciar na rugosidade e na taxa de remoção.
104
Foi constatada a formação de protuberâncias na superfície dos corpos de prova,
sendo que ocorrem apenas em polaridade negativa e para situações específicas de
usinagem, para as quais existem indicativos que sugerem que o aumento do TON, em
especial, favorece o aparecimento e aumento das protuberâncias. As condições de
limpeza testadas, como o aumento da retração do eletrodo e utilização de menores
áreas da seção transversal dos eletrodos em relação à seção transversal da peça não
evitaram o aparecimento dessas formações.
O quadro mostrado na figura 6.1 resume as influências constatadas neste
trabalho.
Rugosidade
Taxa de remoção
Desgaste relativo
Espessura da
camada branca
Formação de
protuberâncias



-
Aumento de i
Aumento de TON
Aumento de DT
Polaridade +




















Aumento
Diminuição
Indicativo de aumento



-
Indicativo de diminuição
Indicativo de não influência
Leve indicativo de diminuição
Figura 6.1 – Quadro resumido das influências dos parâmetros de entrada sobre os parâmetros de saída.
Os elevados intervalos de confiança demonstram a complexidade da relação
entre parâmetros de entrada sobre os parâmetros analisados. Existem menores
dispersões de resultados para algumas situações, o que pode significar um maior
controle ou estabilidade do processo. Em todos os parâmetros analisados, menores
correntes apresentaram menores dispersões. Isso é interessante, visto que as situações
de melhores acabamentos são aquelas que necessitam de maior controle. O mesmo
acontece para maiores DT, exceção feita à análise da taxa de remoção, onde a dispersão
é indiferente.
Para o desgaste relativo, menores dispersões foram encontradas para maiores
TON, assim como para a polaridade negativa. Para as rugosidades e taxa de remoção,
105
dispersões menores foram encontradas para a polaridade positiva. Baixos T ON
apresentam menores dispersões para as rugosidades formadas.
6.2 Métodos empregados
A realização de pré-ensaios mostrou-se determinante não só na elaboração dos
ensaios e planejamento de experimentos, como também forneceu subsídios para a
análise do ocorrido nos ensaios.
A utilização do método de planejamento de experimentos (DOE) com meio
fatorial possibilitou a redução drástica da quantidade de ensaios, possibilitando a
repetição de condições de ensaios, aumentando a credibilidade dos resultados. Por
outro lado, em função da grande influência de todos os fatores utilizados, nas faixas de
valores escolhidas e para o processo em questão, a não utilização de fatorial completo
leva a intervalos de confiança elevados, que prejudicam a sustentação de algumas
análises realizadas.
As medições realizadas se mostraram suficientes para a coleta dos dados, pois
suas incertezas de resultado, calculadas como incertezas tipo A, característica de
medições diretas, apresentaram valores de no máximo 23% da média dos valores lidos,
sendo que na média 5,5% para cada ensaio, e próximas a zero para o desgaste relativo e
a taxa de remoção, valores estes em geral bem menores que os intervalos de confiança
calculados.
Os equipamentos utilizados durante o processo foram capazes tanto de promover
as variações necessárias como de detectá-las. O tamanho dos corpos de prova e
eletrodos foi satisfatório e facilitou o manuseio, transporte e tratamento para as análises
realizadas.
Finalmente, o cálculo de intervalos de confiança nos efeitos dos parâmetros
aumentou a consistência na análise e evitou conclusões precipitadas baseadas apenas
em comportamento médio dos resultados. Esta informação ajuda a dimensionar a
quantidade de experimentos necessária à determinação de comportamentos de
parâmetros de entrada e de saída para o processo de eletroerosão com consistência de
resultados.
106
Desta forma, o objetivo traçado para este trabalho foi alcançado, estabelecendose as relações entre os parâmetros testados e os resultados de trabalho, com
consistência analítica.
6.3 Sugestões para trabalhos futuros
O estudo apresentado relacionou parâmetros de entrada com várias
características em eletroerosão de penetração de uma liga de titânio, usando eletrodos
de um tipo de grafite, com análise estatística dos dados e projeto de experimentos com
dois níveis.
Sugere-se analisar da mesma forma o comportamento de outras ligas de titânio, e
também com outros materiais de eletrodo como cobre eletrolítico e ligas de alumínio,
sempre com análise estatística dos dados.
Sugere-se também analisar o comportamento da liga utilizada com outras classes
de grafite, de diferente granulometria.
A análise com mais repetições de uma menor quantidade de parâmetros e valores
intermediários às faixas testadas pode resultar em maior consistência da análise para
estes parâmetros.
O ensaio nas condições específicas que mostraram protuberâncias, com outras
configurações para o ensaio, como por exemplo áreas maiores dos corpos de prova e
diferentes condições de limpeza, junto à análise metalúrgica das irregularidades
formadas, pode trazer melhor compreensão sobre os fenômenos que regem a sua
formação.
Também se sugere a utilização de polaridades positivas para eletrodos em
situações normalmente não recomendadas para essa polaridade, como a usinagem de
titânio ou carbonetos com eletrodos de cobre, que talvez apresentem vantagens
significativas sobre a usinagem dita como recomendada.
Avaliar a utilização de outros fluidos dielétricos, como querosene e água
deionizada, especialmente para usinagens com maiores energias.
107
REFERÊNCIAS
ABBAS, Norliana Mohd; SOLOMON, Darius G; BAHARI, MD. Fuad. A review on current
research trends in electrical discharge machining (EDM). International Journal of
Machine Tools & Manufacture 47 p. 1214–1228. 2007.
ALEIXO, G.T.; BUTTON, S.T.; CARAM, R. Forjamento de hastes de próteses femorais em
liga de titânio tipo β. 17º CBECIMat - Congresso Brasileiro de Engenharia e Ciência dos
Materiais. Foz do Iguaçu. 2006.
ALMEIDA JÚNIOR, A. R de. Ataque do Titânio 5. [mensagem pessoal]. Mensagem
recebida por <[email protected]> em 14 de setembro de 2009.
AMORIM, Fred L. Tecnologia da eletroerosão por penetração da liga de alumínio AMP
8000 e da liga de cobre CuBe para ferramentas de moldagem de materiais plásticos.
2002. Tese (Doutorado em Engenharia Mecânica). UFSC. Florianópolis. 2002.
AMORIM, Fred L.; WEINGAERTNER, Walter L. The behavior of graphite and copper
electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20
tool steel. Journal of Brasilian Society of Mechanical Science & Engineering. Vol XXIX. No.
4 p 366-371. 2007.
AMORIM, F. L.; SILVA, N. H. Usinagem de furos de pequeno diâmetro na liga de titânio
Ti6Al4V. Máquinas e Metais ano 46, número 531 p. 100-117. Aranda Editora. São Paulo.
Abril 2010.
ARANTES, Luciano José. Avaliação do desempenho de fluidos dielétricos no processo de
usinagem por descargas elétricas. 2001. Dissertação (Mestrado em Engenharia
Mecânica). Universidade Federal de Uberlândia. Uberlândia. 2001. 53 p.
ARCHEM. Boletim técnico: Electron. Araras, SP. 2010. 1p.
ASM HANDBOOK – VOLUME 02 – Properties and selection: nonferrous alloys and
special purpose materials. ASM International. 1997.
ASM HANDBOOK – VOLUME 16 – Machining. ASM International. 1997.
ASPINWALL, D.K. et al. Hybrid high speed machining (HSM): system design and
experimental results for grinding/HSM and EDM/HSM. CIRP Annals – Manufacturing
Technology. Volume 50 p. 145-148. 2001.
108
BARROS NETO, Benício de; SCARMINIO, Ieda S.; BRUNS, Roy. E. Planejamento e
otimização de experimentos. Editora da Unicamp. 299p. Campinas. 1995.
BAUER, J. R de O. Propriedades mecânicas do titânio comercialmente puro e da liga Ti4Al-6V fundidos em diferentes ambientes. 2007. Tese (Doutorado em Odontologia).
Faculdade de Odontologia da Universidade de São Paulo. 2007.
BEDDOES, J.; BIBBY, M. J. Principles of metal manufacturing processes. Elsevier
Butterworth-Heinemann. 326p. Massachussetts. 2003
BELL, Stephanie. Measurement good practice guide n. 11 (Issue 2): a beginner´s guide
to uncertainty of measurement. Crown. 33p. 1999.
BENEDICT, Gary, F. Nontraditional manufacturing processes. Marcel Dekker. New York.
1987.
CABRAL, Luiz Antônio. Entrevista concedida ao mestrando sobre tipos de grafites para
eletroerosão. Gerência comercial da Seecil Carbon Technologies Ltda. Diadema,
setembro de 2009.
CARPINETTI, Luiz C. R. Planejamento e análise de experimentos. Apostila do
Departamento de Engenharia Mecânica de São Carlos. 205p. São Carlos. 2000.
CHE-HARON, C. H.; JAWAID, A. The effect of machining on surface integrity of titanium
alloy Ti-6%Al-4%V. Journal of Materials Processing Technology 166 p 188-192. 2005.
CHEN, S. L.; YAN, B. H.; HUANG, F. Y. Influence of kerosene and distilled water as
dielétrics on the electric discharge machining characteristics of Ti-6Al-4V. Journal of
Materials Processing Technology 87 p 107-111. 1999.
DIBITONTO, Daryl D.; EUBANK, , Philip T.; PATEL, Mukund R.; BARRUFET, Maria A.
Theoretical models of the electrical discharge machining process I. A simple cathode
erosion model. J. Appl. Phys. 66 p 4095-4103. 1989
ENGEMAC. Manual de instalação, operação e manutenção: EDM 200 NC e EDM 440 NC.
Caxias do Sul. 2002
EKMEKCI, Bülent. Residual stresses and white layer in electric discharge machining
(EDM). Applied Surface Science 253 p 9234-9240. 2007.
109
EKMEKCI, Bülent; ELKOCO, Oktay; ERDEN, Abdulkadir. A comparative study on the
surface integrity of plastic mold steel due to electric discharge machining. Metallurgical
and material Transactions B. Volume 36B p 117-124. 2005.
EZUGWU, E.O.; WANG, Z.M. Titanium alloys and their machinability - a review. Journal
of Materials Processing Technology 68 p. 262-274. 1997.
FENGOO, Cao; DAYONG, Yang. The study of high efficiency and intelligent optimization
system in EDM sinking process. Journal of Materials Processing Technology 149 p 83-87.
2004.
FONDA, PETER et al. A fundamental study on Ti–6Al–4V’s thermal and electrical
properties and their relation to EDM productivity. Journal of materials processing
technology 2 0 2 p. 583–589. 2008.
FUKUZAWA , Y. et al. Electrical discharge machining properties of noble crystals.
Journal of Materials Processing Technology 149 p. 393–397. 2004.
GUITRAU, E. P. The EDM Handbook. Hansen Gardner Publications. Cincinnati , OH. 1997.
306p.
HAN, Fuzhu; KUNIEDA, Masanori. Development of parallel spark electrical discharge
machining. Precision Engineering 28 p. 65–72. 2004.
HASÇALIK, Ahmet; ÇAYDAS, Ulas. Electrical discharge machining of titanium alloy (Ti–
6Al–4V). Applied Surface Science 253 p. 9007–9016. 2007.
HAUSERMANN
ABRADING
PROCESS
Co.
Abrading
.Disponível
<http://www.hausermann.net/page3.html > Acesso em 22/9/2008
em
HIOKI, Daniel. Influência dos parâmetros de corte HSM sobre o desempenho tribológico
do aço AISI H13 endurecido. 2006. Tese (Doutorado em Engenharia Mecânica). Escola
Politécnica da Universidade de São Paulo. São Paulo. 2006
HO, K.H.; NEWMAN, S.T. State of the art electrical discharge machining (EDM).
International Journal of Machine Tools & Manufacture 43 p. 1287–1300. 2003.
KIYAK, M.; ÇAKIR, O. Examination of machining parameters on surface roughness in
EDM of tool steel. Journal of Materials Processing Technology 191 p. 141–144. 2007.
110
KRUTH et al. Study of the white layer of a surface machined by die-sinking electrodischarge machining. CIRP Annals - Manufacturing Technology. Volume 44, p 169-172.
1995.
LEÃO, Fábio N.; PASHBY Ian R. A review on the use of environmentally-friendly
dielectric fluids in electrical discharge machining. Journal of Materials Processing
Technology 149 p. 341–346. 2004
LEE, H. G.; SIMAO, J.; ASPINWALL, D. K.; DEWES, R. C.; VOICE, W. Electrical discharge
surface alloying. Journal of Materials Processing Technology 149 p 334-340. 2004.
LEE, Hwa-Teng; HSU, Fu-Chuan; TAI, Tzu-Yao. Study of surface integrity using the small
area EDM process with a copper–tungsten electrode. Materials Science and Engineering
A364 p. 346–356. 2004.
LEE, S. H.; LI, X. P. Study of the effect of machining parameters on the machining
characteristics in electrical discharge machining of tungsten carbide. Journal of
Materials processing Technology 115 p 344-358. 2001.
LEE, H. T; TAI; T. Y. Relationship between EDM parameters and surface crack formation.
Journal of Materials Processing Technology 142 p 676-683. 2003.
LEYENS, Christoph; PETERS, Manfred. Titanium and titanium alloys – fundamentals and
applications. WILEY-VCH Verlag. Weinhein. 2003.
LIMA, F.; CORRÊA, M. Efeitos da eletroerosão sobre a superfície de peças usinadas.
UNICAMP, Rev. Tecnol. Fortaleza, v 27. N.1, Brasil. P.26-33. 2006
LIRA, Ignacio. Evaluating the measurement uncertainty. Fundamentals and practical
guidance. Institute of Physics Publishing. 243p. 2002.
LIU, Xuanyong; CHU, Paul K.; DING, Chuanxian. Surface modification of titanium,
titanium alloys and related materials for biomedical aplication. Materials Science and
Engineering R 47 p 49-121. 2004.
LONARDO, P. M.; BRUZZONE, A. A. Effect of flushing and electrode material on die
sinking EDM. CIRP Annals - Manufacturing Technology Volume 48, p 123-126. 1999.
111
MAHARDIKA, Muslim; TSUJIMOTO, Takayuki; MITSUI, Kimiyuki. A new approach on the
determination of ease of machining by EDM processes. International Journal of
Machine Tools & Manufacture 48 p. 746–760. 2008.
MARAFONA, J. Black layer characterisation and electrode wear ratio in electrical
discharge machining (EDM). Journal of Materials Processing Technology 184 p. 27–31.
2007.
MARINESCU, Ioan J.; HITCHINER, Mike; UHLMANN, Eckart; ROWE, W. Brian; INASAKI,
Ichiro. Handbook of machining with grinding wheels. Taylor & Francis Group. 2007.
METAIS
DE
TRANSIÇÃO.
Disponível
em:
<http://www.tabelaperiodica.hd1.com.br/metaisdetransição.htm>. Acesso em: maio
2010.
METGRAPHITE.
Produtos:
EDM.
Disponível
em
<HTTP://www.metgraphite.com.br/produtos_edm.html>. Acesso em: novembro de
2009.
MOHRI, Naotake et al. Electrode wear process in electrical discharge machining. Annals
of the ClRP Vol. 44/1/1995.
MUKUND, R.;BARRUFET, M. A.; EUBANK, P. T.; DIBITONTO, D. D. Theoretical models of
the electrical discharge machining process II: the anode erosion model. Journal of
Applied Physics. v. 66. P 4104-4111. 1989.
NIINOMI, Mitsuo. Mechanical properties of biomedical titanium alloys. Materials
Science and Engineering A243 p 231-236. 1998.
OLINIKI, Ricardo. Influência da combinação entre os parâmetros de usinagem por
eletroerosão na integridade superficial do aço AISI H13 temperado e revenido. 2009.
127 f. Dissertação (Mestrado em Engenharia Mecânica e de Materiais) – Universidade
Tecnológica Federal do Paraná. Curitiba. 2009.
PEREIRA, Milton. Entrevista concedida ao mestrando sobre utilização de DT em
eletroerosão de materiais de difícil usinabilidade. Assistência técnica da Agie Charmilles
Ltda. São Paulo, novembro de 2009.
112
PUERTAS, I.; LUIS, C. J.; ÁLVAREZ, L. Analysis of the influence of EDM parameters on
surface quality, MMR and EW of WC-Co. Journal of Materials Processing Technology
153-154 p 1026-1032. 2004.
RAJURKAR , K. P.; YU , Z. Y. 3D Micro-EDM using CAD/CAM. CIRP Annals – Manufacturing
Technology Volume 49, p. 127-130. 2000.
RAMASAWMY, H.; BLUNT, L. Effect of EDM process parameters on 3D surface
topography. Journal of Materials Processing Technology 148 p. 155–164. 2004.
SANDVIK COROMANT. Titanium machining – aplication guide. Sandviken, Suécia; 2004.
SCHUMACHER, Bernd M., After 60 years of EDM the discharge process remains still
disputed. Journal of Materials Processing Technology 149 p. 376–381. 2004.
SILBERBERG, Martin S. Principles of general chemistry. N. Y. McGraw Hill. 2007. 792p.
SIMAO, J.; LEE, H.G.; ASPINWALL, D. K.; DEWES, R. C.; ASPINWALL, E. M. Workpiece
surface modification using electrical discharge machining. International Journal of
Machine Tools & Manufacture 43 p 212-128. 2003.
SINGH, Shankar; MAHESHWARI, S.; PANDEY, P. C. Some investigations into the electric
discharge machining of hardened tool steel using different electrode materials. Journal
of Materials Processing Technology 149 p 272-277. 2004.
TANG, Yiping et al. A new technique for the fabrication of graphite EDM electrodes.
Journal of Materials Processing Technology 166 p. 199–204. 2005.
TARNG, Y. S.; MA, S.C.; CHUNG, L. K. Determination of optimal cutting parameters in
wire electrical discharge machining. Int. J. mach. Tools Manufact. Vol. 35. No. 12 p.
1693-1701. 1995.
THOMAS, Roger. Titanium in the geothermal industry. Geothermics 32 p 679-687. 2003.
TRIOLA, Mário F. Introdução à estatística. 7ª edição. LTC. Rio de janeiro, 1999. 410p
TRUCKS, H. E. Machining titanium alloys. Titanium Industries, Inc. Disponível em <
http://www.titanium.com/titanium/tech_manual/tech2.cfm> Acesso em 15/09/2008.
113
TSAI, H.C.; YAN, B.H.; HUANG, F.Y. EDM performance of Cr/Cu-based composite
electrodes. International Journal of Machine Tools & Manufacture 43 p. 245–252. 2003.
WEINGAERTNER, Walter L. Tecnologia de fabricação volume 3. Material didático da
disciplina EMC 6316. POSMEC. UFSC. Florianópolis. 199-?. 301p.
WONG , Y.S.; LIM, L.C.; LEE, L.C. Effects of flushing on electro-discharge machined
surfaces. Journal of Materials Processing Technology 48 p. 299—305. 1995.
YADAV, Vinod; JAIN, Vijav K.; DIXIT, Prakash M. Thermal stresses due to electrical
discharge machining. International Journal of Machine Tools & Manufacture 42 p 877888. 2002.
YOUSSEF, Helmi A.; EL-HOFY, Hassan. Machining technology: machine tools and
operations. CRC Press. 633p. Flórida. 2008.
ZHIXIN, Jia; JIANHUA , Zhang; XING, Ai. Study on a new kind of combined machining
technology of ultrasonic machining and electrical discharge machining. Int. J Mach.
Tools Manufact. Vol. 37, No. 2, pp. 193-199, 1997.
114
APÊNDICE 01 – Preparação dos corpos de prova e dos eletrodos para ensaios
Para a preparação dos corpos de prova, inicialmente, o tarugo de titânio foi
pintado com tinta de traçagem e marcado com traçador de altura, como mostrado na
figura A1.1.
Figura A1.1 – Marcação da barra de titânio para posterior fresamento.
Em seguida foi fresado com fresa de disco de aço rápido como mostrado na figura
A1.2. Esse fresamento substituiu o corte por serra manual usado nos pré-ensaios
conferindo um melhor controle das dimensões para os ensaios.
Figura A1.2 – Fresamento dos corpos de prova.
O fresamento mostrado na figura A1.2 foi realizado em uma fresadora
universal Milwaukee Model H, marca Kearney & Trecker, com os seguintes parâmetros
de corte:
 Serra com 80 dentes
 vc = 32 ± 0,02 m/min (127,4 ± 0,3 rpm)
 ap = 1,3 mm
 vf = 12,89 ± 0,04 mm/min
115
O corte transversal, que separa os corpos de prova da barra de titânio é mostrado
na figura A1.3.
Figura A1.3 – Corte de separação dos corpos de prova da barra de titânio.
Após o fresamento, os corpos de prova foram retificados. A retificação teve como
propósito garantir uniformidade dos corpos de prova. Como o titânio não é um material
magnético, a fixação dos corpos de prova foi realizada através de uma morsa de
precisão. A figura A1.4 mostra a fixação e retificação dos corpos de prova.
Figura A1.4 – Fixação dos corpos de prova e retificação em morsa de precisão.
Foi utilizada uma retificadora plana Perfecta pertencente ao laboratório de
usinagem do campus Ponta Grossa da UTFPR. O rebolo utilizado foi de óxido de alumínio
(ART FE 38A80 KVS), utilizando-se penetrações de 0,01 mm. Após a retificação dos
corpos de prova, foram retiradas as rebarbas resultantes com o auxílio de uma lima.
As dimensões resultantes para os corpos de prova foram de 7 x 7 x 14 mm, com
variações na faixa de um milímetro em suas dimensões.
Os corpos de prova foram ainda marcados com uma caneta gravadora elétrica
Engraver da Struers A/S, recebendo a denominação AXX, onde XX é uma sequência
numérica relativa à ordem dos experimentos. Essa marcação foi feita sempre na mesma
posição e pode ser visualizada na figura A1.5.
116
Figura A1.5 – Marcação dos corpos de prova de titânio.
Por fim, os corpos de prova foram limpos e acondicionados em algodão em caixas
plásticas com identificação, para evitar o risco de danos ou troca de corpos de prova nos
ensaios.
O grafite foi obtido no formato de uma barra com dimensões de 92 mm x 36 mm
x 240 mm, conforme visualizado na figura A1.6.
Figura A1.6 – Estado de fornecimento do grafite EC 14, com dimensões de 92 x 36 x 240 mm.
Inicialmente, os eletrodos de grafite foram serrados de forma manual, para
formarem blocos de aproximadamente 14 mm x 36 mm x 22 mm.
Depois de serrados, os eletrodos foram fresados em todos os seus lados, em uma
furadeira-fresadora Rocco FFR-30, pertencente ao laboratório de usinagem da UTFPR
campus Ponta Grossa. A máquina foi protegida com uma lona plástica para se evitar o
contato do pó de grafite gerado como cavaco com as guias da máquina.
117
O processo de fresamento dos eletrodos de grafite mostrou-se de certa forma
complicado, devido à característica de fratura frágil que se observa durante a usinagem e
devido à geometria advinda do serramento e falta de resistência mecânica. Os erros
geométricos gerados do serramento manual e a falta de resistência à compressão do
grafite foram um fator complicador, especialmente na fixação dos eletrodos em morsa
durante o fresamento.
Por conta dessa dificuldade em fixação, o fresamento dos eletrodos foi dividido
em duas etapas, sendo que na primeira foi realizada a usinagem de quatro superfícies
para fixação do eletrodo. Essa usinagem pode ser visualizada na figura A1.7.
Figura A1.7 – Fresamento dos eletrodos de grafite, primeira parte.
Os eletrodos foram fresados a seco com ferramenta de metal duro, nas seguintes
condições:
 vc = 51 m/min (n= 325 rpm)
 vf = 115 mm/min (fz = 0,118 mm/dente).
 ap= 0,3 mm.
A segunda parte diz respeito à usinagem das superfícies menores do eletrodo.
Uma delas seria a superfície para a eletroerosão e a outra serviria de referência no
suporte do eletrodo. Em virtude da necessidade de bom acabamento, esquadrejamento
com superfícies de referência, paralelismo entre estas duas superfícies e cantos sem
lascamento, a usinagem destas foi realizada em um eletrodo de cada vez, facilitando a
fixação e os resultados requeridos. A ap foi reduzida também para 0,1 mm.
118
APÊNDICE 02 – Valores obtidos para a medição da massa inicial e final dos eletrodos e
corpos de prova
Tabela A2.1 – Leituras obtidas para a pesagem dos corpos de prova.
CP
A01
A02
A03
A04
A05
A06
A07
A08
A09
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
Leitura 1
3,9840
3,7542
3,8485
3,6073
3,6875
3,9289
3,7744
3,8958
3,8220
4,0056
3,8248
3,9457
3,7988
3,9228
3,8012
3,9646
3,7393
3,8836
3,6997
4,0024
3,7892
4,0275
3,9893
3,9389
Leitura 2
3,9839
3,7542
3,8487
3,6074
3,6875
3,9293
3,7750
3,8957
3,8226
4,0059
3,8254
3,9458
3,7989
3,9231
3,8009
3,9647
3,7394
3,8840
3,7007
4,0021
3,7896
4,0274
3,9892
3,9390
Leitura 3
3,9840
3,7542
3,8481
3,6074
3,6873
3,9291
3,7749
3,8963
3,8224
4,0056
3,8253
3,9458
3,7990
3,9231
3,8016
3,9649
3,7393
3,8840
3,7006
4,0025
3,7895
4,0282
3,9894
3,9388
MASSA INICIAL (g)
Leitura 4
Leitura 5
3,9840
3,9841
3,7543
3,7541
3,8487
3,8484
3,6073
3,6076
3,6876
3,6872
3,9290
3,9291
3,7750
3,7750
3,8962
3,8961
3,8221
3,8221
4,0056
4,0059
3,8253
3,8255
3,9456
3,9453
3,7990
3,7988
3,9229
3,9229
3,8015
3,8013
3,9647
3,9648
3,7393
3,7390
3,8839
3,8839
3,7007
3,7007
4,0021
4,0022
3,7896
3,7897
4,0280
4,0283
3,9890
3,9890
3,9388
3,9387
Média
3,9840
3,7542
3,8485
3,6074
3,6874
3,9291
3,7749
3,8960
3,8222
4,0057
3,8253
3,9456
3,7989
3,9230
3,8013
3,9647
3,7393
3,8839
3,7005
4,0023
3,7895
4,0279
3,9892
3,9388
S
7,07107E-05
7,07107E-05
0,000248998
0,000122474
0,000164317
0,000148324
0,000260768
0,000258844
0,000250998
0,000164317
0,000270185
0,000207364
1E-04
0,000134164
0,000273861
0,000114018
0,000151658
0,000164317
0,000438178
0,000181659
0,000192354
0,000408656
0,000178885
0,000114018
Tabela A2.2 – Leituras obtidas para a pesagem dos eletrodos.
Eletrodos
E01
E02
E03
E04
E05
E06
E07
E08
E09
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
Leitura 1
9,9673
9,9328
9,9397
9,4161
9,9289
9,8469
9,8338
9,9610
9,9508
9,6934
9,2684
9,8586
9,6058
9,9431
9,6426
10,1719
9,5205
9,8915
9,9062
9,6892
9,6554
9,8245
9,8421
9,7562
Leitura 2
9,9679
9,9330
9,9391
9,4158
9,9287
9,8466
9,8326
9,9613
9,951
9,6938
9,2695
9,859
9,6059
9,9439
9,6425
10,1716
9,5212
9,8922
9,9064
9,6890
9,6557
9,8251
9,8431
9,7563
Leitura 3
9,9680
9,9336
9,9396
9,4162
9,9288
9,8466
9,8332
9,9608
9,9509
9,6944
9,2689
9,8588
9,6063
9,9446
9,6423
10,1719
9,5209
9,8920
9,9071
9,6890
9,6547
9,825
9,8426
9,7567
MASSA INICIAL (g)
Leitura 4
Leitura 5
9,9679
9,9678
9,9328
9,9325
9,9400
9,9400
9,4157
9,4155
9,9289
9,9287
9,8472
9,8469
9,8332
9,8332
9,9609
9,9609
9,9517
9,9515
9,6942
9,6934
9,2693
9,2692
9,8593
9,8588
9,6059
9,6055
9,9451
9,9448
9,6422
9,6420
10,172
10,1719
9,5212
9,5209
9,8920
9,8920
9,9068
9,9069
9,6892
9,6892
9,6557
9,6556
9,8247
9,8248
9,8424
9,8424
9,7563
9,7561
Média
9,9678
9,9329
9,9397
9,4159
9,9288
9,8468
9,8332
9,9610
9,9512
9,6938
9,2691
9,8589
9,6059
9,9443
9,6423
10,1719
9,5209
9,8919
9,9067
9,6891
9,6554
9,8248
9,8425
9,7563
S
0,000277489
0,000409878
0,000370135
0,000288097
0,0001
0,000250998
0,000424264
0,000192354
0,000396232
0,00045607
0,000427785
0,000264575
0,000286356
0,000803119
0,000238747
0,000151658
0,000288097
0,000260768
0,000370135
0,000109545
0,000420714
0,000238747
0,000370135
0,000228035
119
Tabela A2.3 – Valores das leituras da massa final dos corpos de prova.
CP
A01
A02
A03
A04
A05
A06
A07
A08
A09
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
A101
A102
A103
Leitura 1
3,1266
3,3678
3,3841
2,7923
3,0162
3,3783
3,0784
3,6546
3,1102
3,1948
3,3300
3,4774
3,5619
3,2540
3,1881
3,1797
3,1259
3,0829
2,9863
3,1274
3,1217
3,5683
3,4116
3,7237
2,8848
3,5348
3,2424
3,1869
3,3520
4,4102
3,2827
3,208
3,3404
3,3987
Leitura 2
3,1266
3,3679
3,3840
2,7922
3,0162
3,3785
3,0785
3,6546
3,1102
3,1950
3,3302
3,4774
3,5618
3,2540
3,1880
3,1796
3,1259
3,0828
2,9862
3,1273
3,1216
3,5682
3,4116
3,7236
2,8850
3,5347
3,2425
3,1868
3,3520
3,4101
3,2826
3,2079
3,3405
3,3987
MASSA FINAL (g)
Leitura 3
Leitura 4
3,1266
3,1266
3,3678
3,3676
3,3840
3,3840
2,7922
2,7922
3,0163
3,0163
3,3784
3,3783
3,0784
3,0784
3,6545
3,6546
3,1102
3,1102
3,1947
3,1946
3,3301
3,3300
3,4774
3,4773
3,5618
3,5618
3,2539
3,2537
3,1878
3,1879
3,1797
3,1797
3,1260
3,1260
3,0829
3,0829
2,9863
2,9862
3,1273
3,1273
3,1217
3,1217
3,5682
3,5683
3,4116
3,4116
3,7237
3,7236
2,8850
2,8850
3,5348
3,5347
3,2425
3,2425
3,1866
3,1866
3,3520
3,3520
3,4102
3,4102
3,2827
3,2827
3,2079
3,208
3,3405
3,3405
3,3986
3,3987
Leitura 5
3,1266
3,3676
3,3841
2,7921
3,0162
3,3785
3,0784
3,6546
3,1101
3,1948
3,3300
3,4773
3,5618
3,2538
3,1880
3,1796
3,1259
3,0827
2,9862
3,1273
3,1216
3,5683
3,4115
3,7235
2,8850
3,5348
3,2426
3,1865
3,3520
3,4101
3,2825
3,208
3,3405
3,3987
Média
3,1266
3,3677
3,3840
2,7922
3,0162
3,3784
3,0784
3,6546
3,1102
3,1948
3,3301
3,4774
3,5618
3,2539
3,1880
3,1797
3,1259
3,0828
2,9862
3,1273
3,1217
3,5683
3,4116
3,7236
2,8850
3,5348
3,2425
3,1867
3,3520
3,6102
3,2826
3,2080
3,3405
3,3987
S
0
0,00012
4,89898E-05
6,32456E-05
4,89898E-05
8,94427E-05
4E-05
4E-05
4E-05
0,000132665
8E-05
4,89898E-05
4E-05
0,000116619
0,00010198
4,89898E-05
4,89898E-05
8E-05
4,89898E-05
4E-05
4,89898E-05
4,89898E-05
4E-05
7,48331E-05
8E-05
4,89898E-05
6,32456E-05
0,000146969
4,44089E-16
0,400020002
8E-05
4,89898E-05
4E-05
4E-05
Tabela A2.4 – Valores obtidos nas leituras das massas finais dos eletrodos, por ensaio.
Eletrodos
E01
E02
E03
E04
E05
E06
E07
E08
E09
E10
E11
E12
E13
E14
E15
E16
E17
Leitura 1
9,9284
9,7745
9,7402
9,3400
9,8526
9,6783
9,7561
9,4734
9,8576
9,6407
9,1181
9,6911
9,3075
9,8500
9,5165
10,1246
9,3918
Leitura 2
9,9287
9,7750
9,7398
9,3401
9,8529
9,6785
9,7561
9,4732
9,8577
9,6406
9,1182
9,6909
9,3076
9,8500
9,5161
10,1246
9,3918
MASSA FINAL (g)
Leitura 3
Leitura 4
9,9285
9,9288
9,7749
9,7748
9,7402
9,7402
9,3401
9,3401
9,8529
9,8529
9,6784
9,6783
9,7560
9,7559
9,4735
9,4735
9,8580
9,8578
9,6410
9,6409
9,1181
9,1182
9,6910
9,6909
9,3077
9,3078
9,8503
9,8503
9,5165
9,5165
10,1247
10,1245
9,3918
9,3917
Leitura 5
9,9286
9,7749
9,7404
9,3400
9,8528
9,6783
9,7560
9,4733
9,8576
9,6408
9,1181
9,6908
9,3077
9,8503
9,5163
10,1244
9,3918
Média
9,9286
9,7748
9,7402
9,3401
9,8528
9,6784
9,7560
9,4734
9,8577
9,6408
9,1181
9,6909
9,3077
9,8502
9,5164
10,1246
9,3918
S
0,000158114
0,000192354
0,000219089
5,47723E-05
0,000130384
8,94427E-05
8,3666E-05
0,000130384
0,000167332
0,000158114
5,47723E-05
0,000114018
0,000114018
0,000164317
0,000178885
0,000114018
4,47214E-05
120
E18
E19
E20
E21
E22
E23
E24
E25
E26
E27
E28
E29
E30
E31
E101
E102
E103
9,8319
9,8256
9,6239
9,5533
9,6270
9,7219
9,4648
10,1201
8,8870
9,9068
9,7973
9,7762
9,9108
9,7666
4,9007
4,7790
4,7111
9,8321
9,8256
9,6239
9,5532
9,6271
9,7218
9,4647
10,1201
8,8871
9,9070
9,7974
9,7764
9,9110
9,7667
4,9007
4,7790
4,7110
9,8319
9,8257
9,6237
9,5535
9,6272
9,7220
9,4650
10,1202
8,8871
9,9068
9,7973
9,7763
9,9108
9,7668
4,9007
4,7790
4,7111
9,8319
9,8256
9,6241
9,5532
9,6270
9,7219
9,4647
10,1202
8,8870
9,9067
9,7973
9,7764
9,9108
9,7667
4,9009
4,7791
4,7113
9,8320
9,8257
9,6238
9,5532
9,6273
9,7218
9,4648
10,1202
8,8870
9,9067
9,7973
9,7764
9,9109
9,7668
4,9009
4,7791
4,7112
9,8320
9,8256
9,6239
9,5533
9,6271
9,7219
9,4648
10,1202
8,8870
9,9068
9,7973
9,7763
9,9109
9,7667
4,9008
4,7790
4,7111
8,94427E-05
5,47723E-05
0,000148324
0,000130384
0,000130384
8,3666E-05
0,000122474
5,47723E-05
5,47723E-05
0,000122474
4,47214E-05
8,94427E-05
8,94427E-05
8,3666E-05
0,000109545
5,47723E-05
0,000114018
APÊNDICE 03 – Tempos de usinagem
Tabela A3.1 – Tempo de usinagem medido para os ensaios realizados.
Ensaio
E01
E02
E03
E04
E05
E06
E07
E08
E09
E10
E11
E12
E13
E14
E15
E16
E17
Tempo de Usinagem (min)
1509,033333
497,7000
594,2500
40,5500
102,6667
64,8000
71,3167
173,6167
120,8667
2658,6500
153,9000
108,7167
171,7333
118,3600
37,8833
2625,6667
38,3500
Ensaio
E18
E19
E20
E21
E22
E23
E24
E25
E26
E27
E28
E29
E30
E31
E101
E102
E103
Tempo de Usinagem (min)
45,8667
119,7500
44,6500
124,1333
1066,0167
44,7667
177,3333
2709,7667
1046,5000
1043,9167
51,0783
65,3000
105,1667
128,3500
47,015
54,21666667
44,75
121
APÊNDICE 04 – Medição da rugosidade nos corpos de prova
Tabela A4.1 – Valores das médias e desvio padrão dos parâmetros de rugosidade medidos para os
corpos de prova (µm)
CORPO DE PROVA
Ra
S
Rq
S
Rz
S
Ry
S
Rt
S
A01
3,089
0,397
3,911
0,480
18,431
2,246
20,206
2,016
23,224
3,481
A02
3,075
0,246
3,741
0,236
17,561
1,294
19,786
2,269
20,210
2,029
A03
3,150
0,321
3,882
0,377
17,179
1,108
20,452
2,445
21,078
2,700
A04
14,889
1,931
18,074
2,308
71,215
10,335
89,610
22,943
92,682
20,347
A05
3,003
0,163
3,764
0,162
18,788
0,719
20,638
0,830
22,286
2,837
A06
6,273
0,577
7,884
0,709
36,321
3,421
43,762
5,754
49,738
7,491
A07
2,958
0,242
3,730
0,309
18,646
1,902
22,152
2,843
22,210
2,730
A08
2,821
0,504
3,437
0,572
15,602
2,330
17,962
2,930
21,726
5,811
A09
4,855
0,787
5,886
0,735
24,253
2,402
29,672
2,547
34,652
4,517
A10
3,079
0,175
3,810
0,238
17,897
1,385
20,300
2,484
22,254
2,398
A11
6,304
1,322
8,087
1,648
37,732
7,187
49,614
12,211
51,048
10,845
A12
5,476
0,382
6,832
0,433
31,041
1,598
38,500
5,693
41,834
4,378
A13
2,678
0,606
3,344
0,748
14,694
2,244
18,748
3,854
20,052
3,198
A14
4,710
1,226
5,855
1,508
24,722
5,539
27,752
5,326
33,084
6,617
A15
6,011
0,657
7,681
1,122
34,236
7,052
43,968
9,735
50,468
7,446
A16
3,043
0,303
3,712
0,330
17,389
0,938
20,296
3,229
21,448
2,556
A17
5,291
1,283
6,562
1,432
29,489
4,986
34,806
6,656
38,170
6,415
A18
12,528
3,434
15,219
3,954
61,173
16,427
71,326
24,065
78,908
17,513
A19
2,864
0,210
3,579
0,278
18,112
1,560
19,352
2,122
21,774
0,901
A20
13,258
2,030
16,472
2,348
64,909
7,783
84,080
14,663
91,616
17,987
A21
4,649
1,039
5,869
1,366
25,588
5,550
31,606
9,529
33,454
8,903
A22
2,777
0,351
3,400
0,488
15,573
2,672
17,552
3,314
21,538
4,821
A23
5,248
0,835
6,737
1,186
30,910
5,729
39,738
12,643
41,334
11,957
A24
2,422
0,462
3,009
0,574
13,575
2,069
16,140
3,517
18,218
4,064
A25
3,223
0,648
3,952
0,772
17,947
2,877
21,082
2,686
21,684
2,688
A26
2,733
0,357
3,385
0,431
15,379
1,865
17,748
2,163
20,350
4,226
A27
3,034
0,493
3,803
0,620
17,317
2,507
20,528
2,758
21,626
2,870
A28
11,254
1,221
13,668
1,710
52,624
6,283
61,750
11,948
76,080
12,155
A29
3,185
0,398
3,985
0,460
19,561
2,576
23,346
4,770
24,154
3,839
A30
6,503
1,035
8,230
1,275
38,244
5,363
41,628
4,832
46,686
10,348
A31
2,786
0,266
3,458
0,294
17,503
0,884
21,136
1,812
22,024
1,229
122
APÊNDICE 05 – Medição da espessura média da camada branca
Tabela A5.1 – leituras obtidas para a espessura média da camada branca
para cada ensaio (µm).
CP
A08
A09
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
LEITURA 1
LEITURA 2
LEITURA 3
LEITURA 4
LEITURA 5
MÉDIA
15,7
48,9
37,1
40,8
86,8
15,5
45,5
51,0
39,4
43,8
85,0
40,4
61,6
55,3
13,9
44,5
9,4
28,1
6,5
8,0
26,2
4,7
44,9
15,4
14,4
43,6
41,3
52,9
36
11,1
56,6
53,1
35,7
59,3
77,9
45,0
49,0
54,9
12,7
31,7
7,3
31,4
12,4
9,1
20,1
3,0
43,0
9,0
14,8
54,8
36,1
43,2
26,8
12,2
56,7
36,5
29,8
64,0
46,1
45,3
57,2
45,6
12,0
27,4
8,2
30,3
8,2
13,0
25,7
5,9
27,0
15,0
14,6
55,5
40,1
57,5
24,2
14,3
55,6
40,3
35,0
69,7
18,9
30,1
32,3
55,0
20,0
31,6
15,5
28,6
19,0
13,1
22,3
9,9
28,8
11,3
20,4
60,2
33,2
34,3
37,7
17,9
57,6
39,5
41,0
77,0
39,6
34,1
19,5
64,2
17,4
27,9
11,8
24,1
11,8
14,7
21,8
7,3
29,5
13,8
15,98
52,6
37,56
45,74
42,3
14,2
54,4
44,08
36,18
62,76
53,5
38,98
43,92
55,0
15,2
32,62
10,44
28,5
11,58
11,58
23,22
6,16
34,64
12,9
123
A09
A10
A13
A14
A16
A17
A18
A20
A21
A22
A23
A24
A25
A26
A27
A30
A31
A08
A12
A28
A29
A11
A15
A19
Figura A5.1 - Camadas brancas obtidas nos ensaios de A08 a A31. Todas as imagens têm a mesma
ampliação.
124
Rq (μm)
Rq (μm)
APÊNDICE 06 – Comportamento das rugosidades em função dos parâmetros de
entrada
12
10
8
6
4
2
0
Corrente (A)
24
10
Rq (μm)
Rq (μm)
3
12
10
8
6
4
2
0
12
10
8
6
4
2
0
30%
60%
DT
12
10
8
6
4
2
0
Negativa (-)
150
TON (μs)
Polaridade
Positiva (+)
Rz (μm)
Rz (μm)
Figura A6.1 – Gráfico dos efeitos principais sobre a média de rugosidade média quadrática Rq (μm), com
intervalos de confiança calculados para probabilidade de 95%.
50
40
40
30
30
20
20
10
10
0
0
Corrente (A)
24
10
150
TON (μs)
Rz (μm)
3
Rz (μm)
50
50
50
40
40
30
30
20
20
10
10
0
30%
60%
DT
0
Negativa (-)
Polaridade
Positiva (+)
Figura A6.2 – Gráfico dos efeitos principais sobre a média de rugosidade Rz (μm), com intervalos de
confiança calculados para probabilidade de 95%.
RyDIN (μm)
RyDIN (μm)
125
60
50
40
30
20
10
0
Corrente (A)
24
10
RyDIN (μm)
RyDIN (μm)
3
60
50
40
30
20
10
0
60
50
40
30
20
10
0
30%
60%
DT
60
50
40
30
20
10
0
Negativa (-)
150
TON (μs)
Polaridade
Positiva (+)
Rt (μm)
Rt (μm)
Figura A6.3 – Gráfico dos efeitos principais sobre a média de rugosidade Ry DIN (μm), com intervalos de
confiança calculados para probabilidade de 95%.
80
80
60
60
40
40
20
20
0
0
Corrente (A)
24
10
Rt (μm)
Rt (μm)
3
70
50
60
40
10
20
30%
60%
DT
TON (μs)
80
30
-10
150
0
Negativa (-)
Polaridade
Positiva (+)
Figura A6.4 – Gráfico dos efeitos principais sobre a média de rugosidade Rt (μm), com intervalos de
confiança calculados para probabilidade de 95%.
126
InteraçãoInteraction
dos parâmetros
a rugosidade
Rq (µm)
Plotpara
for Rq
(um)
Interação dos parâmetros
para
a rugosidade
Interaction
Plot
for Rz (um)Rz (µm)
Data Means
10
150
Data Means
Negativa
Positiva
10
10,0
7,5
Corrente (A)
5,0
Ton (us)
10
150
10,0
7,5
Corrente
(A )
3
24
Ton (us)
5,0
150
Negativa
Positiva
40
30
Corrente (A)
20
Ton (us)
10
150
40
30
C orrente
(A )
3
24
Ton (us)
20
10,0
7,5
DT (%)
DT (%)
30
60
40
30
DT (%)
5,0
7,5
20
Polaridade
Negativ a
Positiv a
10,0
Polaridade
DT (%)
30
60
5,0
Polaridade
Negativ a
Positiv a
40
30
Polaridade
20
3
24
30
60
3
24
30
Interação dos parâmetros
para
a rugosidade
Interaction
Plot
for Rt (um)Rt (µm)
Interação dosInteraction
parâmetrosPlot
parafor
a rugosidade
Ry (um) Ry DIN (µm)
Data Means
Data Means
10
150
Negativa
10
Positiva
60
40
Corrente (A)
20
60
40
20
60
40
DT (%)
150
Negativa
Positiva
60
C orrente
(A )
3
24
40
Corrente (A)
Ton (us)
10
150
60
40
Ton (us)
20
DT (%)
30
60
60
40
DT (%)
20
60
40
Polaridade
20
Corrente
(A )
3
24
20
Ton (us)
10
150
Ton (us)
60
DT (%)
30
60
20
Polaridade
Negativ a
Positiv a
60
40
Polaridade
Polaridade
Negativ a
Positiv a
20
3
24
30
60
3
24
30
60
Figura A6.5 – Gráfico da interação dos efeitos sobre as os parâmetros Rq, Rz, Ry e Rt de rugosidade.
Download

SANTOS, Irapuan - Universidade Tecnológica Federal do Paraná