Capitulo 5 Modelagem e Previsão de Series Temporais Univariadas ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 1 Modelos de Series Temporais • Onde tentamos prever retornos usando somente informação contida nos seus valores passados. Alguma Notação e Conceitos • Um Processo Estritamente Estacionario Um processo estritamente estacionario é um onde P{yt1 b1,..., ytn bn} P{yt1m b1,..., ytn m bn} i.e.Uma medida de probabilidade para a sequencia {yt} é a mesma para {yt+m} m. • Um Processo Fracamente Estacionario Se uma serie satisfaz as três equações abaixo, se diz fracamente ou covariancia estationaria 1. E(yt) = , t = 1,2,..., 2. E ( yt )( yt ) 2 3. E ( yt1 )( yt 2 ) t 2 t1 t1 , t2 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 2 Modelos de Series Temporais (cont’d) • Então se o processo é covariancia estationario, as variancias são as mesmas e as covariancias dependem da differença entre t1 and t2. Os momentos E ( yt E ( yt ))( yt s E ( yt s )) s , s = 0,1,2, ... são conhecidos como a função covariancia. • As covariancias, s, são conhecidas como autocovariancias. • Todavia, o valor das autocovariancias dependem das unidades de medida de yt. • É então mais conveniente usar as autocorrelações que são as autocovariancias normalizadas dividindo-se pela variancia: , s = 0,1,2, ... s s • Se fizermos o grafico de 0 s against s=0,1,2,..então se obtém a função de autocorrelação ou o correlograma. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 3 Um Processo Ruido Branco • Um processo ruido branco é um com (virtualmente) estrutura discernivel. Uma definição de processo ruido branco é E( y ) t Var ( yt ) 2 2 if t r t r otherwise 0 • Então, a função de autocorrelação será zero exceto para um unico peak de 1 at s = 0. s aproximadamente N(0,1/T) onde T = tamanho da amostra • Pode-se usar isto para realizar testes de significancia para os coeficientes de autocorrelação através da construção de intervalo de confiança. por .196 1 T • Por exemplo, um intervalo de confiança a 95% seria dado . Se o coeficiente de autocorrelação, s fica fora dessa região para qualquer valor de s, então rejeitamos a hipotese nula de que o valor verdadeiro do coeficiente no lag s é zero. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 4 Testes de Hipótese Conjunta • Podemos tambem testar a hipotese conjunta de que todos os m dos coeficientes de correlação k são simultaneamente iguais a zero com a estatistica Q m desenvolvida por Box and Pierce: Q T k2 k 1 onde T = tamanho da amostra, m = extensão maxima da defasagem • A estatistica Q é assintoticamente distribuida . m2 • Todavia, o teste de Box Pierce tem propriedades pobres em pequenas amostras, tendo sido desenvolvida uma variante, chamada a estatistica Ljung-Box : m Q T T 2 k 1 k2 T k ~ m2 • Esta estatistica é muito util como um teste de dependencia linear em time series. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 5 An ACF Example • Question: Suppose that a researcher had estimated the first 5 autocorrelation coefficients using a series of length 100 observations, and found them to be (from 1 to 5): 0.207, -0.013, 0.086, 0.005, -0.022. Test each of the individual coefficient for significance, and use both the BoxPierce and Ljung-Box tests to establish whether they are jointly significant. • Solution: A coefficient would be significant if it lies outside (-0.196,+0.196) at the 5% level, so only the first autocorrelation coefficient is significant. Q=5.09 and Q*=5.26 Compared with a tabulated 2(5)=11.1 at the 5% level, so the 5 coefficients are jointly insignificant. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 6 Processos de Médias Móveis • Seja ut (t=1,2,3,...) uma sequencia de variaveis aleatórias distribuidas identicamente e indepedentemente com E(ut)=0 e Var(ut)= ,2, então yt = + ut + 1ut-1 + 2ut-2 + ... + qut-q é um modelo de media movel de qth ordem, MA(q). • Suas propriedades são E(yt)=; Var(yt) = 0 = (1+12 22 ... q2 )2 Covariancias 2 ( ... ) s 1 1 s2 2 q qs s s 0 for s q ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 for s 1,2,...,q 7 Example of an MA Problem 1. Consider the following MA(2) process: X t ut 1ut 1 2 ut 2 where t is a zero mean white noise process with variance 2. (i) Calculate the mean and variance of Xt (ii) Derive the autocorrelation function for this process (i.e. express the autocorrelations, 1, 2, ... as functions of the parameters 1 and 2). (iii) If 1 = -0.5 and 2 = 0.25, sketch the acf of Xt. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 8 Solution (i) If E(ut)=0, then E(ut-i)=0 i. So E(Xt) = E(ut + 1ut-1+ 2ut-2)= E(ut)+ 1E(ut-1)+ 2E(ut-2)=0 Var(Xt) but E(Xt) Var(Xt) = E[Xt-E(Xt)][Xt-E(Xt)] = 0, so = E[(Xt)(Xt)] = E[(ut + 1ut-1+ 2ut-2)(ut + 1ut-1+ 2ut-2)] = E[ ut2 12 ut21 22 ut22 +cross-products] But E[cross-products]=0 since Cov(ut,ut-s)=0 for s0. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 9 Solution (cont’d) So Var(Xt) = 0= E [ ut2 12 ut21 22 ut22 ] 2 2 2 2 2 = 1 2 2 2 2 = (11 2 ) (ii) The acf of Xt. 1 = E[Xt-E(Xt)][Xt-1-E(Xt-1)] = E[Xt][Xt-1] = E[(ut +1ut-1+ 2ut-2)(ut-1 + 1ut-2+ 2ut-3)] 2 2 = E[( 1ut 1 1 2 ut 2 )] = 1 2 1 2 2 = (1 1 2 ) 2 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 10 Solution (cont’d) 2 = E[Xt-E(Xt)][Xt-2-E(Xt-2)] = E[Xt][Xt-2] = E[(ut +1ut-1+2ut-2)(ut-2 +1ut-3+2ut-4)] = E[( 2 ut22 )] 2 = 2 3 = E[Xt-E(Xt)][Xt-3-E(Xt-3)] = E[Xt][Xt-3] = E[(ut +1ut-1+2ut-2)(ut-3 +1ut-4+2ut-5)] =0 So s = 0 for s > 2. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 11 Solution (cont’d) We have the autocovariances, now calculate the autocorrelations: 0 0 1 0 ( 1 1 2 ) 2 1 ( 1 1 2 ) 1 0 (1 12 22 ) 2 (1 12 22 ) ( 2 ) 2 2 2 2 0 (1 12 22 ) 2 (1 12 22 ) 3 3 0 0 s s 0s 2 0 (iii) For 1 = -0.5 and 2 = 0.25, substituting these into the formulae above gives 1 = -0.476, 2 = 0.190. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 12 Grafico da ACF Thus the acf plot will appear as follows: 1.2 1 0.8 0.6 acf 0.4 0.2 0 0 1 2 3 4 5 6 -0.2 -0.4 -0.6 s ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 13 Processos Autoregressivos • Um modelo autoregressivo de ordem p, um AR(p) pode ser expresso como yt 1 yt 1 2 yt 2 ... p yt p ut • Ou usando a notação do operador de defasagem: Lyt = yt-1 Liyt = yt-i p y t i y t i u t i 1 p y t i Li y t u t • or i 1 (L) yt ut or ( L) 1 (1 L 2 L2 ... p Lp ) where ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 . 14 A Condição de Estacionaridade para um Modelo AR • The condition for stationarity of a general AR(p) model is that the roots of 1 1z 2 z 2 ... p z p 0 all lie outside the unit circle. • A stationary AR(p) model is required for it to have an MA() representation. • Example 1: Is yt = yt-1 + ut stationary? The characteristic root is 1, so it is a unit root process (so nonstationary) • Example 2: Is yt = 3yt-1 - 0.25yt-2 + 0.75yt-3 +ut stationary? The characteristic roots are 1, 2/3, and 2. Since only one of these lies outside the unit circle, the process is non-stationary. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 15 Wold’s Decomposition Theorem • States that any stationary series can be decomposed into the sum of two unrelated processes, a purely deterministic part and a purely stochastic part, which will be an MA(). • For the AR(p) model, ( L) yt ut , ignoring the intercept, the Wold decomposition is yt ( L)ut where, ( L) (1 1 L 2 L2 ... p Lp ) 1 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 16 The Moments of an Autoregressive Process • The moments of an autoregressive process are as follows. The mean is given by 0 E ( yt ) 1 1 2 ... p • The autocovariances and autocorrelation functions can be obtained by solving what are known as the Yule-Walker equations: 1 1 12 ... p 1 p 2 11 2 ... p 2 p p p 11 p 22 ... p • If the AR model is stationary, the autocorrelation function will decay exponentially to zero. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 17 Sample AR Problem • Consider the following simple AR(1) model yt 1 yt 1 ut (i) Calculate the (unconditional) mean of yt. For the remainder of the question, set =0 for simplicity. (ii) Calculate the (unconditional) variance of yt. (iii) Derive the autocorrelation function for yt. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 18 Solution (i) Unconditional mean: E(yt) = E(+1yt-1) = +1E(yt-1) But also So E(yt)= +1 ( +1E(yt-2)) = +1 +12 E(yt-2)) E(yt) = +1 +12 E(yt-2)) = +1 +12 ( +1E(yt-3)) = +1 +12 +13 E(yt-3) ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 19 Solution (cont’d) An infinite number of such substitutions would give E(yt) = (1+1+12 +...) + 1y0 So long as the model is stationary, i.e. , then 1 = 0. So E(yt) = (1+1+12 +...) = 1 1 (ii) Calculating the variance of yt: yt 1 yt 1 ut From Wold’s decomposition theorem: y t (1 1 L ) u t y t (1 1 L) 1 u t y t (1 1 L 1 L2 ...)u t 2 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 20 Solution (cont’d) So long as 1 1 , this will converge. 2 yt ut 1ut 1 1 ut 2 ... Var(yt) = E[yt-E(yt)][yt-E(yt)] but E(yt) = 0, since we are setting = 0. Var(yt) = E[(yt)(yt)] = E[ ut 1ut 1 12ut 2 .. ut 1ut 1 12ut 2 .. ] = E[(ut 2 12ut 12 14ut 22 ... cross products)] 2 2 2 4 2 = E[(ut 1 ut 1 1 ut 2 ...)] = u2 12 u2 14 u2 ... 2 2 4 = u (1 1 1 ...) 2 u = (1 12 ) ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 21 Solution (cont’d) (iii) Turning now to calculating the acf, first calculate the autocovariances: 1 = Cov(yt, yt-1) = E[yt-E(yt)][yt-1-E(yt-1)] Since a0 has been set to zero, E(yt) = 0 and E(yt-1) = 0, so 1 = E[ytyt-1] 2 2 1 = E[(ut 1ut 1 1 ut 2 ...)(ut 1 1ut 2 1 ut 3 ...) ] 2 3 2 = E[ 1 ut 1 1 ut 2 ... cross products] 2 3 2 5 2 = 1 1 1 ... = 1 2 (1 12 ) ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 22 Solution (cont’d) For the second autocorrelation coefficient, 2 = Cov(yt, yt-2) = E[yt-E(yt)][yt-2-E(yt-2)] Using the same rules as applied above for the lag 1 covariance 2 = E[ytyt-2] 2 2 = E[(ut 1ut 1 1 ut 2 ...)(ut 2 1ut 3 1 ut 4 ...)] = E[ 1 2 ut 2 2 1 4 ut 3 2 ... cross products] = 12 2 14 2 ... 2 2 2 4 = 1 (1 1 1 ...) = 12 2 (1 12 ) ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 23 Solution (cont’d) • If these steps were repeated for 3, the following expression would be obtained 3 = 13 2 (1 12 ) and for any lag s, the autocovariance would be given by s = 1s 2 (1 12 ) The acf can now be obtained by dividing the covariances by the variance: ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 24 Solution (cont’d) 0 1 0 = 0 1 2 2 ( 1 1 ) 1 1 1 = 0 2 2 ( 1 1 ) 2 = 2 2 1 2 ( 1 1 ) 2 12 0 2 2 ( 1 1 ) 3 3 = 1 … s = 1s ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 25 A Função de Autocorrelação Parcial ( kk) • Mensura a correlação entre uma observação k periodos atras e a observação atual, após controlar as observações de defasagens intermediárias (i.e. all lags < k). • Portanto, kk mede a correlação entre yt and yt-k após eliminar os efeitos de ytk+1 , yt-k+2 , …, yt-1 . • No lag 1, a acf = pacf sempre • No lag 2, 22 = (2-12) / (1-12) • Para lags 3+, as formulas são mais complexas. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 26 A Função de Autocorrelação Parcial ( kk) (cont’d) • A pacf é util para dizer a diferença entre um processo AR e um processo ARMA . • No caso de um AR(p), há conexões diretas entre yt e yt-s somente para s p. • Então para um AR(p), a pacf teórica será zero após o lag p. • No caso de um MA(q), isto pode ser escrito como um AR(), daí haver conexões diretas entre yt e todos os seus valores anteriores. • Para um MA(q), o pacf teórico será geometricamente declinante. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 27 Processos ARMA • Combinando os modelos AR(p) e MA(q) , podemos obter um modelo ARMA(p,q) : ( L) yt ( L)ut where ( L) 1 1 L 2 L2 ... p Lp and (L) 11L 2 L2 ... q Lq or yt 1 yt 1 2 yt 2 ... p yt p 1ut 1 2ut 2 ... q ut q ut 2 2 with E(ut ) 0; E(ut ) ; E(ut us ) 0, t s ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 28 The Invertibility Condition • Similar to the stationarity condition, we typically require the MA(q) part of the model to have roots of (z)=0 greater than one in absolute value. • The mean of an ARMA series is given by E ( yt ) 1 1 2 ...p • The autocorrelation function for an ARMA process will display combinations of behaviour derived from the AR and MA parts, but for lags beyond q, the acf will simply be identical to the individual AR(p) model. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 29 Sumário do Comportamento da acf para os Processos AR e MA Um processo autoregressivo tem • Uma acf que cai geometricamente • Numero de spikes da pacf = ordem de AR Um processo de media movel tem • Numero de spikes da acf = ordem de MA • Uma pacf que cai geometricamente ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 30 Alguns gráficos de acf e pacf para processos padrão acf e a pacf não são produzidas analiticamente de formulas relevantes para um modelo daquele tipo, mas, ao invés, são estimadas usando 100,000 observações simuladas com disturbancias extraidas de uma distribuição normal. ACF and PACF for an MA(1) Model: yt = – 0.5ut-1 + ut A 0.05 0 1 2 3 4 5 6 7 8 9 10 -0.05 acf and pacf -0.1 -0.15 -0.2 -0.25 -0.3 acf -0.35 pacf -0.4 -0.45 Lag ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 31 ACF and PACF for an MA(2) Model: yt = 0.5ut-1 - 0.25ut-2 + ut 0.4 acf 0.3 pacf 0.2 acf and pacf 0.1 0 1 2 3 4 5 6 7 8 9 10 -0.1 -0.2 -0.3 -0.4 Lags ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 32 ACF e PACF para um Modelo AR(1), que caem lentamente: yt = 0.9yt-1 + ut 1 0.9 acf pacf 0.8 0.7 acf and pacf 0.6 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 -0.1 Lags ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 33 ACF e PACF para um Modelo AR(1) que cai mais rapidamente AR(1) Model: yt = 0.5yt-1 + ut 0.6 0.5 acf pacf acf and pacf 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 -0.1 Lags ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 34 ACF e PACF para um Modelo AR(1), que cai mais rapidamente, com Coeficiente Negativo: yt = -0.5yt-1 + ut 0.3 0.2 0.1 acf and pacf 0 1 2 3 4 5 6 7 8 9 10 -0.1 -0.2 -0.3 -0.4 acf pacf -0.5 -0.6 Lags ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 35 ACF e PACF para um Modelo Não-estacionario (i.e. a unit coefficient): yt = yt-1 + ut 1 0.9 acf pacf 0.8 acf and pacf 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 6 5 7 8 9 10 Lags ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 36 ACF e PACF para um ARMA(1,1): yt = 0.5yt-1 + 0.5ut-1 + ut 0.8 0.6 acf pacf acf and pacf 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 -0.2 -0.4 Lags ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 37 A Construção de Modelos ARMA - A Abordagem de Box Jenkins • Box e Jenkins (1970) foram os primeiros a abordarem a tarefa de estimar um modelo ARMA de uma maneira sistematica. Há 3 etapas na sua abordagem: 1. Identificação 2. Estimação 3. Diagnóstico do Modelo Etapa 1: - Envolve a determinação da ordem do modelo. - Uso de procedimentos de graficos - Um procedimento melhor está disponivel agora ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 38 A Construção de Modelos ARMA - A Abordagem de Box Jenkins Etapa 2: - Estimação dos parametros - Pode ser feito usando MQO ou MV a depender do modelo.. Etapa 3: - Checagem do Modelo Box and Jenkins sugerem 2 metodos: - deliberado sobreajustamento - diagnostico - diagnostico dos resíduos ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 39 Alguns Desenvolvimentos Mais Recentes na Modelagem de ARMA • A identificação não seria tipicamente feita usando acf”s. • Queremos formar um modelo parcimonioso. • Razões: - a variancia dos estimadores é inversamente proporcional ao numero de graus de liberdade freedom. - modelos que são profligate podem ser inclinados a dados de carateristicas especificas • Isto motiva o uso de criterios de informação, que contém 2 fatores - um termo que é uma função de RSS - alguma penalidade por acréscimo de parâmetros extra • O objetivo é escolher o numero de parametros que minimiza o criterio de informação. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 40 Critérios de Informação para Escolha de Modelo • Os criterios de informação variam de acordo com o termo da penalidade. • Os três critérios mais populares são o critério de informação de Akaike (1974) (AIC), o critério Bayesiano de informação de Schwarz (1978) (SBIC), e o critério de Hannan-Quinn (HQIC). AIC ln( 2 ) 2k / T k SBIC ln(ˆ 2 ) ln T T 2k HQIC ln(ˆ 2 ) ln(ln(T )) T where k = p + q + 1, T = sample size. So we min. IC s.t. p p, q q SBIC incorpora uma penalidade maior que AIC. • Que C I deve ser preferido se eles sugerem ordens diferentes de modelo? – SBIC é fortemente consistente mas (ineficiente). – AIC não é consistente, e pegará tipicamente modelos maiores ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 41 Modelos ARIMA • Diferentes dos modelos ARMA. O I significa integrado. • Um processo autoregressivo integrado é um com uma raiz caracteristica no circulo unitário. • Os pesquisadores diferenciam a variavel como necessaria e então constroem um modelo ARMA com aquelas variaveis diferenciadas. • Um modelo ARMA(p,q) na variavel diferenciada d vezes é equivalente a um modelo ARIMA(p,d,q) nos dados originais. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 42 Exponential Smoothing • Another modelling and forecasting technique • How much weight do we attach to previous observations? • Expect recent observations to have the most power in helping to forecast future values of a series. • The equation for the model St = yt + (1-)St-1 where is the smoothing constant, with 01 yt is the current realised value St is the current smoothed value ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 (1) 43 Exponential Smoothing (cont’d) • Lagging (1) by one period we can write St-1 = yt-1 + (1-)St-2 • and lagging again St-2 = yt-2 + (1-)St-3 • Substituting into (1) for St-1 from (2) St = yt + (1-)( yt-1 + (1-)St-2) = yt + (1-) yt-1 + (1-)2 St-2 (2) (3) (4) • Substituting into (4) for St-2 from (3) St = yt + (1-) yt-1 + (1-)2 St-2 = yt + (1-) yt-1 + (1-)2( yt-2 + (1-)St-3) = yt + (1-) yt-1 + (1-)2 yt-2 + (1-)3 St-3 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 44 Exponential Smoothing (cont’d) • T successive substitutions of this kind would lead to T i T St 1 yt i 1 S0 i 0 since 0, the effect of each observation declines exponentially as we move another observation forward in time. • Forecasts are generated by ft+s = St for all steps into the future s = 1, 2, ... • This technique is called single (or simple) exponential smoothing. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 45 Exponential Smoothing (cont’d) • – – – – It doesn’t work well for financial data because there is little structure to smooth it cannot allow for seasonality it is an ARIMA(0,1,1) with MA coefficient (1-) - (See Granger & Newbold, p174) forecasts do not converge on long term mean as s • Can modify single exponential smoothing – to allow for trends (Holt’s method) – or to allow for seasonality (Winter’s method). • Advantages of Exponential Smoothing – Very simple to use – Easy to update the model if a new realisation becomes available. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 46 Previsão em Econometria • Forecasting = prediction. • Um teste importante da adequacão de um modelo. e.g. - Prever o retorno de uma determinada ação amanhã - Prever o preço de uma casa dadas as suas caracteristicas - Prever o risco de um portfolio ao longo do próximo ano - Prever a volatilidade de retornos de bonds • Podemos distinguir duas abordagens: - Previsão econometrica (estructural) - Previsão de series temporais • The distinction between the two types is somewhat blurred (e.g, VARs). ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 47 In-Sample Versus Out-of-Sample • Expect the “forecast” of the model to be good in-sample. • Say we have some data - e.g. monthly FTSE returns for 120 months: 1990M1 – 1999M12. We could use all of it to build the model, or keep some observations back: • A good test of the model since we have not used the information from 1999M1 onwards when we estimated the model parameters. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 48 How to produce forecasts • Multi-step ahead versus single-step ahead forecasts • Recursive versus rolling windows • To understand how to construct forecasts, we need the idea of conditional expectations: E(yt+1 t ) • We cannot forecast a white noise process: E(ut+s t ) = 0 s > 0. • The two simplest forecasting “methods” 1. Assume no change : f(yt+s) = yt 2. Forecasts are the long term average f(yt+s) = y ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 49 Models for Forecasting • Structural models e.g. y = X + u yt 1 2 x2t k xkt ut To forecast y, we require the conditional expectation of its future value: Eyt t 1 E1 2 x2t k xkt ut = 1 2 Ex2t k Exkt But what are ( x2t ) etc.? We could use x 2 , so E yt 1 2 x2 k xk = y !! ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 50 Models for Forecasting (cont’d) • Time Series Models The current value of a series, yt, is modelled as a function only of its previous values and the current value of an error term (and possibly previous values of the error term). • Models include: • simple unweighted averages • exponentially weighted averages • ARIMA models • Non-linear models – e.g. threshold models, GARCH, bilinear models, etc. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 51 Forecasting with ARMA Models The forecasting model typically used is of the form: p q i 1 j 1 f t ,s i f t ,s i j ut s j where ft,s = yt+s , s 0; ut+s = 0, s > 0 = ut+s , s 0 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 52 Forecasting with MA Models • An MA(q) only has memory of q. e.g. say we have estimated an MA(3) model: yt = + 1ut-1 + 2ut-2 + 3ut-3 + ut yt+1 = + 1ut + 2ut-1 + 3ut-2 + ut+1 yt+2 = + 1ut+1 + 2ut + 3ut-1 + ut+2 yt+3 = + 1ut+2 + 2ut+1 + 3ut + ut+3 • We are at time t and we want to forecast 1,2,..., s steps ahead. • We know yt , yt-1, ..., and ut , ut-1 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 53 Forecasting with MA Models (cont’d) ft, 1 = E(yt+1 t ) = = E( + 1ut + 2ut-1 + 3ut-2 + ut+1) + 1ut + 2ut-1 + 3ut-2 ft, 2 = E(yt+2 t ) = = E( + 1ut+1 + 2ut + 3ut-1 + ut+2) + 2ut + 3ut-1 ft, 3 = E(yt+3 t ) = = E( + 1ut+2 + 2ut+1 + 3ut + ut+3) + 3ut ft, 4 = E(yt+4 t ) = ft, s = E(yt+s t ) = s4 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 54 Forecasting with AR Models • Say we have estimated an AR(2) yt = + 1yt-1 + 2yt-2 + ut yt+1 = + 1yt + 2yt-1 + ut+1 yt+2 = + 1yt+1 + 2yt + ut+2 yt+3 = + 1yt+2 + 2yt+1 + ut+3 ft, 1 = E(yt+1 t ) = E( + 1yt + 2yt-1 + ut+1) = + 1E(yt) + 2E(yt-1) = + 1yt + 2yt-1 ft, 2 = E(yt+2 t ) = E( + 1yt+1 + 2yt + ut+2) = + 1E(yt+1) + 2E(yt) = + 1 ft, 1 + 2yt ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 55 Forecasting with AR Models (cont’d) ft, 3 = E(yt+3 t ) = E( + 1yt+2 + 2yt+1 + ut+3) = + 1E(yt+2) + 2E(yt+1) = + 1 ft, 2 + 2 ft, 1 • We can see immediately that ft, 4 = + 1 ft, 3 + 2 ft, 2 etc., so ft, s = + 1 ft, s-1 + 2 ft, s-2 • Can easily generate ARMA(p,q) forecasts in the same way. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 56 How can we test whether a forecast is accurate or not? •For example, say we predict that tomorrow’s return on the FTSE will be 0.2, but the outcome is actually -0.4. Is this accurate? Define ft,s as the forecast made at time t for s steps ahead (i.e. the forecast made for time t+s), and yt+s as the realised value of y at time t+s. • Some of the most popular criteria for assessing the accuracy of time series forecasting techniques are: 1 MSE N 1 MAE is given by MAE N N t 1 N t 1 ( yt s f t , s ) 2 yt s f t , s 1 N yt s ft ,s Mean absolute percentage error: MAPE 100 N t 1 yt s ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 57 How can we test whether a forecast is accurate or not? (cont’d) • It has, however, also recently been shown (Gerlow et al., 1993) that the accuracy of forecasts according to traditional statistical criteria are not related to trading profitability. • A measure more closely correlated with profitability: 1 N zt s % correct sign predictions = N t 1 where zt+s = 1 if (xt+s . ft,s ) > 0 zt+s = 0 otherwise ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 58 Forecast Evaluation Example • Given the following forecast and actual values, calculate the MSE, MAE and percentage of correct sign predictions: Steps Ahead 1 2 3 4 5 Forecast 0.20 0.15 0.10 0.06 0.04 Actual -0.40 0.20 0.10 -0.10 -0.05 • MSE = 0.079, MAE = 0.180, % of correct sign predictions = 40 ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 59 What factors are likely to lead to a good forecasting model? • “signal” versus “noise” • “data mining” issues • simple versus complex models • financial or economic theory ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 60 Statistical Versus Economic or Financial loss functions • Statistical evaluation metrics may not be appropriate. • How well does the forecast perform in doing the job we wanted it for? Limits of forecasting: What can and cannot be forecast? • All statistical forecasting models are essentially extrapolative • Forecasting models are prone to break down around turning points • Series subject to structural changes or regime shifts cannot be forecast • Predictive accuracy usually declines with forecasting horizon • Forecasting is not a substitute for judgement ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 61 Back to the original question: why forecast? • Why not use “experts” to make judgemental forecasts? • Judgemental forecasts bring a different set of problems: e.g., psychologists have found that expert judgements are prone to the following biases: – over-confidence – inconsistency – recency – anchoring – illusory patterns – “group-think”. • The Usually Optimal Approach To use a statistical forecasting model built on solid theoretical foundations supplemented by expert judgements and interpretation. ‘Introductory Econometrics for Finance’ © Chris Brooks 2002 62