RENORBIO Programa de Pós-Graduação em Biotecnologia Desenvolvimento de Nanosistemas Farmacêuticos para Terapia Gênica Lourna Mafra Verissimo Natal – RN 2011 i RENORBIO Programa de Pós-Graduação em Biotecnologia Desenvolvimento de Nanosistemas Farmacêuticos para Terapia Gênica Tese de Doutorado apresentada ao Programa de PósGraduação em Biotecnologia - PPG-B, Área de concentração: Biotecnologia em Saúde Lourena Mafra Verissimo Orientador: Eryvaldo Sócrates Tabosa do Egito Co-Orientadora: Lucymara Fassarela Agnez Lima ii LOURENA MAFRA VERISSIMO Desenvolvimento de Nanosistemas Farmacêuticos para Terapia Gênica Defesa de Tese apresentada a Rede Nordeste de Biotecnologia (RENORBIO) para obtenção do título de Doutor em Biotecnologia. Área de Concentração: Biotecnologia em Saúde Aprovada em 14 de março de 2011 por: Presidente: Prof. Dr. Eryvaldo Sócrates Tabosa do Egito Rede Nordeste de Biotecnologia (RENORBIO)/ UFRN _____________________________________ Vice-presidente: Prof a. Dr.a Lucymara Fassarela Agnez Lima Rede Nordeste de Biotecnologia (RENORBIO)/ UFRN ____________________________________ 1 Examinador: Prof. Dr. Elias Fattal Université Paris Sud XI ____________________________________ 2 Examinador: Prof. Dr. Helder Teixeira Universidade Federal do Rio Grande do Sul ____________________________________ 3 Examinador: Prof. Dr. Matheus Freitas Universidade Federal do Rio Grande do Norte ____________________________________ 4 Examinador: Profa. Dra. Selma Maria Bezerra Jeronimo Rede Nordeste de Biotecnologia (RENORBIO)/ UFRN ____________________________________ iii SUMÁRIO 1.0 INTRODUÇÃO.......................................................................................................... 2 2.0 REVISÃO DA LITERA TURA .................................................................................5 2.1 Terapia Gênica ..................................................................................................5 2.2 Vetores não virais ..............................................................................................7 2.2.1 Lipossomas....................................................................................................12 2.2.2 Nanoemulsões ............................................................................................. 15 3.0 REFERÊNCIAS BIBLIOGRÁFICAS.....................................................................22 4.0 ARTIGOS DERIVADOS DA TESE....................................................................... 30 4.1 PHARMACEUTICAL EMULSIONS: A NEW APPROACH FOR GENE THERAPY ..................................................................................................................... 32 ABSTRACT.......................................................................................................... 33 INTRODUCTION..................................................................................................34 GENE DELIVERY SYSTEMS ........................................................................... 36 Viral vectors .........................................................................................................36 Nonviral vectors.................................................................................................... 37 The drawbacks of liposomes ................................................................................ 39 The use of pharmaceutical emulsions, nanoemulsions, and microemulsions .......41 CONCLUDING REMARKS .............................................................................. 45 REFERENCES................................................................................................................47 FIGURE 1.Cationic emulsion system acting as a carrier for DNA. ....................... 55 TABLESLIST .................................................................................................................56 TABLE 1.Some advantages and disadvantages of currently used vectors. ................…56 4.2 CATIONIC NANOEMULSIONS AS A POSSIBLE STRATEGY FOR GENE DELIVERY IN THE TREATMENT OF XERODERMA PIGMENTOSUM: PRELIMINARY STUDIES............................................................................................58 ABSTRACT ..........................................................................................................59 INTRODUCTION .................................................................................................60 MATERIALS AND METHODS ..........................................................................61 RESULTS AND DISCUSSION........................................................................... 63 CONCLUDING REMARKS ............................................................................... 67 REFERENCES ......................................................................................................68 TABLES LIST ......................................................................................................71 TABLE 1: Emulsions composition: Basic emulsion (BE), DOTAP containing iv emulsion (ED) and Stearylamine containing emulsion (ES). .........................................71 TABLE 2: Characterization of Basic Emulsion (BE), DOTAP Emulsion (ED) and Stearylamine Emulsion (ES)...........................................................................................71 TABLE 3: Characterization of Stearylamine Emulsions incorporated in Aqueous Phase (AP) or Oily (Phase).............................................................................................71 FIGURES LIST .....................................................................................................72 FIGURE 1.TEM micrographs of cationic nanoemulsions (A) DOTAP emulsion and (B) SA emulsion.......................................................................................................72 FIGURE 2: Micro-emultocrit results showing creaming rate of nanoemulsions and lipoplexes. .......................................................................................................................73 FIGURE 3: Agarose gel electrophoresis picture showing DNA compaction of ED (A) and ES (B) nanoemulsions. ......................................................................................73 FIGURE 4: Agarose gel electrophoresis picture showing DNA compaction........74 (A) ES AP Nanoemulsions - Lane 1 shows the positive control: plasmid [0.46 μg] and lane 10 shows the negative control: nanoemulsion. Lanes 2 to 9 show the follow ratios of EC/DNA (nmol/μg): 25.81; 51.62; 64.53; 77.43; 90.34; 103.24; 116.15 and 129.05. OC: Open circular form; SC: Supercoiled form.............................................................74 (B) ES OP (B) nanoemulsions - Agarose gel electrophoresis picture showing DNA compaction of ES OP. Lane 1 shows the positive control: plasmid [0,46μg] and lane 8 shows the negative control: nanoemulsion. Lanes 2 to 7 show the follow ratios of EC/DNA (nmol/μg): 64.53; 77.43; 90.34; 103.24; 116.15 and 129.05. OC: Open circular form; SC: Supercoiled form………….............................................................. 74 4.3 PHYSICOCHEMICAL AND IN VIVO EVALUATION OF LIPOSOMES RECOVERED BY HYALURONIC ACID FOR TARGETING CD44 RECEPTOR OF RETINAL CELLULES ................................................................................................. 76 INTRODUCTION................................................................................................. 77 MATERIALS AND METHODS.......................................................................... 78 RESULTS AND DISCUSSION........................................................................... 81 CONCLUSIONS................................................................................................... 83 REFERENCES...................................................................................................... 84 TABLE LEGENDS............................................................................................... 86 FIGURE LEGENDS............................................................................................. 87 5.0 CONSIDERAÇÕES FINAIS................................................................................... 91 6.0 ANEXO.................................................................................................................... 94 v 6.1 RESUMOS PUBLICADOS EM CONGRESSOS ......................................... 94 6.2 ARTIGO PUBLICADO NO JOURNAL OF DRUG TARGETING ............. 98 Keywords ............................................................................................................. 98 6.3 ARTIGO ACEITO NO THE AMERICAN JOURNAL OF PATHOLOGY …………………………………………………………….......………………...109 MICROGLIA/MACROPHAGES MIGRATE THROUGH RETINAL EPITHELIUM BARRIER BY A TRANSCELLULAR ROUTE: INVOLVEMENT IN DIABETIC RETINOPATHY - ROLE OF PKCΖ IN MICROGLIA/MACROPHAGES TRAFFICKING DURING DIABETIC RETINOPATHY IN GOTO KAKIZAKI RATS............................................................................................................................ 109 ABSTRACT........................................................................................................ 110 INTRODUCTION............................................................................................... 111 MATERIALS AND METHODS........................................................................ 112 Animals............................................................................................................... 112 Immunohistochemistry on cryostat ocular sections and on flat mounts of retina or RPE/ choroids............................................................................................................... 112 Western Blotting analyses................................................................................... 114 Intravitreal injection of PKCζ specific inhibitor (PKCζi).................................. 114 Intravitreal injection of rhodamine-liposome (Rh-Lip)...................................... 115 Quantification of activated microglia/macrophages in the neuroretina.............. 115 Quantification of microglia/macrophages infiltrating the eye............................ 116 Quantification and criteria to identify transcellular pores................................... 116 Semi-thin and ultra-thin sections......................................................................... 116 Statistics.............................................................................................................. 116 RESULTS............................................................................................................ 117 Subretinal accumulation of microglia/macrophages and alteration of RPE in diabetic rats after 12 months of hyperglycemia ........................................................... 117 Trans-epithelial pores are evidenced in RPE cells of diabetic rats..................... 117 The pores: a transcellular route for microglia/macrophages through the RPE... 118 Pores density in RPE from diabetic and non-diabetic rats.................................. 119 Intravitreal injection of the PKCζinhibitor in 12 months old diabetic rats deactivated microglia/ macrophages, blocked their migration and impaired pore formation….................................................................................................................. 119 DISCUSSION..................................................................................................... 120 vi ACKNOWLEDGMENTS................................................................................... 124 REFERENCES.................................................................................................... 125 FIGURE LEGENDS........................................................................................... 128 TABLE 1. Weight and blood glucose concentration in normoglycemic controls andhyperglycemic diabetic GK rats……..................................................................... 128 FIGURE 1. Microglia/macrophages accumulation in the subretinal space of 12 monthsold diabetic GK rats.......................................................................................... 128 FIGURE 2. ICAM-1, CAV-1 expression, actin recruitment and cell invaginationstrongly suggest the presence of a transcellular pore in diabetic RPE……………………………………....................................................................... 128 FIGURE 3. Involvement of PKCζin the pore formation.................................... 129 FIGURE 4. Transcellular migration of microglia/macrophages through RPE pores ………………………………………………………………………………………..129 FIGURE 5. Quantification of the number of pores in RPE cells and CAV-1, ICAM- 1,PKCζ expression in the time course of diabetes........................................... 130 FIGURE 6. Effects of PKCζinhibition on microglia/macrophages retinal infiltrationand on the pore density ............................................................................... 131 FIGURE 7. Effects of PKCζon microglia/macrophages activation ................ 131 vii LISTA DE ABREVIATURAS E SIGLAS ADA: Adenosine desaminase ADN: Áácido desoxiribonucléico AH: Ácido hialurônico ARVO: Association for Research in Vision and Ophthalmology CAV-1: caveolin-1 CI: Creaming Index COX2: Cyclo-oxygenase 2 CTAB: Cetyltrimethylammonium bromide DC-Chol: 3ß-[N-(N',N'-Dimetilaminoetano)-carbamoil]Colesterol DOGS: 1,2-Dioleil-sn-Glicerol-3-{[ácido imidoacético N- (5-Amino-1-Carboxipentil)] Succinato} DOPE: Dioleilfosfatidiletanolamina DOTAP: N-[1-(2,3-Dioleoiloxi)propil]-N,N,Ntrimetilamonio metilsulfato DOTMA: (2,3-bis(oleyl)oxipropyl-trimethylammonium chloride) DSPC: 1,2-diestearoil-sn-glicerol-3-fosfatidilcolina DSPEPEG: Fosfatidiletanolamina-N-monometoxi-[PEG] EA: Estearilamina ED: DOTAP containing emulsion ES AP: Aqueous phase stearylamine containing emulsion ES OP: Oily phase stearylamine containing emulsion ES: Stearylamine containing emulsion EtBr: Ethidium bromide GCL: Ganglion cell layer GK: Goto Kakizaki HA-DOPE: Ácido Hialurônico – DOPE INL: Inner retinal layers iNOS: Inducible nitric oxide synthase NAN: Nucleic acid containing nanoparticles NER: Nucleotide excision repair OCT: Optimal cutting-temperature OMS: Organização Mundial de Saúde ONL: Outer nuclear cell layer viii OPL: Outer plexiform layer OS: Outer segments of photoreceptors PC: Fosfatidilcolina PE: Fosfatidiletanlamina PEG: Polietilenoglicol PEI: poly(ethylenimine) PE-Rodamina: Rodaminafosfatidiletanolamine PI: Polidispersion Index PKCζ: Protein kinase Cζ PLL: poly(L-lysine) Rh-Lip: Rhodamine-liposomes RNA: Ribonucleic Acid RPE: Retinal pigment epithelium SA: Stearylamine containing emulsion SCID: Severe Combined Immunodeficiency Disease siRNA: RNA de interferência TEM: Transmission electron microscopy TNF-α: Tumor necrosis factor α VAA: Vírus adenoassociados XP: Xeroderma Pigmentosum ZO1: Zonula-occludens-1 ix AGRADECIMENTOS Agradeço a Deus, sempre presente na minha vida dando a força necessária para superar todos os obstáculos. Agradeço aos meus orientadores, Prof. Dr. Eryvaldo Sócrates Tabosa do Egito e Elias Fatal e as minhas co-orientadoras Profa. Dra. Lucymara Fassarela Agnez Lima e Profa. Dra. Amelie Bochot pela oportunidade, confiança, exemplo e, sobretudo pela amizade. Obrigada. Ao Laboratório de Sistemas Dispersos (LASID) e ao Laboratório de Biologia Molecular e Genômica (LBMG) da Universidade Federal do Rio Grande do Norte, onde foi desenvolvido este trabalho, especialmente aos alunos de iniciação científica André Leandro Silva e Francisco Alexandrino Júnior, pela importante colaboração durante o curso deste trabalho, e pela amizade. A Université Paris Sud XI, onde desenvolvi em estágio doutoral minha capacidade de adaptação a outros ambientes de trabalho e capacidade de aprendizado. As minhas companheiras de Bureau na Faculté de Pharmacie em Chatenay Malabry: Amelie, Simona, Odille e Marion, que de alguma forma contribuíram para a conclusão deste trabalho. Ao Laboratório de Cerâmicas e Materiais Especiais (Departamento de Física); ao Laboratório de Membranas e Colóides, ao Laboratório de Tecnologia de Tensoativos (Departamento de Química) e ao Laboratório Glicosaminoglicanos II (Departamento de Bioquímica), todos da Universidade Federal do Rio Grande do Norte, pela colaboração. Aos meus amigos do LASID e LBMG, por toda colaboração e amizade; e aos colegas e amigos de pós-graduação pelos vários momentos compartilhados, convívio e amizade. À Jussier Lourenço e aos meus amigos natalenses, pela paciência, apoio e contribuição durante boa parte do período de desenvolvimento deste trabalho. À minha família da Maison du Brésil pelos momentos de descontração e de amizade desfrutados durante todo o ano de 2010, em especial a Vânia Oliveira, Eliana Kuster, Gladson Dalmonech, Alex Leite, Helena Stigger, Fernanda Bruxel, Ana Pernas, Isabela Gasparini, Estael Pereira, Paulo da Costa, Ramon e Fabiana Rached. Aos meus irmãos parisienses, Gyselle Holanda, Francelyne Reinauld, Carlille Campos e Amanda Andriola, pelos vários momentos de apoio e amizade e por estarem ao meu lado sempre que necessário. x À minha família, especialmente avós, irmãos e sobrinhos, pelo companheirismo e compreensão pelas minhas ausências em várias ocasiões. Aos meus pais, Maria das Graças e Francisco Veríssimo, pelo carinho, apoio e compreensão em todos os momentos. xi RESUMO A terapia gênica é um dos maiores desafios propostos pela pesquisa pós-genômica e se baseia na transferência de material genético a uma célula, tecido ou órgão com o intuito de curar ou melhorar o estado clínico do paciente. Em sua forma mais simples, a terapia gênica consiste na inserção de genes funcionais em células com genes defeituosos objetivando substituir, complementar ou inibir esses genes causadores de doenças. Para que o DNA exógeno seja expresso em uma população celular faz-se necessária a sua transferência até o local de ação. Assim, é necessário criar veículos, que transportem e protejam o DNA até que este chegue a uma população celular alvo. Os obstáculos encontrados com a utilização de vetores virais têm proporcionado o interesse no desenvolvimento de vetores não-virais, por serem fáceis de produzir, apresentarem estabilidade controlável e facilitarem a transfecção gênica. O objetivo deste trabalho foi avaliar dois diferentes vetores não virais, lipossomas e nanoemulsões catiônicos, e sua possível utilização na terapia gênica. Para isso, foram utilizados lipídeos catiônicos e co-tensoativos na produção dos dois sistemas. As nanoemulsões foram produzidas pelo método de sonicação e compostas por Captex® 355; Tween® 80; Spam® 80; lipídeo catiônico, Estearilamina (EA) ou N-[1-(2,3-Dioleoiloxi)propil]-N,N,Ntrimetilamonio metilsulfato (DOTAP); e água ultra-pura (Milli-Q®). Estes sistemas foram caracterizados quanto ao tamanho médio de gotícula, índice de polidispersão (PI) e potencial zeta. Avaliou-se ainda a estabilidade dos sistemas e suas capacidades de compactação do material genético. Os lipossomas foram preparados a partir do método de hidratação do filme e compostos por DOTAP, Dioleilfosfatidiletanolamina (DOPE), na presença ou ausência de Rodaminafosfatidiletanolamina (PE-Rodamina) e do conjugado Ácido Hialurônico – DOPE (HA-DOPE). Estes sistemas foram caracterizados da mesma forma que as nanoemulsões e também foram avaliados estabilidade, influência do tempo, tamanho de material genético e presença ou ausência de endotoxinas na formação dos lipoplexos. Os resultados obtidos permitem afirmar que os sistemas são promissores para posterior utilização na terapia gênica e que esta área promete ser uma área fértil de pesquisa científica e clínica por muitos anos, e provavelmente se tornará uma prática clínica importante neste século. No entanto, da possibilidade à prática existe um longo caminho a percorrer. Palavras chaves: Terapia gênica, vetores não-virais, lipídeos catiônicos, nanoemulsões, lipossomas. xii ABSTRACT Gene therapy is one of the major challenges of the post-genomic research and it is based on the transfer of genetic material into a cell, tissue or organ in order to cure or improve the patient’s clinical status. In general, gene therapy consists in the insertion of functional genes aiming substitute, complement or inhibit defective genes. The achievement of a foreigner DNA expression into a population of cells requires its transfer to the target. Therefore, a key issue is to create systems, vectors, able to transfer and protect the DNA until it reaches the target. The disadvantages related to the use of viral vectors have encouraged efforts to develop emulsions as non-viral vectors. In fact, they are easy to produce, present suitable stability and enable transfection. The aim of this work was to evaluate two different non-viral vectors, cationic liposomes and nanoemulsions, and the possibility of their use in gene therapy. For the two systems, cationic lipids and helper lipids were used. Nanoemulsions were prepared using sonication method and were composed of Captex® 355; Tween® 80; Spam® 80; cationic lipid, Stearylamine (SA) or 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) and water (Milli-Q®). These systems were characterized by average droplet size, Polidispersion Index (PI) and Zeta Potential. The stability of the systems; as well as the DNA compaction capacity; their cytotoxicity and the cytotoxicity of the isolated components; and their transfection capacity; were also evaluated. Liposomes were made by hydration film method and were composed of DOTAP; 1,2-dioleoyl-snglycero-3-phosphoethanolamine (DOPE), containing or not Rhodaminephosphatidylethanolamine (PE- Rhodamine) and the conjugate Hyaluronic Acid – DOPE (HA-DOPE). These systems were also characterized as nanoemulsions. Stability of the systems and the influence of time, size of plasmid and presence or absence of endotoxin in the formation of lipoplexes were also analyzed. Besides, the ophthalmic biodistribution of PE-Rhodamine containing liposomes was studied after intravitreal injection. The obtained results show that these systems are promising nonviral vector for further utilization in gene therapy and that this field seems to be very important in the clinical practice in this century. However, from the possibility to the practice, there is still a long way. Key words: Gene therapy, non-viral vectors, cationic lipids, nanoemulsions, liposomes. xiii ______________________________ Capítulo 1 Introdução ______________________________ INTRODUÇÃO 1.0 INTRODUÇÃO A terapia gênica baseia-se no tratamento de doenças pela transferência do material genético a uma célula, tecido ou órgão com o intuito de curar ou melhorar o estado clínico do paciente. Em sua forma mais simples, a terapia gênica consiste na inserção de genes funcionais em células com genes defeituosos objetivando substituir, complementar ou inibir esses genes causadores de doenças (Verma e Weitzman, 2005). Para que o ácido desoxiribonucléico (ADN) exógeno seja expresso em uma população celular faz-se necessária a sua transferência até o local de ação. Assim, é necessário criar veículos, que transportem e protejam o ADN até que este chegue a uma população celular alvo. O que ainda é um desafio para a ciência (Brown, Schatzlein et al., 2001). Os obstáculos encontrados com a utilização de vetores virais têm proporcionado o interesse no desenvolvimento de vetores não-virais, por serem fáceis de produzir em quantidade e reprodutibilidade aceitáveis, apresentando baixa imunogenicidade, estabilidade controlável e baixo custo (Davis, 2002). As duas principais formas de desenvolvimento de vetores não virais para terapia gênica consistem na associação de lipídeos catiônicos ou polímeros catiônicos aos ácidos nucléicos, formando respectivamente, lipoplexos ou poliplexos (Hengge, 2005). Apesar do grande número de pesquisas relacionadas ao desenvolvimento destes vetores, existem vários problemas associados a eles, sobretudo com relação à baixa eficiência de transfecção e a dificuldade de vetorização do gene à área específica da doença. Neste contexto, o presente trabalho tem como objetivo avaliar diferentes nanosistemas farmacêuticos como potenciais estratégias para utilização na terapia gênica. O primeiro sistema consistiu no desenvolvimento de nanoemulsões catiônicas contendo dois diferentes lipídeos catiônicos, Estearilamina (EA) ou o N-[1-(2,3Dioleoiloxi)propil]-N,N,Ntrimetilamonio metilsulfato (DOT AP). Os estudos preliminares destes sistemas consistiram na avaliação e comparação das suas propriedades físico-químicas como: granulometria, potencial zeta e PI; da habilidade de compactação do DNA dos sistemas, através da técnica de retardo da migração do DNA usando a eletroforese em gel de agarose; e do estudo de estabilidade, utilizando a técnica de microemultócrito. O segundo sistema estudado compreendeu o desenvolvimento de lipossomas recobertos de ácido hialurônico (AH) para vetorização às células da retina que expressam o receptor CD44 e sua utilização como carreadores de ácidos nucléicos. Os lipossomas apresentaram em sua composição: DOTAP, DOPE, 2 INTRODUÇÃO e poderiam conter ou não o lipídeo marcado PE-Rodamina e o conjugado HA-DOPE. Assim como para as nanoemulsões, as propriedades físico-químicas destes sistemas (granulometria, potencial zeta e IP) também foram analisadas. Além disso, a estabilidade dos sistemas e a influência do tempo, do tamanho do plasmídeo e a presença ou ausência de endotoxinas no plasmídeo utilizado, foi avaliada na formação dos complexos. A presente tese será apresentada na seguinte forma: Inicialmente será apresentada uma introdução, na qual será contextualizada a importância e os objetivos da tese. Em seguida, será feita uma revisão da literatura com sua respectiva referência bibliográfica, na qual serão apresentados os fundamentos teóricos para os capítulos seguintes. A metodologia bem como os resultados e as discussões desenvolvidas serão apresentados na forma de artigos que foram submetidos para periódicos. Destaca-se que os artigos são apresentados no formato que foram enviados para os periódicos. Finalmente, serão apresentadas as considerações finais sobre o trabalho. Em anexo, encontram-se todos os trabalhos derivados da tese, incluindo resumos apresentados na forma de pôster e apresentação oral, e ainda, os resumos expandidos publicados em edições suplementares de periódicos na área de interesse. 3 ______________________________ Capítulo 2 Revisão da Literatura ______________________________ REVISÃO DA LITERATURA 2.0 REVISÃO DA LITERATURA 2.1 Terapia Gênica A existência de doenças de origem genética e adquiridas, cujas terapias ainda são ineficientes nos dias atuais, abre espaço para a pesquisa e desenvolvimento de terapias alternativas que atuem na causa de origem da doença e não apenas nos seus sintomas, como a terapia gênica. A terapia gênica apresenta enorme potencial para o tratamento de doenças hereditárias e adquiridas e pode revolucionar o tratamento das doenças que têm um componente genético. As doenças monogênicas, também conhecidas como desordens mendelianas, são grandes candidatas à pesquisa na área de terapia gênica. Elas podem ser classificadas em autossômicas dominantes, autossômicas recessivas e doenças ligadas ao cromossomo X (Wong e Chiu, 2010). Analisadas separadamente, estas doenças são extremamente raras, porém, analisadas em conjunto, observa-se que os vários tipos de doenças monogênicas afetam substancialmente a população, em uma estimativa de 10 em cada 1000 nascimentos segundo a Organização Mundial de Saúde (OMS). Diversas outras doenças também têm sido objeto de estudo nesta área como: câncer, desordens genéticas, desordens imunológicas, desordens degenerativas e doenças infecciosas incluindo a SIDA (Síndrome da Imunodeficiência Adquirida) (Nienhuis, 2008). O princípio básico subjacente à terapia gênica consiste simplesmente na introdução de material genético no interior celular para que o produto da sua expressão possa curar ou retardar a progressão da doença. Para tal, é necessário fazer o gene chegar às células defeituosas, surgindo assim o conceito de transfecção, processo de entrega e expressão de material genético com sucesso (Verma e Weitzman, 2005). A função da administração do gene correto é a de compensar o gene defeituoso contido na célula para deste modo, se conseguir recuperar sua função normal, eliminando o foco da doença. Porém, ao longo do tempo tem-se verificado uma maior abrangência do conceito de terapia gênica. Hoje a terapia gênica pode incluir outros tipos de estratégias para o tratamento de doenças. O gene transfectado pode não estar necessariamente em falta, mas sua expressão pode ser insuficiente e a administração exógena do produto da sua expressão ser difícil. Esta forma de terapia gênica tem como objetivo a produção in vivo de proteínas potencialmente terapêuticas e é chamada terapia de aumento gênico. Tem-se ainda o direcionamento de genes que quando expressos podem causar a morte celular, muito estudado para a terapia gênica do câncer 5 REVISÃO DA LITERATURA (Romano, Mitcheli et al., 2000); a inibição dirigida por expressão gênica, para o tratamento de doenças onde existe um novo produto gênico ou expressão inapropriada de um gene, como no caso de câncer e doenças infecciosas (Strachan e Read, 2002); e o desenvolvimento de vacinas inovadoras promovendo imunização gênica (Felgner, 1998). É por esse motivo, que a terapia gênica apresenta-se bastante promissora como alternativa terapêutica para estas doenças, especialmente no que diz respeito aos carreadores não virais. Diferentes estratégias podem ser utilizadas no desenvolvimento da terapia gênica, podendo ser utilizada para substituir um gene defeituoso pelo gene correto; para inibir a expressão de um gene; ou ainda, para corrigir a expressão de um gene. Atualmente, pode-se dizer que a terapia gênica refere-se ao uso potencial dos ácidos nucléicos, incluindo ADN plasmidial, oligonucleotídeos antisenso ou RNA de interferência (siRNA), para modular a expressão gênica celular com propostas terapêuticas (Mountain, 2000; Wasungu e Hoekstra, 2006; Bhattacharya e Bajaj, 2009; Liu e Yu, 2010; Verissimo, Lima et al., 2010). Várias doenças incuráveis pelos métodos terapêuticos convencionais representam perspectivas futuras para a aplicação da terapia gênica. Contudo, ainda existem limitações com relação à eficiência e direcionamento dos vetores de transferência gênica da geração atual. Para que o ADN exógeno seja expresso em uma população celular faz-se necessário a sua transferência até o local, uma vez que, poucas células recebem e expressam ADN exógeno (Mountain, 2000). Assim é necessário criar veículos que transportem e protejam o ADN até que este chegue a uma população celular alvo. Ao longo do tempo foram surgindo vetores que se encaixam em duas famílias, os vetores virais e os carreadores não virais. Dentro de cada tipo de vetor encontra-se uma grande variedade de estratégias e existem vantagens e desvantagens para cada uma delas. Os requerimentos básicos para uma transfecção efetiva são: a habilidade de compactar o ADN; de protegê-lo contra degradação e entregá-lo com especificidade e eficiência à membrana celular; e finalmente, facilitar seu transporte através dela (Miguel, Pais et al., 2003; Verma e Weitzman, 2005). Os sistemas do tipo viral, devido à sua elevada eficiência de transferência, são os veículos de transporte e entrega de material genético mais utilizado tanto em nível experimental (in vivo e in vitro) quanto em termos de aplicação clínica. No entanto, questões de segurança relacionadas com a aplicação dos vetores virais, o fato destes vetores poderem assumir a 6 REVISÃO DA LITERATURA sua forma infecciosa e de poderem induzir resposta inflamatória e imunológica, além da dificuldade de obtenção e a capacidade de carrear ácidos nucléicos de tamanho limitado, têm promovido o desenvolvimento de sistemas do tipo não-viral como lipossomas, nanoemulsões e polímeros catiônicos (Brown, Schatzlein et al., 2001; Davis, 2002; Smyth Templeton, 2002; Verma e Weitzman, 2005; Tros De Ilarduya, Sun et al., 2010). 2.2 Vetores não-virais Os vetores não virais apresentam-se como alternativas potenciais a utilização dos vetores. Os vetores não virais são mais seguros que os virais; apresentam capacidade de carrear moléculas maiores; são aplicáveis a todos os tipos de células; e são mais fáceis de serem produzidos. No entanto, apesar de todo o desenvolvimento que têm sido alvo, este sistema também possui algumas limitações, como o nível de transfecção inferior aos obtidos pelos vetores virais, a falta de especificidade para a célula alvo e algumas características físico-químicas que dificultam a sua utilização in vivo (Brown, Schatzlein et al., 2001; Davis, 2002; Miguel, Pais et al., 2003; Verma e Weitzman, 2005; Tros De Ilarduya, Sun et al., 2010). Os carreadores catiônicos, lipoplexos e poliplexos, apresentam-se atualmente como a alternativa mais promissora em relação à utilização dos vetores virais (Abdallah, Sachs et al., 1995). As moléculas de ADN carregadas negativamente são normalmente condensadas e/ou complexadas com os reagentes catiônicos antes do seu transporte. O princípio utilizado é o mesmo para os polímeros e peptídeos catiônicos: os carreadores catiônicos interagem de uma forma eletrostática com os grupos fosfato do esqueleto do DNA carregados negativamente levando à formação do complexo (Miguel, Pais et al., 2003). A presença de surfactantes catiônicos nos lipossomas promove a formação de uma vesícula com superfície carregada positivamente, o que facilita as fortes interações entre vesículas e plasmídeos (Bhattacharya e Mandal, 1997). Desta interação resulta a condensação do DNA em estruturas mais compactas capazes de ultrapassar membranas biológicas e de proteger da degradação pelas DNAses, dependendo da razão entre a quantidade de lipídeo e a quantidade de DNA (Miguel, Pais et al., 2003; Barut, Coskun Ari et al., 2005). A utilização dos carreadores catiônicos na terapia gênica baseia-se na hipótese de que os complexos formados são adsorvidos de forma mais eficiente a membrana plasmática das células devido a interações eletrostáticas. O transporte nuclear do ADN ainda não está bem esclarecido (Tros De Ilarduya, Sun et al., 2010). As partículas se 7 REVISÃO DA LITERATURA ligam as superfícies celulares através de interações moleculares não específicas. Os complexos carregados positivamente e a carga da superfície celular negativa interagem eletrostaticamente, o que permite sua entrada nas células através dos mecanismos de endocitose ou “endocitosis-like” após uma ligação aos receptores celulares mediada por cargas (De Lima, Simoes et al., 2001; Lechardeur e Lukacs, 2002). Inicialmente, acreditava-se que a fusão entre as membranas lipossomais e celulares era a primeira etapa na ligação que permitia que lipossomas catiônicos e aniônicos ultrapassassem a membrana para o interior celular. Tradicionalmente, após internalização do complexo policátion/ADN por endocitose, grande parte é vetorizado ao compartimento lisossomal. A liberação citosólica do ADN heterólogo é pré-requisito para a translocação nuclear e por isso, o aprisionamento e degradação do ADN plasmidial nos endolisossomos constituem um grande impedimento para uma eficiente transferência gênica. Apenas uma pequena fração do ADN plasmidial consegue penetrar no citoplasma. O ADN plasmidial encontra então, barreiras metabólicas e difusionais do citoplasma, o que resulta ainda em uma diminuição de moléculas de plasmídeo intactas que conseguem atingir o complexo do poro nuclear. A liberação do ADN no interior citoplasmático geralmente é atribuída à habilidade dos lipídeos catiônicos em desestabilizar a membrana do endossomo. Neste caso, a natureza da membrana do lipoplexo é essencial, pois permite a troca de lipídeos entre a membrana do endossomo e o lipoplexo, resultando em perturbações da membrana que são pré-requisitos para o escape do ADN. A translocação nuclear do ADN acontece ou devido à desmontagem do envelope nuclear, ou por transporte ativo nuclear via o complexo do poro nuclear (Tros De Ilarduya, Sun et al., 2010). Uma das razões para a baixa eficiência de transfecção dos lipídeos catiônicos tem sido relacionada à insuficiente proteção do ADN contra as nucleases intracelulares. A comparação entre vetores virais e o transporte celular de plasmídeos deve revelar as estratégias utilizadas pelos vírus para solucionar estes problemas de barreiras que impedem o transporte do ADN através de sistemas não virais para terapia gênica. Dados recentes sugerem que tanto a restrita mobilidade, quanto a instabilidade metabólica do ADN plasmidial relacionadas à barreira nuclear, contribuem para a eficiência de transfecção limitada destes sistemas (Wattiaux, Laurent et al., 2000; Brown, Schatzlein et al., 2001; Davis, 2002; Lechardeur e Lukacs, 2002; Lv, Zhang et al., 2006; Bhattacharya e Bajaj, 2009; Tros De Ilarduya, Sun et al., 2010). Porém, alguns estudos demonstram que a transcrição parece estar muito mais relacionada a esta 8 REVISÃO DA LITERATURA limitada eficiência que o próprio transporte do ADN na utilização dos vetores não virais (Wasungu e Hoekstra, 2006). Atingir o transporte celular eficiente depende de um grande número de fatores que incluem: a estrutura química dos reagentes catiônicos que poderão ser utilizados, a estrutura supramolecular dos lipoplexos e poliplexos, as interações com as membranas celulares, sua internalização e localização intracelular, a liberação do ADN pelos carreadores catiônicos e o papel dos lipídeos neutros (helper lipids) nos carreadores catiônicos (Tros De Ilarduya, Sun et al., 2010). A ligação de radicais específicos aos sistemas como polietilenoglicol (PEG), polietilinoimina (PEI), poli-L-lisina (PLL), tem sido utilizada com moderado sucesso superando alguns dos problemas relacionados às barreiras enfrentadas por estes sistemas; enquanto que a ligação a peptídeos nucleares tem sido uma estratégia utilizada para superar os problemas relacionados ao escape do endossomo e ao transporte nuclear (Brown, Schatzlein et al., 2001). Apesar de serem menos eficientes, especialmente se tratando de estudos in vivo, sabe-se que os lipoplexos e poliplexos são imunologicamente inertes e potencialmente mais seguros que os vetores virais. Por serem relativamente fáceis de produzir e poderem ser modificados quimicamente com o intuito de aperfeiçoar a transfecção, inúmeras pesquisas nessa área específica tem aumentado drasticamente nos últimos anos. Portanto, inúmeros dispositivos catiônicos têm sido sintetizados e modificações estruturais racionais têm sido desenvolvidas de maneira sistemática com o intuito de correlacionar estrutura e atividade de transfecção. Adicionalmente, o desempenho dos vetores não virais pode ser otimizado também através da sua vetorização a tipos celulares específicos e em um modelo de internalização celular distinto, considerando a possibilidade de que nem todo modelo é efetivamente igual em transportar o ADN ao citosol, importante passo para o evento de expressão gênica (Wasungu e Hoekstra, 2006). Os lipídeos catiônicos utilizados na terapia gênica são compostos basicamente de três domínios básicos: uma cabeça carregada positivamente (com um grupo amônio, por exemplo); uma cadeia hidrofóbica; e um braço espaçador que liga os dois domínios anteriores. Os domínios polares e hidrofóbicos parecem apresentar efeitos dramáticos tanto no que concerne a transfecção quanto aos níveis de toxicidade (Audouy e Hoekstra, 2001; Lv, Zhang et al., 2006; Wasungu e Hoekstra, 2006; Nam, Park et al., 2009). Existem dois tipos básicos de domínios hidrofóbicos: as cadeias alifáticas e os derivados baseados no colesterol. Normalmente, lipídeos catiônicos que apresentam 9 REVISÃO DA LITERATURA cadeias alifáticas simples são mais tóxicos e menos eficientes que os que apresentam cadeias duplas. De qualquer forma, existem casos em que os lipídeos com cadeia simples apresentam melhores resultados que os de dupla cadeia, tornando claro que não se pode abolir totalmente o uso dos lipídeos de cadeia simples na terapia gênica. Os efeitos de citotoxicidade estão associados a natureza catiônica dos vetores, que são determinados principalmente pela estrutura do grupo hidrofílico. A cabeça polar consiste de sais de amônio primários, secundários, terciários ou quaternários, mas os grupos guanidino e imidazol também têm sido utilizados. A maioria das ligações nos lipídeos sintéticos são ligações éter, éster ou amida. Apesar dos compostos com ligação éter apresentarem melhor eficiência de transfecção, eles apresentam estabilidade exacerbada o que prejudica sua biodegradação, causando assim, toxicidade (Audouy e Hoekstra, 2001; Lv, Zhang et al., 2006). A Figura 1 mostra a estrutura dos dois lipídeos catiônicos utilizados no desenvolvimento deste trabalho, EA e DOTAP. (A) (B) Figura 1. Estrutura química dos lipídeos catiônicos EA (A) e DOTAP (B). Para incrementar a transfecção, os lipídeos catiônicos são muitas vezes acrescidos dos lipídeos neutros, como DOPE, com potencial de promover a conversão dos lipoplexos de fase lamelar em estruturas não lamelares, e colesterol (Figura 2), o que provavelmente racionaliza sua habilidade de geralmente aumentar o poder de transfecção destes sistemas (Wasungu e Hoekstra, 2006). Enquanto os lipídeos que facilitam a transformação dos lipoplexos no tipo de fase não bicamada apresentam alta taxa de transfecção in vitro; lipídeos como o colesterol, que confere maior estabilidade 10 REVISÃO DA LITERATURA sérica dos sistemas, são mais adequados para o transporte de genes in vivo (Tros De Ilarduya, Sun et al., 2010). (A) (B) O maior problema do uso de lipídeos catiônicos como carreadores gênicos é sua inadequada compatibilidade com o soro e outros fluidos biológicos o que os torna impróprios para estudos in vivo. A toxicidade dos sistemas e a reduzida eficiência de transfecção decorrente da instabilidade dos complexos formados com os ácidos nucléicos em presença de proteínas, também têm sido relatadas (Filion e Phillips, 1998; Yi, Yune et al., 2000; Choi, Kim et al., 2004). Adicionalmente, a expressão dos genes exógenos, provindos da vetorização não-viral, tende a ser passageira, e geralmente, as doenças cuja terapia gênica poderá ser indicada, requer alto nível de expressão do transgene (Mountain, 2000; Hung, Hwang et al., 2005; Verma e Weitzman, 2005). Para solucionar este problema, grupos funcionais como PEG têm sido ligados aos fosfolipídeos para tornar o sistema furtivo. A presença destes grupos funcionais pode impedir interações excessivas entre os lipoplexos, impedindo assim, a formação de agregados. Como resultado, o tamanho médio das partículas de lipoplexos resultantes será menor e pode ser processado pelas células diferentemente dos grandes complexos. O tamanho e a carga dos vetores não virais são parâmetros importantes, mas seu papel específico ainda permanece incerto. Geralmente, partículas maiores apresentam taxa de transfecção mais elevada que as menores, devido provavelmente ao aumento da 11 REVISÃO DA LITERATURA sedimentação dos sistemas sobre as células. No entanto, o PEG também promove a formação de uma barreira estável que inibe fortemente a liberação dos ácidos nucléicos dos endossomos (Wasungu e Hoekstra, 2006). Carreadores coloidais incluindo lipossomas, nanopartículas lipídicas sólidas, nanoemulsões e nanopartículas poliméricas são plataformas atrativas para a terapia gênica (Liu e Yu, 2010). Dentre estes vetores não virais, lipossomas e nanoemulsões têm particularmente, excelente potencial para aplicações no transporte de genes. 2.2.1 Lipossomas O uso de lipossomas na terapia gênica é bastante promissor devido principalmente a sua não imunogenicidade e alta segurança e apresenta uma série de vantagens em relação aos vetores virais. A maior delas é a ausência de imunogenicidade após administração in vivo, particularmente após administração sistêmica. Por este motivo, os complexos lipossomas/ ácidos nucléicos podem ser re-administrados sem danos ao paciente e sem comprometer a eficácia da terapia gênica não viral (Smyth Templeton, 2002; Kwon, Nam et al., 2008; Bhattacharya e Bajaj, 2009). Os lipossomas utilizados nos estudos de terapia gênica apresentam tipicamente ao menos dois componentes: um lipídeo catiônico e um lipídeo neutro. Eles oferecem a interface carregada positivamente que permite a efetiva complexação com os ácidos nucléicos via interações eletrostáticas resultando em nanosistemas que oferecem biocompatibilidade, baixa toxicidade e a possibilidade de produção em larga escala, o que é necessário para aplicações clínicas in vivo. Ao mesmo tempo, devido à natureza dos lipoplexos, eles interagem com as cargas negativas das superfícies celulares favorecendo e permitindo o transporte do ADN ao interior celular. Os lipossomas catiônicos também protegem o ADN contra o ataque de enzimas como as DNAses (Smyth Templeton, 2002; Kwon, Nam et al., 2008; Bhattacharya e Bajaj, 2009; Tros De Ilarduya, Sun et al., 2010). Apesar de alguns ensaios clínicos estarem em andamento, as aplicações clínicas dos lipossomas têm sido limitadas devido a sua instabilidade in vivo. Estudos demonstram que eles formam grandes agregados com componentes sanguíneos, apresentando sensibilidade sérica, induzindo certa instabilidade, e que estes agregados ficam presos no leito dos capilares pulmonares. Os estudos realizados com os lipossomas catiônicos, bem como com os complexos lipossomas catiônicos/ADN, têm sido direcionados no sentido de superar essas limitações e logo aumentar o potencial 12 REVISÃO DA LITERATURA terapêutico desses sistemas. Alguns desses estudos passam pela alteração da composição lipídica dos lipossomas (Bhattacharya e Mandal, 1997; De Lima, Simoes et al., 2001); pelo desenvolvimento de novas formulações farmacêuticas (Hara, Liu et al., 1997; Hung, Hwang et al., 2005); pela incorporação de radicais nos complexos, de forma a aumentar sua especificidade celular e pela incorporação de peptídeos fusogênicos (Kim, Chung et al., 2001); pela adição de polímeros catiônicos, que aumentem a taxa de transfecção (Feng, Ruan et al., 2004; Lee, Chun et al., 2005; Lee, Zhang et al., 2007); e pela incorporação de polímeros hidrofílicos como o PEG, de modo a aumentar o tempo de circulação dos complexos na corrente sanguínea devido a um aumento da sua estabilidade física (Hong, Zheng et al., 1997; Teixeira, Rosilio et al., 2001; Choi, Mackay et al., 2003; Palmer, Chen et al., 2003; Salvati, Ciani et al., 2006; Bombelli, Faggioli et al., 2007; Buyens, Demeester et al., 2009; Hobel e Aigner, 2009). Os complexos lipossomas catiônicos/ADN podem ser administrados por diversas vias in vivo. Estas vias incluem injeção direta (por exemplo: intra-tumoral), intravenosa, intraperitoneal, intra-arterial, intra-esplênica, mucosa (nasal, vaginal, retal), intramuscular, subcutânea, trans-dérmica, intra-dérmica, sub-retiniana, intravitreal, intra-traqueal, intra-cranial e outras (Smyth Templeton, 2002; Kwon, Nam et al., 2008; Bhattacharya e Bajaj, 2009). Os fosfolipídios mais amplamente encontrados nas membranas biológicas são a fosfatidilcolina (PC) ou fosfatidiletanlamina (PE). A cabeça dos fosfolipídios naturais torna-os uma opção para diminuir a toxicidade dos lipídeos catiônicos (Bhattacharya e Bajaj, 2009). Em particular, o DOPE forma estruturas do tipo fase hexagonal invertida HII (não-bicamada) em pH neutro e temperatura fisiológica. No entanto, quando combinados aos lipídeos catiônicos eles podem participar da formação de bicamadas. Os lipossomas catiônicos contendo colesterol parecem apresentar-se estruturalmente mais estáveis em meio fisiológico, permitindo assim que os lipoplexos atinjam seu tecido alvo intacto, protegendo assim o ADN contra degradação e eventualmente, facilitando a transfecção. Experimentos de calorimetria de titulação isotérmica indicam que a interação DOTAP: DOPE (1:1) e ADN é um processo de entropia. Deve-se observar que a interação entre os lipoplexos e os lipídeos das membranas celulares pode resultar em estruturas organizacionais diferentes da estrutura original. Logo, a transferência gênica mediada por lipoplexos não depende apenas da formulação do lipossoma catiônico e da sua estrutura original, mas também da interação destes com as 13 REVISÃO DA LITERATURA células e a estrutura resultante (Tros De Ilarduya, Sun et al., 2010) . Esses complexos são incorporados pelas células, por fusão ou endocitose, sendo a endocitose a sua principal forma de entrada, o que implica a subseqüente libertação do endossomo e tráfego do DNA até o núcleo (De Lima, Simoes et al., 2001; Simoes, Slepushkin et al., 2001). A liberação do DNA no citoplasma é geralmente atribuída à habilidade dos lipídeos catiônicos em desestabilizar a membrana do endossomo. Quando os ácidos nucléicos conseguem escapar do endossomo, eles o fazem em um estágio anterior a endocitose acontecer. Neste caso, a natureza da membrana do lipoplexo é crucial e permite uma troca de lipídeos entre a membrana do endossomo e o lipoplexo, resultando em perturbações na membrana que são pré-requisitos para o escape do ADN do lipossoma. Este mecanismo não está bem esclarecido, mas quando o DOPE participa da formulação de lipossomas catiônicos, a liberação dos ácidos nucléicos pode ser beneficiada pela tendência do DOPE em promover mudanças polimórficas significativas na fase lipídica sob condição fisiológica. O DOPE particularmente promove prontamente a formação de uma fase hexagonal invertida (a temperatura ambiente e pH fisiológico) a partir da fase lamelar de líquido cristalino na maioria das membranas. Por isso, o DOPE proporciona o rompimento do endossomo devido à fusão da membrana. Uma vez em seu interior, o pH dos compartimentos do endossomo caem de 7 para 5,5 e parte dos ácidos nucléicos ligados escapa dos endossomos precoces para o citosol. O transporte citoplasmático dos endossomos tem um papel importante em trazer o material transfectado para perto da região perinuclear. O material genético então pode ser liberado e conseqüentemente transcrito. Tem sido demonstrado que o transporte nuclear é uma barreira significante no transporte genético e até o momento, não se conhece o mecanismo de transporte através da membrana nuclear. No entanto, sabe-se que a importação de ácidos nucléicos de grande tamanho ao núcleo acontece devido a associação de ácidos nucléicos às proteínas requeridas para o transporte (Bhattacharya e Bajaj, 2009; Tros De Ilarduya, Sun et al., 2010). Em resumo, a eficiência dos ensaios in vivo dos complexos lipossomas catiônicos/ácido nucléico depende da sua morfologia, dos mecanismos de transporte da membrana celular e entrada no núcleo, da habilidade de vetorizá-los para a superfície de receptores específicos, e da sua habilidade de penetrar através das barreiras e tecidos específicos. Geralmente, os complexos lipossomas catiônicos/ácido nucléico que se mostram eficazes em modelos de doenças animais têm alta meia-vida na circulação sanguínea; são estáveis em contato com o soro; apresentam alta distribuição; 14 REVISÃO DA LITERATURA encapsulam de maneira eficiente tamanho variado de ácidos nucléicos; são vetorizados a tipos celulares específicos e órgãos alvos; penetram barreiras estreitas em vários órgãos e mesmo através do tecido alvo; podem ter a razão lipídeo: ácido nucléico otimizada em suspensões coloidais in vivo; podem ser fracionados para produzir uma população homogênea de complexos antes da injeção; e podem ser administrados repetidamente (Smyth Templeton, 2002). 2.2.2 Nanoemulsões Emulsões são dispersões termodinamicamente instáveis cujo tamanho de gotículas tende a aumentar com o tempo culminando com a separação se fases. As nanoemulsões apresentam uma série de vantagens em relação às emulsões ordinárias, incluindo: maior área de superfície e energia livre, evitando os fenômenos de instabilidade de cremagem, floculação, coalescência e separação de fases (Solans, Izquierdo et al., 2005; Constantinides, Chaubal et al., 2008; Gutierrez, Gonzalez et al., 2008; Liu e Yu, 2010). As nanoemulsões utilizadas como sistemas de liberação de ácidos nucléicos são geralmente compostas por um núcleo oleoso de origem vegetal ou semi-sintético estabilizado na sua superfície por uma mistura binária de fosfolipídios, surfactantes e lipídeos catiônicos (Yi, Yune et al., 2000; Liu e Yu, 2010). A seleção do núcleo oleoso é geralmente realizada com base na estabilidade das formulações e nas propriedades físico-químicas desejadas. Dentre os óleos de vegetais, o óleo de soja tem amplamente utilizado (Kim, Chung et al., 2000; Yi, Yune et al., 2000; Kim, Kim et al., 2003; Barut, Coskun Ari et al., 2005). O óleo de linhaça também tem sido objeto de estudo (Nam, Park et al., 2009). Atualmente, tem-se observado um interesse crescente no uso dos triglicerídeos sintéticos, especialmente os de cadeia média (TCM) no preparo de nanoemulsões (Teixeira, Dubernet et al., 1999; Teixeira, Dubernet et al., 2001; Teixeira, Rosilio et al., 2001; Bivas-Benita, Oudshoorn et al., 2004; Martini, Fattal et al., 2008). As emulsões utilizadas como sistemas de liberação de ácidos nucléicos caracterizam-se por apresentarem uma interface composta por um agente tensoativo carregado positivamente. Esses têm por objetivo principal a associação dos ácidos nucléicos com a estrutura coloidal (Teixeira, Dubernet et al., 1999; Teixeira, Dubernet et al., 2003; Tamilvanan, 2004). A adição do lipídeo catiônico confere carga positiva à superfície da gotícula, permitindo a associação dos ácidos nucléicos à interface das emulsões através da formação de um par iônico em meio aquoso. A proporção da fase 15 REVISÃO DA LITERATURA oleosa das emulsões catiônicas utilizadas como sistemas de liberação de ácidos nucléicos varia de 5 a 35 % da composição final das formulações (Liu, Yang et al., 1996; Hara, Liu et al., 1997; Yi, Yune et al., 2000; Chung, Kim et al., 2001; Liu e Yu, 2010). No caso dos polinucleotídeos de elevado peso molecular, como o DNA, a presença dos surfactantes catiônicos, também chamados lipídeos catiônicos, na interface tem a função de associar e compactar o ácido nucléico visando a um efetivo transporte intracelular (Eastman, Siegel et al., 1997; Liu e Yu, 2010). Os lipídeos utilizados na composição das emulsões podem ser monocatiônicos ou policatiônicos (Zhang, Xu et al., 2004). Os lipídeos monocatiônicos podem apresentar funções amina primárias (EA), secundárias, como o 1,2-Dioleil-sn-Glicerol- 3-{[ácido imidoacético N- (5-Amino-1-Carboxipentil)] Succinato} (DOGS), terciárias 3ß-[N(N',N'-Dimetilaminoetano)-carbamoil] Colesterol (DC-Chol) ou ainda quaternárias (DOTAP). O grupamento amina é responsável pelas interações eletrostáticas que ocorrem entre os lipídeos catiônicos e os grupamentos fosfato, carregados negativamente, dos ácidos nucléicos. A utilização de lipídeos policatiônicos tem sido menos freqüentemente descrita na obtenção de emulsões, em comparação aos lipídeos monocatiônicos. Contudo, a maior densidade de cargas das membranas dos complexos devido à utilização dos novos lipídeos multivalentes, tem promovido um incremento na eficiência de transfecção em comparação com o DOTAP quando utilizados com uma pequena razão molar de lipídeos neutros. Isto é importante, pois minimiza os efeitos tóxicos conhecidos dos lipídeos catiônicos. Além dos lipídeos mono e polivalentes, lipídeos derivados da guanidina, imidazol, colesterol e peptídeos catiônicos também têm sido utilizados (Zhang, Xu et al., 2004). Além da utilização dos lipídeos catiônicos, as emulsões catiônicas utilizadas na terapia gênica geralmente são obtidas a partir de misturas binárias com fosfolipídios (Liu, Yang et al., 1996; Hara, Liu et al., 1997; Yi, Yune et al., 2000; Chung, Kim et al., 2001; Hung, Hwang et al., 2005). Os fosfolipídios apresentam um grupamento polar cuja carga depende do pH do meio além das cadeias hidrocarbonadas que podem ser saturadas (1,2-diestearoil-sn-glicerol-3-fosfatidilcolina - DSPC) ou insaturadas (DOPE). Desta forma, a relação de cargas positivas (lipídeos catiônicos) e negativas (ácidos nucléicos) pode ser otimizada através da utilização destes lipídeos em combinação com os lipídeos catiônicos. Adicionalmente, a adição de fosfolipídios semi-sintéticos, como DOPE, é capaz de melhorar a atividade de transfecção in vitro e in vivo de emulsões catiônicas devido às propriedades fusogênicas deste fosfolipídio (Kim, Chung et al., 16 REVISÃO DA LITERATURA 2001). Os lipídeos catiônicos mais comumente utilizados na terapia gênica são o DCChol, a EA e o DOTAP. No entanto, novos lipídeos catiônicos formados por um núcleo aspartato ou glutamato, uma cabeça lisina e duas cadeiais alquil, têm demonstrado expressão gênica bastante eficiente e citotoxicidade inferior (Liu e Yu, 2010). O uso de lipídeos catiônicos derivados do colesterol também tem sido descrito na literatura de sistemas emulsionados, com destaque para o lipídeo catiônico DC-Chol, que apresenta no seu domínio hidrofóbico um grupamento colesteril, que serve como âncora hidrofóbica (Hara, Liu et al., 1997; Zhang, Xu et al., 2004). Para incrementar a estabilidade física das formulações e reduzir as interações de proteínas com as emulsões catiônicas, os fosfolipídios podem ser ligados covalentemente ao PEG, como o fosfatidiletanolamina-N-monometoxi-[PEG] (DSPEPEG), e usados em associação com outros fosfolipídeos na composição de emulsões como veículo de ADN (Kim, Chung et al., 2000; Yi, Yune et al., 2000; Chesnoy, Durand et al., 2001) e oligonucleotídeos (Teixeira, Dubernet et al., 2001; Teixeira, Rosilio et al., 2001). De fato, tem sido demonstrado que a presença de lipídeos conjugados ao PEG na interface de sistemas coloidais cria uma barreira estérica ao acesso de proteínas, prevenindo assim a agregação das nanoestruturas. Ainda objetivando incrementar a estabilidade destes sistemas, alguns autores descrevem o uso de tensoativos não-iônicos na preparação de emulsões contendo ADN (Liu, Yang et al., 1996; Choi, Mackay et al., 2003; Hung, Hwang et al., 2005); (Liu, Yang et al., 1996; Hara, Liu et al., 1997; Kim, Chung et al., 2001; Choi, Kim et al., 2004). Os efeitos da adição de tensoativos não-iônicos na distribuição granulométrica, atividade de transfecção e sensibilidade sérica dos complexos emulsão/ADN foram avaliados (Liu, Yang et al., 1996). As emulsões foram preparadas com óleo de castor, DC-Chol e quatro tipos diferentes de co-tensoativos: Tween®, Span 60®, Brij® e Pluronic®. Foi observado que a adição de tensoativos não-iônicos promove um incremento na transfecção celular em presença de soro e que esse incremento depende principalmente da cabeça polar do tensoativo. Os Tweens® apresentaram os melhores resultados devido à inibição da formação de agregados de DNA pela presença da cadeia ramificada de polioxietileno. Outro estudo também avaliou a influência de tensoativos não-iônicos em emulsões para terapia gênica (Kim, Chung et al., 2001). Neste caso, as emulsões foram preparadas utilizando lipídios catiônicos, diferentes tipos de tensoativos nãoiônicos e esqualeno. A eficiência de transfecção foi avaliada comparando-as com os lipossomas de composição idêntica na presença e ausência de soro. Foi observado que a 17 REVISÃO DA LITERATURA emulsão composta de DOTAP/DOPE/Tween 80® apresentou atividade de transfecção bem superior à obtida com os lipossomas correspondentes em ensaios de transfecção em presença de soro. Os tensoativos propostos nessas formulações são geralmente os ésteres de ácidos graxos do sorbitano, como a série de Tween® e Span®, que são aprovados em várias farmacopéias para uso parenteral. Aos tensoativos como o Tween 80®, têm sido atribuída a formação de uma barreira estérica na interface através de suas cadeias de caráter hidrofílico, impedindo assim a aproximação e agregação das emulsões com proteínas (Hara, Liu et al., 1997; Choi, Kim et al., 2004). Os avanços alcançados com o desenvolvimento de novas tecnologias na formulação de nanoemulsões catiônicas para terapia gênica têm permitido o controle das suas propriedades de superfície como hidrofobicidade e carga da estrutura química. Quando as emulsões apresentam a superfície carregada positivamente, elas podem interagir eletrostaticamente como genes terapêuticos devido à formação espontânea do complexo emulsão catiônica/ADN. Esses complexos nanométricos apresentam potencial terapêutico, pois a compactação do ADN pode protegê-lo contra a degradação enzimática que ocorre nos fluidos biológicos e facilitam a entrada celular do ADN com posterior transporte ao núcleo. Contudo, para que as nanoemulsões catiônicas sejam utilizadas como promissores carreadores gênicos é imprescindível desenvolver sistemas reprodutíveis, estáveis e de formulação bem definida. Dentre as várias abordagens, tem sido demonstrado que as nanoemulsões catiônicas apresentam alto potencial como vetores não virais para terapia gênica devido: (1) a sua biocompatibilidade já que a maioria dos seus constituintes são óleos não tóxicos e lipídeos anfifílicos; (2) a sua capacidade de formação de nanocomplexos com o ADN carregado negativamente, promovendo proteção do material genético contra a degradação enzimática dos fluidos biológicos; (3) a sua estabilidade na corrente sanguínea devido ao meno reconhecimento de sua superfície pelas células relacionadas à imunidade e proteínas séricas; e (4) a possibilidade de modificação da sua superfície lipídica (Nam, Park et al., 2009). 18 ______________________________ Referências Bibliográficas ______________________________ REFERÊNCIAS BIBLIOGRÁFICAS 3. REFERÊNCIAS BIBLIOGRÁFICAS Abdallah, B., L. Sachs, et al. Non-viral gene transfer: applications in developmental biology and gene therapy. Biology of the cell / under the auspices of the European Cell Biology Organization, v.85, n.1, p.1-7. 1995. Audouy, S. e D. Hoekstra. Cationic lipid-mediated transfection in vitro and in vivo. Molecular Membrane Biology, v.18, n.2, Apr-Jun, p.129-143. 2001. Barut, K. D., F. F. Coskun Ari, et al. Development and characterization of a cationic emulsion formulation as a potential pDNA carrier system. Turkish Journal of Chemistry, v.29, p.27-40. 2005. Bhattacharya, S. e A. Bajaj. Advances in gene delivery through molecular design of cationic lipids. Chemical Communications, n.31, Aug 21, p.4632-56. 2009. Bhattacharya, S. e S. S. Mandal. Interaction of surfactants with DNA. Role of hydrophobicity and surface charge on intercalation and DNA melting. Biochimica Et Biophysica Acta-Biomembranes, v.1323, n.1, Jan, p.29-44. 1997. Bivas-Benita, M., M. Oudshoorn, et al. Cationic submicron emulsions for pulmonary DNA immunization. Journal of Controlled Release, v.100, n.1, Nov 5, p.145-155. 2004. Bombelli, C., F. Faggioli, et al. PEGylated lipoplexes: Preparation Protocols affecting DNA condensation and cell Transfection efficiency. Journal of Medicinal Chemistry, v.50, p.6274-6278. 2007. Brown, M. D., A. G. Schatzlein, et al. Gene delivery with synthetic (non viral) carriers. International Journal of Pharmaceutics, v.229, n.1-2, Oct 23, p.1-21. 2001. Buyens, K., J. Demeester, et al. Elucidating the Encapsulation of Short Interfering RNA in PEGylated Cationic Liposomes. Langmuir, v.25, n.9, p.4886-4891. 2009. 22 REFERÊNCIAS BIBLIOGRÁFICAS Chesnoy, S., D. Durand, et al. Improved DNA/emulsion complex stabilized by poly(ethylene glycol) conjugated phospholipid. Pharmaceutical Research, v.18, n.10, Oct, p.1480-4. 2001. Choi, J. S., J. A. Mackay, et al. Low-pH-sensitive PEG-stabilized plasmid-lipid nanoparticles: Preparation and characterization. Bioconjugate Chemistry, v.14, n.2, Mar-Apr, p.420-429. 2003. Choi, W. J., J. K. Kim, et al. Low toxicity of cationic lipid-based emulsion for gene transfer. Biomaterials, v.25, n.27, Dec, p.5893-5903. 2004. Chung, H., T. W. Kim, et al. Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system. Journal of Controlled Release, v.71, n.3, Apr, p.339-350. 2001. Constantinides, P. P., M. V. Chaubal, et al. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Advanced Drug Delivery Reviews, v.60, n.6, Mar 17, p.757-67. 2008. Davis, M. E. Non-viral gene delivery systems. Current Opinion in Biotechnology, v.13, n.2, Apr, p.128-131. 2002. De Lima, M. C. P., S. Simoes, et al. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Advanced Drug Delivery Reviews, v.47, n.2-3, Apr, p.277-294. 2001. Eastman, S. J., C. Siegel, et al. Biophysical characterization of cationic lipid: DNA complexes. Biochimica Et Biophysica Acta, v.1325, n.1, Apr 3, p.41-62. 1997. Felgner, P. L. DNA vaccines. Current Biology, v.8, n.16, Aug, p.R551-R553. 1998. Feng, S. S., G. Ruan, et al. Fabrication and characterizations of a novel drug delivery device liposomes-in-microsphere (LIM). Biomaterials, v.25, n.21, Sep, p.5181-5189. 2004. 23 REFERÊNCIAS BIBLIOGRÁFICAS Filion, M. C. e N. C. Phillips. Major limitations in the use of cationic liposomes for DNA delivery. International Journal of Pharmaceutics, v.162, n.1-2, Mar, p.159-170. 1998. Gutierrez, J. M., C. Gonzalez, et al. Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid & Interface Science, v.13, n.4, p.245-251. 2008. Hara, T., F. Liu, et al. Emulsion formulations as a vector for gene delivery in vitro and in vivo. Advanced Drug Delivery Reviews, v.24, n.2-3, Mar, p.265-271. 1997. Hengge, U. R. Progress and prospects of skin gene therapy: a ten year history. Clinics in Dermatology, v.23, n.1, Jan-Feb, p.107-114. 2005. Hobel, S. e A. Aigner. Nonviral delivery platform for therapeutic RNAi: pegylated siRNA/cationic liposome complexes for targeting of the proto-oncogene bcl-2. Future Oncology, v.5, n.1, p.13-17. 2009. Hong, K. L., W. W. Zheng, et al. Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. Febs Letters, v.400, n.2, Jan, p.233-237. 1997. Hung, C. F., T. L. Hwang, et al. Physicochemical characterization and gene transfection efficiency of lipid,emulsions with various co-emulsifiers. International Journal of Pharmaceutics, v.289, n.1-2, Jan, p.197-208. 2005. Kim, T. W., H. Chung, et al. In vivo gene transfer to the mouse nasal cavity mucosa using a stable cationic lipid emulsion. Molecules and Cells, v.10, n.2, Apr 30, p.142-7. 2000. ______. Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents. Pharmaceutical Research, v.18, n.1, Jan, p.54-60. 2001. 24 REFERÊNCIAS BIBLIOGRÁFICAS Kim, Y. J., T. W. Kim, et al. The effects of serum on the stability and the transfection activity of the cationic lipid emulsion with various oils. International Journal of Pharmaceutics, v.252, n.1-2, Feb, p.241-252. 2003. Kwon, S. M., H. Y. Nam, et al. In vivo time-dependent gene expression of cationic lipid-based emulsion as a stable and biocompatible non-viral gene carrier. Journal of Controlled Release, v.128, n.1, May 22, p.89-97. 2008. Lambert, G., E. Fattal, et al. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core for the delivery of oligonucleotides. International Journal of Pharmaceutics, v.214, n.1-2, Feb, p.13-16. 2001. Lechardeur, D. e G. L. Lukacs. Intracellular barriers to non-viral gene transfer. Current Gene Therapy, v.2, n.2, May, p.183-94. 2002. Lee, D., W. Zhang, et al. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharmaceutical research, v.24, n.1, Jan, p.157-67. 2007. Lee, M. K., S. K. Chun, et al. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials, v.26, n.14, May, p.2147-2156. 2005. Liu, C. H. e S. Y. Yu. Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids Surf B Biointerfaces, v.79, n.2, Sep 1, p.509-15. 2010. Liu, F., J. Yang, et al. Effect of non-ionic surfactants on the formation of DNA/emulsion complexes and emulsion-mediated gene transfer. Pharmaceutical Research, v.13, n.11, Nov, p.1642-6. 1996. Lv, H., S. Zhang, et al. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release, v.114, n.1, Aug 10, p.100-9. 2006. Martini, E., E. Fattal, et al. Effect of cationic lipid composition on properties of oligonucleotide/emulsion complexes: Physico-chemical and release studies. International Journal of Pharmaceutics, v.352, n.1-2, Mar 20, p.280-286. 2008. 25 REFERÊNCIAS BIBLIOGRÁFICAS Miguel, M. G., A. Pais, et al. DNA-cationic amphiphile interactions. Colloids and Surfaces A-Physicochemical and Engineering Aspects, v.228, n.1-3, Nov, p.43-55. 2003. Mountain, A. Gene therapy: the first decade. Trends in Biotechnology, v.18, n.3, Mar, p.119-128. 2000. Nam, H. Y., J. H. Park, et al. Lipid-based emulsion system as non-viral gene carriers. Archives of Pharmacal Research, v.32, n.5, p.639-646. 2009. Nienhuis, A. The growing clinical impact of gene therapy. Molecular Therapy, v.16, n.6, Jun, p.995-6. 2008. Palmer, L. R., T. Chen, et al. Transfection properties of stabilized plasmid-lipid particles containing cationic PEG lipids. Biochimica Et Biophysica Acta- Biomembranes, v.1611, n.1-2, Apr, p.204-216. 2003. Romano, G., P. Mitcheli, et al. Latest developments in gene transfer technology: Achievements, perspectives, and controversies over therapeutic applications. Stem Cells, v.18, n.1, p.19-39. 2000. Salvati, A., L. Ciani, et al. Physico-chemical characterization and transfection efficacy of cationic liposomes containing the pEGFP plasmid. Biophysical Chemistry, v.121, n.1, Apr 20, p.21-9. 2006. Simoes, S., V. Slepushkin, et al. On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes. Biochimica Et Biophysica ActaBiomembranes, v.1515, n.1, Nov, p.23-37. 2001. Smyth Templeton, N. Liposomal delivery of nucleic acids in vivo. DNA and Cell Biollogy, v.21, n.12, Dec, p.857-67. 2002. Solans, C., P. Izquierdo, et al. Nano-emulsions. Current Opinion in Colloid & Interface 26 REFERÊNCIAS BIBLIOGRÁFICAS Science, v.10, n.3-4, p.102-110. 2005. Strachan, T. e A. P. Read. Genética Molecular Humana. Porto Alegre: Atmed. 2002 Tamilvanan, S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Progress in Lipid Research, v.43, n.6, p.489-533. 2004. Teixeira, H., C. Dubernet, et al. Cationic emulsions improves the delivery of oligonucleotides to leukemic P388/ADR cells in ascite. Journal of Controlled Release, v.89, n.3, p.473-482. 2003. ______. Submicron Cationic Emulsions as a New Delivery System for Oligonucleotides. Pharmaceutical Research, v.V16, n.1, p.30-36. 1999. ______. Factors influencing the oligonucleotides release from O-W submicron cationic emulsions. Journal of Controlled Release, v.70, n.1-2, p.243-255. 2001. Teixeira, H., V. Rosilio, et al. Characterization of oligonucleotide/lipid interactions in submicron cationic emulsions: influence of the cationic lipid structure and the presence of PEG-lipids. Biophysical Chemistry, v.92, n.3, p.169-181. 2001. Tros De Ilarduya, C., Y. Sun, et al. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci, v.40, n.3, Jun 14, p.159-70. 2010. Verissimo, L. M., L. F. Lima, et al. Pharmaceutical emulsions: a new approach for gene therapy. J Drug Target, v.18, n.5, Jun, p.333-42. 2010. Verma, I. M. e M. D. Weitzman. GENE THERAPY: Twenty-First Century Medicine. Annual Review of Biochemistry, v.74, p.711-38. 2005. Wasungu, L. e D. Hoekstra. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release, v.116, n.2, Nov 28, p.255-64. 2006. Wattiaux, R., N. Laurent, et al. Endosomes, lysosomes: their implication in gene transfer. Advanced Drug Delivery Reviews, v.41, n.2, Mar 30, p.201-208. 2000. 27 REFERÊNCIAS BIBLIOGRÁFICAS Wong, G. K. e A. T. Chiu. Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnol Adv, Jul 22. 2010. Yi, S. W., T. Y. Yune, et al. A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system. Pharmaceutical Research, v.17, n.3, Mar, p.314-20. 2000. Zhang, S., Y. Xu, et al. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release, v.100, n.2, Nov 24, p.165-80. 2004. 28 ______________________________ Capítulo 4 Artigos Derivados da Tese ______________________________ ARTIGOS DERIVADOS DA TESE 4. ARTIGOS DERIVADOS DA TESE A seguir serão apresentados os quatro artigos derivados da tese, submetidos para periódicos na área. O primeiro artigo intitulado - Pharmaceutical emulsions: a new approach for gene therapy foi publicado no Journal of Drug Targeting; o segundo artigo encontrase em redação e intitula-se - Cationic nanoemulsions as a possible strategy for gene delivery in the treatment of xeroderma pigmentosum: preliminary studies; o terceiro artigo intitulado - Physicochemical and in vivo evaluation of liposomes recovered by Hyaluronic Acid for targeting CD44 receptor of retinal cellules também está em fase de redação; e finalmente, o quarto artigo intitulado - Microglia/macrophages migrate through retinal epithelium barrier by atranscellular route: involvement in diabetic retinopathy. Role of PKCζ in microglia/macrophages trafficking during diabetic retinopathy in Goto Kakizaki rats, fruto de uma colaboração com o grupo Physiopathology of ocular diseases: Therapeutic innovations, Paris, France, liderado pela Professora Dra. Francine Behar-Cohen, aceito pelo The American Journal of Pathology, encontra-se nos anexos finais por não se tratar do objeto principal da tese. 30 ______________________________ Artigo publicado no Journal of Drug Targeting ______________________________ ARTIGOS DERIVADOS DA TESE 4.1 PHARMACEUTICAL EMULSIONS: A NEW APPROACH FOR GENE THERAPY Lourena Mafra Verissimo1 Lucymara Fassarela Agnez Lima2 Lucila Carmem Monte Egito2 Anselmo Gomes de Oliveira3 E. Sócrates Tabosa do Egito1 1 Universidade Federal do Rio Grande do Norte (UFRN), Laboratório de Sistemas Dispersos (LASID), Natal/RN, Brazil 2 UFRN, Departamento de Biologia Celular e Genética, Laboratório de Biologia Molecular e Genômica (LBMG), Centro de Biociências, Natal/RN, Brazil 3 Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, São Paulo, Brasil. * Corresponding author: Prof. E. Sócrates Tabosa do Egito Rua Praia de Areia Branca, 8948, Nata-RN – 509094-450, Brazil. Fone: 55 84 9431 8816 Fax: 55 84 3215 4346 E-mail: [email protected] or [email protected] 32 ARTIGOS DERIVADOS DA TESE ABSTRACT The concept of gene therapy involves the experimental transfer of a therapeutic gene into an individual’s cells and tissues to replace an abnormal gene aiming to treat a disease, or to use the gene to treat a disease just like a medicine, improving the clinical status of a patient. The achievement of a foreigner nucleic acid into a population of cells requires its transfer to the target. Therefore, it is essential to create carriers (vectors) that transfer and protect the nucleic acid until it reaches the target. The obvious disadvantages of the use of viral vectors have directed the research for the development of a nonviral organized system such as emulsions. In fact, recently, there has been an increase of interest in its use in biotechnology as a nonviral vector for gene therapy. This review focuses on the progress of cationic emulsions and the improvement of the formulations, as a potential delivery system for gene therapy. Keywords: Cationic emulsions; gene transfection; gene therapy; carrier systems; delivery systems 33 ARTIGOS DERIVADOS DA TESE INTRODUCTION The aim of gene therapy is to modify the genetic material of living cells for therapeutic purposes. The experimental procedure involves the insertion of a functional gene into a cell to achieve a therapeutic effect (Verma, 2000). This process is commonly called transfection. Transfection intends basically to replace, amplify, suppress, or correct a defective gene, promoting either a cure or a slowdown of the progression of a disease. In fact, the transfection process permits the selective introduction of a genetic material for protein synthesis as well as its selective inhibition (antisense or gene silencing) (Sokolova & Epple, 2008). The development of recombinant DNA technology, including the ability to clone disease-related genes, the development of efficient techniques for transfection into cells, the huge interest of an understanding of the mechanism regulating gene expression, and the ethical reflection about early human experiments were responsible for the appearance of the concept of gene therapy (Verma, 2000; Nienhuis, 2008). Q11However, the beginning of gene therapy faced several failures and deceptions because of the little knowledge about gene diseases, inefficient techniques for transfection, and ethical problems (Walters, 1991; Friedmann,1990, 1992). The more representative experimental gene therapy dates from the 1980s. In this experiment, lymphocytes of patients carrying Severe Combined Immunodeficiency Disease (SCID) were treated with a retroviral vector containing the adenosine desaminase (ADA) gene. The ADA expression was restored (Friedmann, 1992; Berns, 2004). However, five patients developed leukemia as a consequence of insertional mutagenesis. These leukemia cases have been reported as an insertional activation of a cellular proto-oncogene (LMO2 gene in the majority of patients) by integrated retroviral vectors that represented the initiating event for tumorogenesis (Raper, 2005; Staal et al., 2008). Thus, it seems clear that the use of an efficient and safe vector system to carry nucleic acid-based medicines is the determinant factor for the successful application of this promising therapeutic strategy (Staal et al., 2008). The vectors derived from retroviruses utilize only the transcriptional promoter regions of these viruses (the LTRs) to direct the gene expression. The main advantage of retroviral-based vectors is the expression that occurs in most cell types. However, the problems associated with the use of viral vectors, mainly those related to safety aspects, have prompted investigators 34 ARTIGOS DERIVADOS DA TESE to develop alternative methods for gene delivery (Niidome & Huang, 2002; Armelini et al., 2005). Currently, the importance of nanotechnology in delivery systems has been continuously demonstrated and has been extensively used as a carrier not only for the pharmacological active compounds, but also for gene delivery (Egito et al., 1994, 1996, 2004; Bessis, Garcia Cozar, & Boissier, 2004). Moreover, the conclusion of the ―Human Genome Project‖ prompted the hope of new opportunities for gene therapy, keeping this field as a great novel potential therapeutic modality (Verma& Gage, 2000). Advances against many of the inherited and acquired diseases were targeted for gene therapy, including metabolic diseases (Brunetti-Pierri & Lee, 2005); cancer (Cross & Burmester, 2006; Morille et al., 2008); genetic disorders, such as hemophilia (Roth et al., 2001) and cystic fibrosis (Hara et al., 1997); immunologic disorders; infectious diseases, including AIDS; neurological disorders; and various muscle diseases (Raper, 2005; Nienhuis, 2008). Several viral and nonviral vectors are currently under investigation. Although viral systems are highly efficient in transfection, the serious side effects related to its safety, as well as the host immune and inflammatory responses, have limited its use in clinical applications. On the other hand, nonviral systems, in which plasmid DNA or oligonucleotide can be complexed with cationic liposomes, polymers, peptides, cationic emulsions, or other carriers, provide an attractive alternative route for gene delivery (Kim et al., 2002). Furthermore, gene therapeutics composed of artificial reagents can be standardized and regulated or safety use. However, each of the gene delivery strategies has its own advantages and disadvantages. Table 1 shows the main advantages and disadvantages of some gene vectors. The obvious disadvantages of the use of viral vectors have directed the research for the development of a nonviral organized system such as emulsions. In fact, recently, there has been an increase of interest in its use in biotechnology as a nonviral vector for gene therapy. This review focuses on the progress of cationic emulsions and the improvement of the formulations, as a potential delivery system for gene therapy. 35 ARTIGOS DERIVADOS DA TESE GENE DELIVERY SYSTEMS Because of their strong negative charge, nucleic acids (DNA, RNA, and oligonucleotides) alone are not able to penetrate the cell wall in a concentration range necessary for gene therapy. Therefore, efficient carriers are necessary to introduce them into the cells. Nanoparticles, which represent any particles with a diameter below the micron, by their small size, can easily deliver biomolecule drugs into living systems, usually for a therapeutic purpose (Sokolova & Epple, 2008). Gene delivery systems are generally divided into two categories: viral and nonviral. Viral vectors Viral systems work by the same mechanisms as natural viruses that cause infectious diseases. They are the most effective but rather dangerous method because of the risk of recombination, leading to the generation of viruses capable of replication. In spite of that, the knowledge that some viruses integrate their genetic information into the genomes of infected cells suggested that it would be possible to mimic the transformation of cells by these agents to design and construct virus-like particles that could serve as vectors for introducing therapeutic normal genes into defective cells, restoring their normal activity. The use of viruses as gene carriers exploits their ability to deliver genes to the nucleus of a cell and their expression through integration into the host genome. These recombinant viruses are genetically modified to eliminate their pathogenicity while retaining their infectivity (Verma &Weitzman, 2005). The viral vector is the oldest method used for transfection and was first demonstrated in 1952, by Zinder and Lederberg on a Salmonella model (Zinder &Lederberg, 1952). With that method, gene therapy was carried out using retroviral vectors (Friedmann, 1990, 1992). More recently, adenovirus (Armelini et al., 2005), adeno-associated (Hendrie & Russell, 2005), and herpes virus (Glorioso, DeLuca, & Fink, 1995) and other viruses have been introduced as viral vectors for gene therapy (Verma & Weitzman, 2005). Though most of the studies in the gene therapy field are related to viral vectors, they present several safety problems. The limited size of the nucleic acid that can be packaged, the possible recombination of the viral vector with DNA sequences in the host cell, and the high cost and the high toxicity and immunogenicity are the major disadvantages related to viral vectors (Wagner, 2008). Inflammatory response and 36 ARTIGOS DERIVADOS DA TESE carcinogenicity were also attributed to such delivery system (Burand, Summers, & Smith, 1980; Crystal, 1995; Tripathy et al., 1996; Bessis, Garcia Cozar, & Boissier, 2004). At present, there are nonviral-based vectors which would be safe and efficient on gene transfection for therapeutical use (Schatzlein, 2001). Therefore, alternative systems such as hybrid viral vectors (Wagner, 2008), hybrid viral/nonviral vectors, like magnetic cationic liposomes and retrovirus (Ito et al., 2009), and other innovative techniques, such as small interfering RNA (siRNA) (Watanabe et al., 2007; Buyens et al., 2009), transposons, genetic insulators, and new nonviral vectors, are being explored (Friedmann, 1990,1992; Smyth Templeton, 2002). Nonviral vectors Despite the great advances in knowledge of the genetic constitution of man and the methodologies for gene manipulation, the clinical application of gene therapy presents several problems in the technical field. It is, therefore, important that more efforts should be directed toward research and development of new carrier systems that are safe and able to improve the gene therapy efficiency. Although most of the clinical trials have been based on the use of viral vectors, nonviral vectors, including liposomes (Rivest et al., 2007), polyplexes (Niidome & Huang, 2002), nanoparticles (Li & Szoka, 2007; Roy, Stachowiak, & Bergey, 2008), magnetic liposomes (Zheng et al., 2009), and nanoemulsions (Martini et al., 2008), in spite of their lower efficiency in gene transfer than viral systems, are emerging as promising nonviral carriers for genetic medicines due to their safety and versatility(Brown, Schätzlein, & Uchegbu, 2001; Montier et al., 2008). In particular, lipid emulsion formulations are considered to be superior to others due to the fact that they can be produced on an industrial scale, are stable during storage, and are highly biocompatible (Hashida, Kawakami, & Yamashita, 2005). These systems can form complexes electrostatically with anionic genetic materials and are designed as a nanosized assembly with the genetic material, with some residual positive charge (Formiga et al., 2007; Nam et al., 2009). DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density, there are strong attractive ion correlation effects (Dias et al., 2002; Miguel et al., 2003; Dias et al., 2004; Höbel & Aigner, 2009). Cationic lipids promote the condensation of the negatively charged DNA into a more compact structure, capable of crossing biological membranes. These modifications have greatly reduced the 37 ARTIGOS DERIVADOS DA TESE chances of enzymatic degradation of the genetic materials in complexes and are in most cases readily taken up by cells (Miguel et al., 2003; Roy, Stachowiak, & Bergey, 2008; Nam et al., 2009). Gene transfection into target cells using naked DNA, which is a simple and safe approach, has been improved by combining several physical techniques, for example, electroporation, gene gun, microinjection, ultrasound, and hydrodynamic pressure (Niidome & Huang, 2002). These methods, however, present several drawbacks. For example, electroporation is a safe, easy, and rather efficient method, but it needs a large amount of DNA and has to be optimized for every cell type. Microinjection allows only one cell at a time to be transfected and is therefore not feasible for a whole organism. Using the gene-gum technique, a shallow penetration of DNA into the tissue s accomplished (Sokolova & Epple, 2008). The current paradigm for designing nonviral systems is to obtain formulations that may be able to mimic proteins and virus properties, which allow them to be delivered to the target cell and traverse the cellular membrane to enter the cytoplasm (Wolff & Rozema, 2008). Two major pathways for the entry of the nucleic acids into the cells are endocytosis (Wolff & Rozema, 2008) and direct fusion (Smyth Templeton, 2002). A recent approach concerning the development of nanocarriers is nanotechnology. This method uses the electrostatic attraction between negatively charged nucleic acid and cationic vectors. These nanoparticle assemblies, by their size, are easily taken up by cells using endocytosis (Thierry et al., 1997, 2009). Concerning gene therapy, many different kinds of nanoparticles are known. Recently, Sokolova and Epple (2008) have reviewed the use of inorganic nanoparticle as carriers of nucleic acids into cells. The inorganic materials used for DNA delivery comprise calcium phosphate, carbon nanotubes, silica, gold, magnetite, quantum dots, strontium phosphate, magnesium phosphate, manganese phosphate, and double dydroxides (anionic clays) (Sokolova & Epple, 2008). On the other hand, a huge amount of literature on bio-organic nanoparticle systems such as polycationic (Honget al., 2006; Srinivasachari, Fichter, & Reineke, 2008), liposomal agents (Templeton, 2002) and dendrimers (Haensler & Szoka, 1993; Ardoin & Astruc, 1995; Tang, Redemann, & Szoka, 1996; Malik et al., 2000; Guillot-Nieckowski, Eisler, & Diederich, 2007) can currently be found. Lipid-based carriers have attracted increasing scientific and commercial interest during the last few years as an alternative for the delivery of nucleic acids (DNA, 38 ARTIGOS DERIVADOS DA TESE oligonucleotide, or RNA) due to their simplicity, unlimited size of nucleic acid to be packaged, non immunogenicity, low toxicity, stability, and commercial availability (Liu et al., 1996; Smyth Templeton, 2002; Rawat et al., 2008). Nevertheless, the efficiency of transfection with nonviral systems is relatively low and each formulation has its distinct problem regarding stability, efficacy, or toxicity (Barut, Coskun Ari, & Oner, 2005). Reduced transfection could be due to the instability of the genetic material into the cell because of its degradation and low availability resulting from multiple targeting or the chemical properties of delivering molecules (Roy, Stachowiak, & Bergey, 2008). Some strategies have been used to optimize synthetic vectors, such as the incorporation of targeting and shielding molecules into the carrier formulations for enhanced and more specific performance, or empirical screening of various cationic lipids and polymers which results in greatly improved formulations with high gene transfer efficiency and low cytotoxicity (Morille et al., 2008; Wagner, 2008). Recently, alternative experiments involving the association of plasmid DNA or oligonucleotides with colloidal carrier systems, such as lipid carriers, microspheres and nanospheres (Masotti & Ortaggi, 2009), nanoparticles, and magnetic systems (Namdeo et al., 2008) have drawn attention to gene and immunogene delivery (Wolff &Rozema, 2008). Particularly, emulsion-mediated transfection has attracted increasing attention, and several reports demonstrating the potential of positively charged emulsion particles as a new delivery system for gene therapy have been published over the past few years Barut, Coskun Ari, & Oner, 2005). The drawbacks of liposomes The majority of the experiments with nonviral systems include liposomes. Cationic liposome/DNA complexes, named lipoplexes, have been extensively investigated and widely used in gene therapy to deliver DNA into mammalian cells, owing to their potential advantages over viral vectors, such as their safety, versatility and low immunogenicity (Masotti et al., 2009). Over the last years, various improvements on the development of liposomes for gene delivery, including synthesis of new cationic lipids and design of new plasmid constructs, have been made, turning liposomes into a successful gene carrier. Some works detail the process of gene therapy including the transfection method, the mechanism of gene transfer, the formation of the cationic lipid/DNA complex, the entry of cationic lipid/DNA complex into cells, the endosomal escape, the cytoplasmic delivery of nucleic acids, the entry of DNA into the 39 ARTIGOS DERIVADOS DA TESE nucleus, and nuclear transcription (Smyth Templeton, 2002; Zhang et al., 2004; Armelini et al., 2005; Lonez, Vandenbranden & Ruysschaert, 2008). Cohen and coworkers (2009), for example, have recently shown, in a study about quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection, the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents. Additionally, Lentacker and coworkers, have evaluated new strategies for DNA to conquer cellular and nuclear membranes, and suggested the use of NAN (nucleic acid containing nanoparticles) loaded microbubbles and trans-cyclohexane-1,2-diol to induce nuclear uptake of plasmid DNA (Lentacker et al.,2008). On the other hand, although surface modified lipoplexes, in which poly(ethylene glycol) monolaurate was inserted into the liposome surface, presented good tumor regression in mice (Sonoke et al., 2008), a strong reduction in both the DNA condensation and cell transfection efficiency was also demonstrated (Bombelliet al., 2007). It was demonstrated that lipoplexes display different toxicities and transfection efficiencies depending on their formulation, their size, and the ratio between their lipid components (charge ratio) (Callow et al., 2009; Masottiet al., 2009). Besides, the instability of the lipoplex is the main obstacle of this system. One of the major drawbacks of liposomal formulations is that the lipoplexes are not stable with frequent and rapid formation of aggregates and flocculates (Zelphati et al., 1998). It is necessary, therefore, to prepare the complex freshly and use it within a short period of time. Another important drawback is that, in general, liposomal carriers with cationic property tend to interact with anionic or amphiphilic blood components and form large aggregates, resulting in accumulation at the capillary bed of the lung. Owing to their rapid clearance, liposome/DNA complexes may need to be repeatedly administrated in order to keep the expression level constant in vivo (Nam et al., 2009). In addition, serum proteins can decrease transfection efficiency by neutralization of the positive zeta potential, and by binding to and increasing the particle size of the complexes. The toxicity may, in part, result from the large size of the complexes, and the high positive zeta potential required for their uptake. The toxicity is normally closely associated with the charge ratio between the cationic lipid species and the nucleic acids, as well as the dose of lipoplexes administered. Higher charge ratios are generally more toxic to a variety of cell types. In addition, different reagents have different degrees of toxicity to cells, and toxicity is cell-specific (Formiga et al., 2007). It is also known that the 40 ARTIGOS DERIVADOS DA TESE transfection activity of cationic liposomes is interfered by serum components which presumably neutralize the unpaired positive charges in the complexes which are essential for the binding of a lipoplex to the cell surface (Yi et al., 2000). Concerning the serum sensitivity of cationic lipid mediated transfection, it is generally believed that the loss of transfection activity of cationic liposomes is due to the neutralization of the positive charges on the lipoplex. To overcome these problems, the development of cationic emulsions, which are physically stable and can facilitate the transfer of genes successfully in vitro and in vivo, is gaining success (Liu et al., 1996; Zelphati et al., 1998; Kim et al., 2002). The use of pharmaceutical emulsions, nanoemulsions, and microemulsions Lipid emulsions are considered to be superior to liposomes mainly in a scalingup point of view. In fact, such carriers not only can easily be produced on an industrial scale, but also are stable during storage and are highly biocompatible. In addition, they possess a high solubilizing capacity as far as lipophilic or amphiphilic drugs are concerned, because lipid emulsions have an oil phase in particulate form and a large hydrophilic/lipophilic interface, so they can dissolve large amounts of highly lipophilic and amphiphilic drugs (Kawakami, Yamashita,& Hashida, 2000). Emulsions, defined as the dispersion of one immiscible liquid in another stabilized by a third component, the emulsifying agent (Becher, 1965), present in their composition three components: oil, water, and surfactants. A normal crude emulsion possesses a droplet size of around 1 μm, which impeaches its use by intra-venous route. However, with the development of the nanotechnology, new homogenizators were developed and a new series of emulsions, named then nanoemulsions could be achieved. Such emulsion systems present a droplet size distribution of around 200 nm. On the other hand, microemulsions, defined as thermodynamically stable and isotropically clear to translucid dispersed oil-in-water or water-in-oil systems stabilized by an interfacial film of surfactant (Aboofazeli & Lawrence, 1993; Ho, Hsiao, & Sheu, 1996; Constantinides, Chaubal, & Shorr, 2008), were discovered in the 1950s and were largely used by the chemical industry, and later in the pharmaceutical field. Although named microemulsions, such systems present a droplet-size distribution of around 80 nm, which at the time of their discovery were impossible to evaluate due to the limitations in the characterization of nanometric systems. The major difference between nanoemulsions and microemulsions is their surfactant loaded concentration in the 41 ARTIGOS DERIVADOS DA TESE formulation. In the former, the surfactant content is in order of 2–5%, while the latter present a concentration of surfactants of around 20–30%. Therefore, nanoemulsion has been chosen as a potential lipid carrier for gene therapy. Lipid-based carrier systems represent drug vehicles composed of physiological lipids, such as cholesterol, cholesterol esters, phospholipids and triglycerides, and offer a number of advantages, making them an ideal drug delivery carrier (Egito et al., 1996, 2002; Yi et al., 2000; de Araújo et al., 2005; Constantinides, Chaubal, & Shorr, 2008). Lipid emulsions have also been used to carry proteins and peptides successfully for the same reason (Rawat et al., 2008). Adding cationic surfactants to these dispersed systems makes them suitable for gene delivery (Figure 1). The presence of cationic surfactants causes the formation of positively charged droplets that promote strong electrostatic interactions between emulsion and the anionic nucleic acid phosphate groups (Barut, Coskun Ari, & Oner, 2005; Martini et al., 2008; Marty et al., 2009). The most used cationic surfactants are DOTAP (1,2-dioleoyl-3- trimethylammonium propane), DOTMA (2,3-bis (oleyl)oxipropyl-trimethylammonium chloride), and DC-Chol (3b[N-(N9,N9-dimethylaminoethane)-carbamoyl]cholesterol). The co-lipid DOPE (dioleoylphosphatidylethanolamine) is largely used to improve the ability of cationic liposomes and emulsions to transfect cells due to its fusogenic properties (Zabner, 1997; Kim et al., 2001; Zhang et al., 2004; Armelini et al., 2005; Hung et al., 2005). This can be partially explained by the fact that the amine group of DOPE interacts with DNA phosphate groups, thus weakening the binding affinity between cationic lipids and DNA (Nam et al., 2009). Based on the current understanding for cationic lipid mediated transfection, it is essential for nucleic acid molecules to form a complex with the emulsion in order to enter the cells and express the gene. To form such a complex, nucleic acid molecules need to bind to the surface of the emulsion particles via electrostatic interactions between the negatively charged phosphates of nucleic acids and positively charged cationic lipids (Liu et al., 1996; Nam et al., 2009). The progress of cationic nano-emulsions A wide variety of formulation strategies have so far been employed to improve the cationic nanoemulsions. A cationic oil-in-water nanoemulsion composed of the soybean oil and the emulsifying agents, cetyltrimethylammonium bromide (CTAB) and 42 ARTIGOS DERIVADOS DA TESE Pluronic F68, showed suitable stability and efficient protection of a plasmid against DNAse digestion (Barut, Coskun Ari, & Oner, 2005). There is also an increased interest in characterizing the nucleic acid/nanoemulsion complexes in order to better understand the interaction between them. Recently, a comparison between the two cationic surfactants DOTAP and oleylamine demonstrated that droplet size and ζ-potential of its nanoemulsions remained quite similar, regardless of the cationic lipid used. However, the oligonucleotide adsorption and release profiles from the o/w interface of nanoemulsions were significantly lower for oleylamine nanoemulsion when compared with DOTAP nanoemulsion. The reason is probably that oleylamine nanoemulsion presents a more fluid interface since this lipid presents a monoleyl chain, limiting the anchorage of oligonucleotide molecules at the interface, while for DOTAP, besides the electrostatic interaction also presented with oleylamine, the double acyl chains present in its molecular structure allow a better anchorage ofoligonucleotides, through the additional hydrophobic effect (Martini et al., 2008). The physical characteristics and serum-resistant properties of the DNA/nanoemulsion complexes suggest that cationic nanoemulsions could be a more efficient carrier system for gene and/or immune gene delivery than liposomes (Hara et al., 1997; Barut, Coskun Ari, & Oner, 2005). The fact that transfection is efficient in the presence of serum is a big advantage when transfection in serum-containing medium is beneficial, as in ex vivo applications. One of the reasons for the serum-resistant properties of the cationic lipid nanoemulsion may be the stability of the nanoemulsion/DNA complex (Yi et al., 2000). Cationic nanoemulsions were also tested in vivo, with the results showing that these systems are more suitable for gene delivery than liposomes because of the higher transfection and lower toxicity (Kwon et al., 2008). Besides, it was observed that cationic lipids, such as CTAB and oleylamine, may have dramatic effects on both transfection and toxicity level because of their polar and hydrophobic single-tailed domains resultingin more toxic and less efficient effects than double-tailed lipids, such as DOTAP (Zhang et al., 2004; Formiga et al., 2007). Another example of the great in vivo stability of cationic nanoemulsions is shown in the study conducted by Kim and co-workers (2005). They demonstrated that nanoemulsion systems were unable to release its plasmid content in the presence of destabilizers. The complex between DNA and the nanoemulsion was extremely stable and resistant to the competitive exchange by ananionic proteoglycan, and as a 43 ARTIGOS DERIVADOS DA TESE consequence, DNA complexed with nanoemulsion was protected from a DNase attack. They concluded that the stable nanoemulsion/DNA complex provided a necessary protection against inactivation by mucosal secretions and a higher accessibility of the active DNA to airway epithelia than did the liposome/DNA complex. In order to increase the system stability and its transfection activity, cosurfactants were added to cationic nanoemulsions. It was observed that the inclusion of nonionic surfactants in the formulation resulted in profound effects on the features of nanoemulsions. The addition of nonionic surfactants could decrease the nanoemulsion– DNA interaction and affect the transfection activity, depending on the chain length and the content of poly (ethylene glycol) (PEG) in the surfactant. The introduction of nonionic surfactants with a branched PEG headgroup, such as Tween 80®, incremented nanoemulsion stability and prevented the formation of large DNA/nanoemulsion complexes, probably because of their steric hindrance and the generation of a hydrophilic surface that may enhance the stability by preventing physical aggregation. In contrast, surfactant without the PEG headgroup, such as Span 80® did not improve the stability of these complexes (Kimet al., 2002). The surfaces decorated with PEG have the resistance to the protein adsorption, owing to its hydrophilicity and large excluded volume. Therefore, incorporation of PEG derivatives into the cationic lipid nanoemulsions may prevent them from enzymatic degradation in blood, resulting in prolonged circulation in blood. Further, the nanoemulsions with hydrophilic surfactant are taken up slowly by phagocytic cells (Liuet al., 1996; Hara et al., 1997; Kim et al., 2002; Buyenset al., 2009). Aiming to diminish the cytotoxicity and improve the efficacy of lipid-based nanoemulsions for gene therapy, new cationic lipids, such as 6-lauroxyhexylornithinate and cationic lipids containing imidazolium or pyridinium polar heads and cationic polymers, such as poly (ethylenimine) (PEI) and poly (L-lysine) (PLL), have been used in the formulations (Zhang et al., 2004;Formiga et al., 2007). To achieve efficient drug delivery, it is important to understand the interactions of nanoemulsion systems with the biological environment, targeting cell surface receptors, gene release, stability of therapeutic agents, and the molecular mechanisms of cell signaling involved in the disease pathology under consideration. Consequently, studies for the optimization of existing systems and for the development of novel formulations are ongoing (Suri, Fenniri, & Singh, 2007; Morille et al., 2008). 44 ARTIGOS DERIVADOS DA TESE Another important aspect of the use of nanoemulsion concerns its droplet size. Some years ago, Takino and co-workers studied the behavior or nanoemulsion systems on the body and revealed that after intravenous injection, large nanoemulsions, containing a droplet size diameter of about 280 nm, rapidly disappeared from the blood and about 60% of the dose was recovered in the liver within 10 min of its intravenous injection in mice (Takino et al., 1994). On the other hand, nanoemulsions containing a droplet-size diameter of about100 nm, named small nanoemulsions, showed a reduced hepatic uptake and a prolonged blood circulation time. The same group made a pharmacokinetic analysis that revealed that the small nanoemulsion had an 8−100times smaller organ distribution clearance by the liver, spleen, and lungs and about a four times greater are under the plasma concentration−time curve (AUC) than the large nanoemulsion. Single-pass rat liver perfusion experiments have shown that more than 70% of the large nanoemulsion was extracted by the liver, indicating extensive uptake of the large nanoemulsion during a single passage (Takino et al., 1995). In addition, the large nanoemulsion was predominantly recovered from liver non parenchymal cells, including Kupffer cells, and showed a higher accumulation in the non parenchymal fraction. Functionalizing nanoemulsions also play an important role in their uptake. For example, Finkelstein in1979 and Senior in 1982 demonstrated the influence of sphingomyelin (SM) in the cellular uptake of nanoemulsions. SM is known to stabilize the membrane structure of liposomes and the addition of SM to liposomes has been reported to be effective in reducing their clearance by the Reticuloendothelial System (RES) (Finkelstein &Weissmann, 1979; Senior & Gregoriadis, 1982). On the other hand, Takino and coworkers also evaluated the influence of SM on the retention time in the blood circulation of stable nanoemulsions and revealed that SM charged nanoemulsions presented an uptake clearance in the liver of about four times less than that of conventional nanoemulsions, suggesting reduced clearance by the RES (Takino et al., 1994). 45 ARTIGOS DERIVADOS DA TESE CONCLUDING REMARKS Gene delivery is a complex process that needs an efficient carrier to go through each of the cellular steps involved. For this reason, research should focus on the development f a vector able to overcome the various barriers that it could encounter. Over the last few years, the interest in the development of cationic nanoemulsions for gene therapy has been increasing, and optimizing all components of the delivery system is allowing broad use of cationic nanoemulsion complexes to treat or cure human diseases or disorders. Nanoemulsion formulations appeared to have more favorable physical and biological activities than did traditional cationic liposomes as a gene delivery system in vivo. In fact, nanoemulsions, by their size of around 200 μm, allow them an efficient uptake though the cell membrane. Also, nanoemulsions can easily have their surface functionalized for improving their uptake and generating a short-term cellular interaction, whereas the oil core composition of their interior allows them to be biodegradable and biocompatible. For therapeutic application of a vector for gene therapy, not only is the requirement for high transfection efficiency mandatory, but also the aspects of biocompatibility, long-term biodegradation, and site-selective application have to be addressed as well. While the transfection efficiency of cationic nanoemulsions is still lower than that of their viral counterparts, a number of adjustments could improve this category of carriers, turning them into very promising systems for gene delivery. 46 ARTIGOS DERIVADOS DA TESE REFERENCES Aboofazeli R, Lawrence MJ.(1993). Investigations into the formation and characterization of phospholipid microemulsions. 1. Pseudo-ternary phasediagrams of systems containing water lecithin-alcohol-isopropyl myristate. Int J Pharma, 93(1–3):161–175. Ardoin N, Astruc D. (1995). Molecular trees—from syntheses towards applications. Bull De La Societe Chim De France, 132(9):875–909. Armelini MG, Muotri AR, Marchetto MC, de Lima-Bessa KM,Sarasin A, Menck CF. (2005). Restoring DNA repair capacity of cells from three distinct diseases by XPD gene-recombinant adenovirus. Cancer Gene Ther, 12: 389–396. Barut KD, Coskun Ari FF, Oner F. (2005). Development and characterization of a cationic emulsion formulation as a potential pDNA carrier system. Turkish Chem, 29: 27–40. Becher P. (1965). Emulsions, Theory and Practice. New York:Reinhold. Berns A. (2004). Good news for gene therapy. N Engl J Med, 350:1679–1680. Bessis N, GarciaCozar FJ, Boissier MC. (2004). Immune responses togene therapy vectors: influence on vector function and effect or mechanisms. Gene Ther, 11 Suppl 1: S10–S17. Bombelli C, Faggioli F, Luciani P, Mancini G, Sacco MG. (2007).PEGylated lipoplexes: preparation protocols affecting DNA condensation and cell transfection efficiency. J Med Chem, 50:6274–6278. Brown MD, Schätzlein AG, Uchegbu IF. (2001). Gene delivery with synthetic (non viral) carriers.Int J Pharm, 229: 1–21. Brunetti-Pierri N, Lee B. (2005). Gene therapy for inborn errors of liver metabolism. Mol Genet Metab, 86: 13–24. Burand JP, Summers MD, Smith GE. (1980). Transfection with baculovirus DNA. Virology, 101: 286–290. Buyens K, Demeester J, De Smedt SS, Sanders NN. (2009). Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes. Langmuir, 25: 4886–4891. 47 ARTIGOS DERIVADOS DA TESE Callow P, Fragneto G, Cubitt R, Barlow DJ, Lawrence MJ.(2009).Interaction of cationic lipid/DNA complexes with model membranes as determined by neutron reflectivity.Langmuir, 25:4181–4189. Cohen RN, van der Aa MA, Macaraeg N, Lee AP, Szoka FC Jr. (2009).Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J Control Release, 135:166–174. Constantinides PP, Chaubal MV, Shorr R. (2008). Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev, 60: 757–767. Cross D, Burmester JK. (2006). Gene therapy for cancer treatment: past, present and future. Clin Med Res, 4: 218–227. Crystal RG. (1995). Transfer of genes to humans: early lessons and obstacles to success. Science, 270: 404–410. de Araújo IB, Damasceno BP, de Medeiros TM, Soares LA,do Egito ES. (2005). Decrease in Fungizone toxicity induced by the use of Lipofundin as a dilutent: an in vitro study. Curr DrugDeliv, 2: 199–205. Dias R, Antunes F, Miguel M, Lindman S, Lindman B. (2002). DNA lipid systems.A physical chemistry study. Braz J Med Biol Res,35: 509–522. Dias RS, Pais A, Miguel MG, Lindman B. (2004). DNA and surfactants in bulk and at interfaces. Colloids Surf A—Physicochem EngAspects, 250(1–3): 115–131. Egito ES, Araújo IB, Damasceno BP, Price JC. (2002). Amphotericin B/emulsion admixture interactions: an approach concerning the reduction of amphotericin B toxicity. J Pharm Sci, 91:2354–2366. Egito EST, Fessi H, Appel M, Barratt G, Legrand P, Bolard J,Devissaguet JP. (1996). A morphological study of an amphotericin B emulsion-based delivery system. Int J Pharm, 145(1–2):17–27. Egito EST, Fessi H, Appel M, Puisieux F, Bolard J, Devissaguet JP.(1994). New techniques for preparing submicronic emulsions - application to Amphotericin-B. STP Pharma Sci, 4(2): 155–162. Finkelstein MC, Weissmann G. (1979). Enzyme replacement via liposomes. Variations in lipid compositions determine liposomal integrity in biological fluids. Biochim Biophys Acta,587: 202–216. Formiga FR, Fonseca IA, Souza KB, Silva AK, Macedo JP, Araújo IB, Soares LA, Egito ES. (2007). Influence of a lipophilic drug on the stability of emulsions: an 48 ARTIGOS DERIVADOS DA TESE importantapproach on the development of lipidic carriers. Int J Pharm,344: 158– 160. Friedmann T. (1990). The evolving concept of gene therapy. Hum GeneTher, 1: 175– 181. Friedmann T. (1992). A brief history of gene therapy. Nat Genet,2: 93–98. Glorioso JC, De Luca NA, Fink DJ. (1995). Development and application of herpes simplex virus vectors for human gene therapy. Annu Rev Microbiol, 49: 675–710. Guillot-Nieckowski M, Eisler S, Diederich F. (2007). Dendritic vectors for gene transfection. New J Chem, 31(7): 1111–1127. Haensler J, Szoka FC Jr. (1993). Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem,4: 372–379. Hara T, Liu F, Liu DX, Huang L. (1997). Emulsion formulations as a vector for gene delivery in vitro and in vivo. Adv Drug Deliv Rev,24(2–3): 265–271. Hashida M, Kawakami S, Yamashita F. (2005). Lipid carrier systems for targeted drug and gene delivery. Chem Pharm Bull,53: 871–880. Hendrie PC, Russell DW. (2005). Gene targeting with viral vectors.Mol Ther, 12: 9–17. Ho HO, Hsiao CC, Sheu MT. (1996). Preparation of microemulsions using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs. J Pharm Sci, 85: 138–143. Höbel S, Aigner A. (2009). Nonviral delivery platform for therapeutic RNAi: pegylated siRNA/cationic liposome complexes for targeting of the proto-oncogene bcl-2. Future Oncol, 5: 13–17. Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT,Orr BG, Baker JR Jr, Banaszak Holl MM. (2006). Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem, 17: 728–734. Hung CF, Hwang TL, Chang CC, Fang JY.(2005). Physicochemical characterization and gene transfection efficiency of lipid emulsions with various co-emulsifiers. Int J Pharm, 289: 197–208. Ito A, Takahashi T, Kameyama Y, Kawabe Y, Kamihira M. (2009).Magnetic concentration of a retroviral vector using magnetite cationic liposomes. Tissue Eng Part C Methods, 15: 57–64. 49 ARTIGOS DERIVADOS DA TESE Kawakami S, Yamashita F, Hashida M. (2000). Disposition characteristics of emulsions and incorporated drugs after systemic or local injection. Adv Drug Deliv Rev, 45: 77–88. Kim TW, Chung H, Kwon IC, Sung HC, Jeong SY. (2001). Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents. Pharm Res, 18: 54–60. Kim TW, Chung H, Kwon IC, Sung HC, Shin BC, Jeong SY. (2005).Airway gene transfer using cationic emulsion as a mucosal gene carrier. J Gene Med, 7: 749– 758. Kim TW, Kim YJ, Chung H, Kwon IC, Sung HC, Jeong SY. (2002). The role of nonionic surfactants on cationic lipid mediated gene transfer. J Control Release, 82: 455–465. Kwon SM, Nam HY, Nam T, Park K, Lee S, Kim K, Kwon IC, Kim J,Kang D, Park JH, Jeong SY. (2008). In vivo time-dependent gene expression of cationic lipid-based emulsion as a stable and biocompatible non-viral gene carrier. J Control Release, 128:89–97. Lentacker I, Vandenbroucke RE, Lucas B, Demeester J, De Smedt SC,Sanders NN.(2008). New strategies for nucleic acid delivery to conquer cellular and nuclear membranes. J Control Release,132: 279–288. Li W, Szoka FC Jr. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharm Res, 24: 438–449. Liu F, Yang J, Huang L, Liu D. (1996). Effect of non-ionic surfactantson the formation of DNA/emulsion complexes and emulsion mediated gene transfer. Pharm Res, 13: 1642–1646. Lonez C, Vandenbranden M, Ruysschaert JM. (2008). Cationic liposomal lipids: from gene carriers to cell signaling. Prog Lipid Res,47: 340–347. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H,Weener JW, Meijer EW, Paulus W, Duncan R. (2000). Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release, 65: 133–148. Martini E, Fattal E, de Oliveira MC, Teixeira H. (2008). Effect of cationic lipid composition on properties of oligonucleotide/emulsion complexes: Physicochemical and release studies. Int J Pharm,352: 280–286. 50 ARTIGOS DERIVADOS DA TESE Marty R, N’soukpoé-Kossi CN, Charbonneau D, Weinert CM,Kreplak L, Tajmir-Riahi HA. (2009). Structural analysis of DNA complexation with cationic lipids. Nucleic Acids Res, 37:849–857. Masotti A, Mossa G, Cametti C, Ortaggi G, Bianco A, Grosso ND,Malizia D, Esposito C. (2009). Comparison of different commercially available cationic liposomeDNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloids Surf B Biointerfaces, 68: 136–144. Masotti A, Ortaggi G. (2009). Chitosan micro- and nanospheres: fabrication and applications for drug and DNA delivery. Mini Ver Med Chem, 9: 463–469. Miguel MG, Pais A, Dias RS, Leal C, Rosa M, Lindman B. (2003). DNA cationic amphiphile interactions. Colloids Surf A—Physicochem Eng Aspects, 228(1–3): 43–55. Montier T, Benvegnu T, Jaffrès PA, Yaouanc JJ, Lehn P. (2008). Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr Gene Ther, 8: 296–312. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. (2008).Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials, 29: 3477–3496. Nam HY, Park JH, Kim K, Kwon IC, Jeong SY.(2009). Lipid-based emulsion system as non-viral gene carriers. Arch Pharm Res, 32:639–646. Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK.(2008). Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol, 8: 3247–3271. Nienhuis A. (2008). The growing clinical impact of gene therapy. Mol Ther, 16: 995– 996. Niidome T, Huang L. (2002). Gene therapy progress and prospects: nonviral vectors. Gene Ther, 9: 1647–1652. Raper SE. (2005). Gene therapy: the good, the bad, and the ugly. Surgery, 137: 487– 492. Rawat M, Singh D, Saraf S, Saraf S. (2008). Lipid carriers: a versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi,128: 269–280. Rivest V, Phivilay A, Julien C, Bélanger S, Tremblay C, Emond V,Calon F. (2007).Novel liposomal formulation for targeted gene delivery. Pharm Res, 24: 981–990. 51 ARTIGOS DERIVADOS DA TESE Roth DA, Tawa NE Jr, O’Brien JM, Treco DA, Selden RF; Factor VIII Transkaryotic Therapy Study Group. (2001). Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med, 344: 1735–1742. Roy I, Stachowiak MK, Bergey EJ. (2008). Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine, 4: 89–97. Schatzlein AG. (2001). Non-viral vectors in cancer gene therapy: principles and progress. Anticancer Drugs, 12: 275–304. Senior J, Gregoriadis G. (1982). Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci,30: 2123–2136. Smyth Templeton N. (2002). Liposomal delivery of nucleic acids in vivo. DNA Cell Biol, 21: 857–867. Sokolova V, Epple M. (2008). Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl, 47: 1382–1395. Sonoke S, Ueda T, Fujiwara K, Sato Y, Takagaki K, Hirabayashi K,Ohgi T, Yano J. (2008). Tumor regression in mice by delivery ofBcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res, 68: 8843–8851. Srinivasachari S, Fichter KM, Reineke TM. (2008). Polycationic beta-cyclodextrin ―click clusters‖: monodisperse and versatile scaffolds for nucleic acid delivery. J Am Chem Soc,130: 4618–4627. Staal FJ, Pike-Overzet K, Ng YY, van Dongen JJ.(2008). Sola dosis facitvenenum. Leukemia in gene therapy trials: a question of vectors, inserts and dosage? Leukemia, 22: 1849–1852. Suri SS, Fenniri H, Singh B. (2007). Nanotechnology-based drug delivery systems.J Occup Med Toxicol, 2: 16. Takino T, Konishi K, Takakura Y, Hashida M. (1994). Long circulating emulsion carrier systems for highly lipophilic drugs. Biol PharmBull, 17: 121–125. Takino T, Nagahama E, Sakaeda T, Yamashita F, Takakura Y,Hashida M. (1995). Pharmacokinetic disposition analysis of lipophilic drugs injected with various lipid carriers in the single pass rat-liver perfusion system. Int J Pharm, 114(1): 43– 54. Tang MX, Redemann CT, Szoka FC Jr. (1996). In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem,7: 703–714. 52 ARTIGOS DERIVADOS DA TESE Templeton NS. (2002). Liposomal delivery of nucleic acids in vivo.DNA Cell Biol, 21(12): 857–867. Thierry AR, Norris V, Molina F, Schmutz M. (2009).Lipoplex nanostructures reveal a general self-organization of nucleic acids. Biochim Biophys Acta, 1790: 385–394. Thierry AR, Rabinovich P, Peng B, Mahan LC, Bryant JL, Gallo RC.(1997). Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther, 4: 226–237. Tripathy SK, Black HB, Goldwasser E, Leiden JM. (1996). Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med, 2: 545–550. Verma IM, Gage FH. (2000). Genome and gene therapy. Mol Ther,2: 95. Verma IM, Weitzman MD. (2005). Gene therapy: twenty-first century medicine. Annu Rev Biochem, 74: 711–738. Verma IM. (2000). Gene therapy: beyond 2000. Mol Ther, 1: 493. Verma IM. (2000). Gene therapy: the need for basic science. Mol Ther,2: 531. Wagner E. (2008). Converging paths of viral and non-viral vector engineering. Mol Ther, 16: 1–2. Walters L. (1991). Human gene therapy: ethics and public policy. Hum Gene Ther, 2: 115–122. Watanabe T, Umehara T, Yasui F, Nakagawa S, Yano J, Ohgi T,Sonoke S, Satoh K, Inoue K, Yoshiba M, Kohara M. (2007). Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. J Hepatol, 47: 744–750. Wolff JA, Rozema DB. (2008). Breaking the bonds: non-viral vectors become chemically dynamic. Mol Ther, 16: 8–15. Yi SW, Yune TY, Kim TW, Chung H, Choi YW, Kwon IC, Lee EB,Jeong SY. (2000). A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system. Pharm Res, 17: 314–320. Zabner J. (1997). Cationic lipids used in gene transfer. Adv Drug Deliv Rev, 27: 17–28. Zelphati O, Uyechi LS, Barron LG, Szoka FC Jr. (1998).Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim Biophys Acta, 1390: 119–133. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z. (2004). Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release, 100: 165–180. 53 ARTIGOS DERIVADOS DA TESE Zheng XL, Lu JP, Deng L, Xiong Y, Chen JM. (2009). Preparation and characterization of magnetic cationic liposome in gene delivery. Int J Pharm, 366(1–2): 211–217. Zinder ND, Lederberg J. (1952). Genetic exchange in Salmonella. J Bacteriol, 64: 679– 699. 54 ARTIGOS DERIVADOS DA TESE FIGURES LIST FIGURE 1.Cationic emulsion system acting as a carrier for DNA. 55 ARTIGOS DERIVADOS DA TESE TABLES LIST TABLE 1.Some advantages and disadvantages of currently used vectors. 56 ______________________________ Artigo em Redação ______________________________ 4.2 CATIONIC NANOEMULSIONS AS A POSSIBLE STRATEGY FOR GENE DELIVERY IN THE TREATMENT OF XERODERMA PIGMENTOSUM: PRELIMINARY STUDIES Lourena Mafra Verissimo1, 2,3 André Leandro Silva1, 2 Francisco Alexandrino Júnior1, 2 Kattya Gyselle de Holanda e Silva2,3 Lucymara Fassarela Agnez Lima2 Elias Fatal3 E. Sócrates Tabosa do Egito1 1 Universidade Federal do Rio Grande do Norte (UFRN), Laboratório de Sistemas Dispersos (LASID), Natal/RN, Brazil 2 UFRN, Departamento de Biologia Celular e Genética, Laboratório de Biologia Molecular e Genômica (LBMG), Centro de Biociências, Natal/RN, Brazil 3 Paris Sud 11 University, UMR CNRS 8612, Pharmacie Galenique, Faculty of Pharmacy, Châtenay-Malabry, France * Correspondingauthor: Prof. E. Sócrates Tabosa do Egito Rua Praia de Areia Branca, 8948, Natal-RN – 509094-450,Brazil. Fone: 55 84 9431 8816 Fax: 55 84 3215 4346 E-mail: [email protected] or [email protected] ARTIGOS DERIVADOS DA TESE ABSTRACT Xeroderma Pigmentosum (XP) is an autosomal syndrome characterized by a high frequency of skin tumors, especially in areas exposed to sunlight, and, occasionally, developmental and neurological abnormalities. Traditional XP treatment is still inefficient and therefore, this syndrome has a great potential for the research in gene therapy. The obvious disadvantages of the use of viral vectors have directed the research for the development of a nonviral organized system such as cationic nanoemulsions. In fact, recently, there has been an increase of interest in its use in biotechnology as a nonviral vector for gene therapy. The aim of this work was to evaluate different nanoemulsions formulations intended for the use in gene therapy, as a possible strategy for the treatment of XP. Stearylamine (SA) and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) were used as cationic surfactants and the results show that nanoemulsions containing DOTAP presents better potential for the use in gene therapy. However, when dispersed in aqueous phase during the preparation, SA nanoemulsions increase its DNA compaction capacity, which is essential for the use in gene therapy, turning these systems also suitable for gene delivery. Keywords: Gene therapy, cationic nanoemulsions, cationic lipids, xeroderma pigmentosum. 59 ARTIGOS DERIVADOS DA TESE INTRODUCTION Xeroderma Pigmentosum (XP) is a rare human, autosomal-inherited, skin and neurodegenerative disease in which exposure to sunlight can result in a high incidence of skin and mucous membrane cancer, including squamous and basal cell carcinomas and melanomas. It is characterized by photosensitivity, pigmentary changes, premature skin ageing and malignant tumour development resulting from the defect in DNA repair [1-3]. This sensitivity is directly related to a defect in the nucleotide excision repair (NER) of damaged DNA [4]. Despite the fact that skin cancer is one of the most surgically tractable forms of cancer, XP individuals suffer multiple skin cancers, including malignant melanoma. Besides surgical removal of individual skin cancers, sometimes accompanied by reconstructive surgery using unexposed tissue from the same patient, current therapies only involve isotretinoin or fluorouracil application. The only topical treatment to date that has shown efficacy in reducing the risk of actinic keratoses is sunscreen, but this requires very careful and constant pre-treatment. Oral retinoid therapies are largely experimental and have potentially serious and almost always inconvenient side-effects [5, 6]. Skin is a highly accessible organ for gene therapy and compared to other tissues, it offers the advantage of being easily accessible for manipulations and monitoring. In addition, skin fibroblasts and keratinocytes are interesting candidates for this purpose since they are well-studied primary cells and are relatively easy to isolate and grow in vitro, thus permitting self-renovating epithelial transplants by procedures currently used in the treatment of burns or other cutaneous disorders [5, 7, 8]. The use of gene therapy for the treatment of XP has been investigated using viral vectors, more specifically, the adenovirus. The most important limitation of the use of adenovirus vectors for gene correction protocols is that they elicits strong immune responses in the host. This feature reduces transgene expression in vivo and the efficiency of repeated vector administration [4, 5]. To overcome the problems related to viral vectors, nonviral vectors have been developed and special attention has been done to cationic nanoemulsions [9]. Cationic nanoemulsions have been investigated as non-viral gene carriers in therapeutic gene delivery due to the disadvantages related to the use of viral vectors (scale-up control, immunogenicity, oncogenicity and the limited size of nucleic acid that can be packed). These systems consist of two immiscible liquids containing an oil core 60 ARTIGOS DERIVADOS DA TESE (natural or semi-synthetic) stabilized by co-surfactants and cationic surfactants, which are responsible for the positive charge in the droplet surface. The presence of cationic surfactants allows the complexation with the negatively charged DNA via electrostatic interactions, resulting in DNA compaction and consequently nanocomplexes formation of emulsion/DNA [9, 10]. Liposomes has already been tested for cutaneous gene therapy and it was demonstrated that the topical application of liposomes containing DNA repair enzymes to sun damaged skin of patients with XP lowered the rate of development of two forms of these lesions during a year of treatment [6]. However, liposomes usually present serum sensitivity due to the neutralization of the positive charges on the lipoplex which is generally related to loss of transfection activity. Therefore, the development of cationic emulsions, which are physically stable and can facilitate the transfer of genes successfully in vitro and in vivo, is gaining success [11-13]. In this study, different cationic nanoemulsion formulations were analyzed as gene carriers using the XPA gene as an alternative to the use of viral vectors for the treatment of XP syndrome. MATERIALS AND METHODS Chemicals Nanoemulsions were prepared using medium-chain triglycerides (MCT) Captex® 355 (Abitec, USA); the co-surfactants Sorbian Monoleate (Span 80®) (Sigma, USA) and poly (oxyethylene sorbitan monooleate) (Tween 80®) (Sigma, USA) and one of the two cationic lipids: Stearylamine (SA) (Sigma, USA) or 1,2-dioleoyl-3trimethylammonium-propane (DOTAP) (Avanti Polar Lipids, USA). Plasmid DNA The plasmid pIRES2-EGFP (Clontech, USA) was kindly provided by Professor Menck (USP, São Paulo). It expresses the EGFP (Enhanced Green Fluorescent Protein) under CMV promoter and was used to assess transfection as well as expression efficiency. The plasmid DNA was amplified using the DH10B strain of Escherichia coli and the XPA gene (910 pb) was cloned at the restriction site of EcoRI. Plasmid DNA purity was determined by agarose gel electrophoresis as well as the measurement of 61 ARTIGOS DERIVADOS DA TESE optical densities (ODs) by Nanovue (GE Health Systems, USA). In all experiments, the purified plasmid DNA used had a ratio of OD260/OD280 ≥ 1.8. Nanoemulsions preparation and characterization The emulsions were produced by the sonication method as previously described [14]. Three different systems were prepared, a Basic emulsion (BE), a DOTAP containing emulsion (ED) and a SA containing emulsion (ES). Because SA presents low solubility in water and oil, two groups of ES were prepared to investigate its interference on the incorporation in both emulsion phases, aqueous and oil one. Additionally, the emulsions were prepared by two different ways. SA was incorporated into the aqueous (ES AP) or oil phase (ES OP), respectively. Table 1 shows the final composition of all formulations. The mean droplet size, polydispersity index (PI) and ζpotential of the emulsions were determined by photon correlation spectroscopy (PCS) and electrophoretic mobility, respectively, at 25°C and at an angle of 173° (Malvern Zetasizer Instrument, England). The samples were adequately diluted in 1mM NaCl solution for size and ζ-potential measurements. For all experiments, three replicates were performed in order to determine mean and standard deviation (SD). Morphologic examination of emulsions containing either SA or DOTAP was performed by means of transmission electron microscopy (TEM). A drop of nanoemulsion was placed on cooper electron microscopy grids. Before analysis, the nanoemulsions were stained by a 1% phosphotungstic acid aqueous solution. TEM analysis was performed using a Philips EM208 (Netherlands) instrument equipped with CCD camera “grand champ AMT”. Stability studies Nanoemulsions and lipoplexes stability studies were performed by the microemultocrit technique [15]. The micro-emultocrit was performed by filling 75% of a heparin-free capillary tube with each formulation and placing it in a microcentrifuge (Fanen, São Paulo, SP, Brazil) at 11500g for 10 minutes. After the centrifugation cycle, the capillary tubes were placed against a microhematocrit scale, and the creaming index (CI) was directly measured. The creaming was, then, followed by the measurement of the CI value, which was obtained by the ratio between the cream layer and the total emulsion layer according to the equation: %CI = (HC/HO) x 100, 62 ARTIGOS DERIVADOS DA TESE where HC is the numeric value of the height of the cream layer and HO is the numeric value of the total height of the emulsion. Agarose Gel Electrophoresis The structures of cationic lipid nanoemulsions/DNA complex were examined by a gel retardation assay to confirm the compact association of plasmid DNA with cationic lipids. The degree of DNA condensation and restrictive access to ethidium bromide (EtBr) was assessed using agarose gel electrophoresis and expressed as cationic lipid nanoemulsion/DNA ratio (C/D) (nmol/μg) and by evaluating the retardation of DNA migration by fluorescence measurements of EtBr. 8.5 μg of plasmid were mixed with crescent quantities of nanoemulsions (0.5 to 15.0 μL), which means a C/D value between 0.07 to 2.02 nmol/μg for ED nanoemulsions, and 0.17 to 5.3 nmol/μg for ES nanoemulsions. The time of complexation was 30 min at room temperature. The complexes were then loaded onto 0.7% agarose gels containing EtBr (0.5 mg/ml) at 40 mM Tris acetate and 1mM EDTA gel running buffer. The gel was run at 80 mV for 60 min. The trapping efficiency of the plasmid to lipid emulsion was determined as the DNA being no longer accessible to EtBr intercalation. ES nanoemulsions were analyzed using a higher C/D ratio (25.81 to 129.05 nmol/μg for ES AP nanoemulsions and 64.52 to 129.05 for ES OP nanoemulsions, respectively) and the difference between them were also evaluated. RESULTS AND DISCUSSION Nanoemulsions characterization Nanoemulsions were prepared using an O/W method, as previously reported [14]. First, liposomes were produced by sonication of dried lipid thin film in distilled water, and these were immediately mixed with MCT oil core, followed by sonication. The nanoemulsions thus produced were well-dispersed and very stable in aqueous solution. Table 2 shows the results for droplet size, zeta and PI of BE, ED e ES nanoemulsions. The mean droplet size of emulsions was under 200 nm while the PI varied from 0.169 to 0.244. PI indicates the particle size distribution and the smaller it is, the more consistent the size distribution of dispersion is. ζ-potential characterizes the surface charge of particles which is an indicator of the long term stability. ζ-potential absolute values of ≥ 30mV represent a stable formulation [16]. The inversion of ζ- potential value of BE 63 ARTIGOS DERIVADOS DA TESE from negative to positive caused by the addition of both cationic surfactants SA or DOTAP, confirms that the cationic surfactants are successfully placed on the of the emulsion droplets. Transmission interface electron microscopy investigations of the oil droplets showed the typical appearance of an O/W emulsion with droplets displaying a size lower that 200 nm (Figure 1), confirming the PCS experiments. These results are in agreement with results previously reported for emulsions obtained by sonication emulsification procedures [17-19]. In order to evaluate the influence of the poor solubility of SA in oil and water, the cationic surfactant was incorporated separately in the two phases of the ES emulsions, aqueous (ES AP) or oily phase (ES OP), and the systems were characterized. The results were compared by the Wilcoxon Test using a significance level of 95% and are shown in Table 3. The results from the Wilcoxon Test for the two groups of emulsions (ES AP and ES OP) showed a P value of 0.2500 e 0.6000 for mean particle size and ζpotential, respectively. The high P values obtained by the comparison of mean particle size and ζ-potential demonstrate that they do not present any significant difference. Therefore, during the process of preparation of cationic nanoemulsions, SA can be incorporated in both phases and no difference between their physicochemical aspects can be observed. The nanoemulsions described in this study are not only stable, but also welldispersed with a diameter smaller than 200 nm in an aqueous solution. The good physicchemical characteristics of these systems can be related to their compositions. Besides the cationic surfactants, SA and DOTAP, the presence of non-ionic surfactants has already been demonstrated to increment the suitability of cationic nanoemulsions for gene therapy [20]. As a non-ionic surfactant, Tween 80® is used in formulations for gene therapy because of the ethylene glycol domains in lipid structures are reported to improve the transfection ability. In addition, Tween 80® was shown to be an effective surfactant to avoid formation of oil aggregates in emulsions [13, 16]. Concerning the class of the sorbitans, it was also demonstrated that the use of sorbitan trioleate (Span 85®), as an emulsifier to produce solid lipid nanoparticles for gene delivery, helps to maintain the stability of oil droplets in emulsions [21]. This may also be applied to Span 80®. It is important to recognize that the suitability of the cationic systems for gene delivery is not determined only by one part of the cationic lipid, but by a combination of them. The characteristics of the hydrophobic head group and their linker segments that 64 ARTIGOS DERIVADOS DA TESE determine optimal gene transfer depend upon the overall structure of the lipid. DOTAP, presents a quaternary ammonium head group [–N+(CH3)3] which allows steric hindrance at the nitrogen atom and electronic effects of substitutions and the presence of hydrophilic groups, increasing its transfection efficiency [22]. SA nanoemulsions present a more fluid interface because of its monostearyl chain, which can limit the anchorage of DNA molecules [23]. The occurrence of an additional contribution of hydrophobic interactions between oligonucleotides and mixed lipid monolayers composed of DOTAP/lecithin, as compared to SA/lecithin, due to the presence of double acyl chains in the DOTAP molecular structure has been previously described [24]. It is possible that lipids with 1 or 2 hydrocarbon chains decrease the rigidity of bilayers (lower phase transition temperature) and favor a higher inter-membrane transfer rate and lipid mixing, resulting in potential disruption of the endosome and consequent DNA escape from endosomal degradation [22]. The positive charge of the cationic lipids can provide a superficial charge to the emulsions and further interact with negatively charged DNA to form cationic lipid nanoemulsion/DNA complexes [16]. Stability studies Figure 2 shows the results of the micro-emultocrit analyzes. ED, ES AP and ES OP nanoemulsions and lipoplexes showed a CI of 2%. The same results were found for the all lipoplexes demonstrating that the addition of DNA into the nanoemulsion systems does not interfere in their stability. It is known that emulsions are thermodynamically unstable systems and therefore, one of the most important prerequisites in formulating an emulsion is to maintain its physical stability. It has been a long-standing aim to formulate stable emulsions with small particles since the stabilization of emulsion could be achieved by particle size reduction [25]. The longterm physical stability of nanoemulsions (with no apparent flocculation or coalescence) makes them unique and they are sometimes referred to as “approaching thermodynamic stability” [26]. However, it is important to analyze the stability of nanoemulsions after incorporation of actives, especially if they are charged, as nucleic acids, which can disturb the system. The maintenance of stability of the nanoemulsions evaluated in this work shows that the stability of these systems are not disturbed by the incorporation of nucleic acids. 65 ARTIGOS DERIVADOS DA TESE Agarose Gel Electrophoresis The capacity of the cationic lipid nanoemulsions to bind DNA was further evaluated using different cationic lipid nanoemulsion/DNA ratios by agarose gel electrophoresis. The physical characteristics of the cationic lipid nanoemulsions/DNA complex were investigated as a function C/D (nmol/μg). The amount of DNA wasmaintained constant (8.5 μg) and several rates of emulsions (0.5 to 15.0 μL) were tested, which means a variation of C/D ratio from 0.07 to 5.23 nmol/μg. Figure 3 shows the results of the first group of emulsions: ED (A) and ES AP (B). As expected, when the C/D ratio was less than 1, migration of naked plasmid DNA was observed, indicating a poorly compact structure of the cationic lipid nanoemulsion/DNA complex [19]. However, no migration of plasmid DNA was observed when 14 μL of the ED emulsion was added into the 8.5 μg DNA, which means a C/D rate of 1.9 nmol/μg. The ES AP emulsion could not compact all the DNA content even at a C/D rate of 5.23 nmol/μg (15.0 μL of nanoemulsion). This could be explained by the existence of additional hydrophobic interactions due to the presence of a double acyl chain in DOTAP compared to stearylamine. These data are in agreement with others studies [24, 27]. In order to evaluate the complex formation capacity of ES nanoemulsions, a higher C/D ratio was tested and the difference between ES AP and ES OP were also evaluated. These results are shown in Figure 4. Concerning ES AP nanoemulsion, when the lipid nanoemulsion was mixed with the DNA solution, free DNA disappeared when the C/D was 51.6 nmol/μg (4 μL of nanoemulsion). In the case of ES OP nanoemulsion, 100% of the complexes were formed at a C/D ratio value of 129.0 nmol/μg (10 μL of nanoemulsion). Free DNA that did not form a complex with the lipid emulsion was clearly visible at the position of migration of naked DNA at lower complex ratios. At low emulsion concentrations, a pale fluorescent band was observed, sometimes, in the well indicating that the cationic lipid nanoemulsion/DNA complex remained in the well and was stained by EtBr. In some cases, the complex is detected in the agarose gel well by necked eyes, but the EtBr fluorescence was not detected under UV light. It means that the cationic emulsion can also condense the plasmid DNA so strong that the cationic EtBr could not intercalate the base of DNA [28]. The difference between the composition of the systems, as well as the methodology used to produce them, seems to be very important in the formation of the complexes and interfere in the DNA compaction ability. Previous studies have found 66 ARTIGOS DERIVADOS DA TESE diverse C/D ratios, but each one has its own formulation and methodology [13, 21, 2932]. The overall results show the ability of all the emulsions studied in compact DNA, which is mandatory to a successful transfection. However, they present different compaction abilities and therefore, different suitability for the use in gene therapy. ED seems to be the best formulation to be used in gene therapy because of its better capacity of compact DNA. This can be explained by the presence of the cationic lipid DOTAP, which has already been noticed to present better interaction with nucleic acids than SA [23, 33, 34]. Concerning ES nanoemulsions, the ES AP presents better ability to compact DNA than ES OP, and, therefore, is more suitable for the use in gene therapy. CONCLUDING REMARKS In summary, DOTAP and SA were evaluated as possible core oils for nanoemulsion formulations as possible carries in the treatment of XP syndrome. Also, the influence of loading process concerning SA containing nanoemulsions in AP or OP was evaluated. Our findings suggest that ED nanoemulsions are the most promising system to be used as gene carrier since it presents suitable physical-chemical properties (size, ζ-potential and PI), good stability, even after lipoplex formation and higher capacity of DNA compaction. Concerning ES nanoemulsions, no difference was found when physical- chemical properties and stability of ES AP and ES OP were compared. However, the compaction capacity of ES AP is higher than the compaction capacity of ES OP. Therefore, it is preferable to disperse the SA in the aqueous phase than in oily phase. It is already known that cationic lipid nanoemulsions/DNA complexes maintain physical integrity and protect the DNA from enzymatic degradation thus facilitating the transfer of genes into cells and tissues [35]. Moreover, the next step of this work is to evaluate the capacity of DNA protection, transfection activity and cytotoxicity of the systems described in this work. 67 ARTIGOS DERIVADOS DA TESE REFERENCES [1] F. M. Butt, J. R. Moshi, S. Owibingire, and M. L. Chindia, J Craniomaxillofac Surg 38 (2010) 534. [2] M. G. Armelini, K. M. Lima-Bessa, M. C. Marchetto, A. R. Muotri, V. Chigancas, R. A. Leite, H. Carvalho, and C. F. Menck, Human & experimental toxicology 26 (2007) 899. [3] J. E. Cleaver, E. T. Lam, and I. Revet, Nat Rev Genet 10 (2009) 756. [4] A. R. Muotri, M. C. N. Marchetto, L. F. C. Zerbini, T. A. Libermann, A. M. Ventura, A. Sarasin, and C. F. M. Menck, Human Gene Therapy 13 (2002) 1833. [5] M. C. N. Marchetto, A. R. Muotri, D. K. Burns, E. C. Friedberg, and C. F. M. Menck, Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 17759. [6] D. Yarosh, J. Klein, A. O'Connor, J. Hawk, E. Rafal, and P. Wolf, Lancet 357 (2001) 926. [7] F. Jacobsen, J. Mertens-Rill, J. Beller, T. Hirsch, A. Daigeler, S. Langer, M. Lehnhardt, H. U. Steinau, and L. Steinstraesser, J Biomed Biotechnol 2006 (2006) 26060. [8] U. R. Hengge, Clinics in Dermatology 23 (2005) 107. [9] L. M. Verissimo, L. F. Agnez Lima, L. C. Monte Egito, A. G. de Oliveira, and E. S. do Egito, J Drug Target (2009) [10] H. Y. Nam, J. H. Park, K. Kim, I. C. Kwon, and S. Y. Jeong, Archives of Pharmacal Research 32 (2009) 639. [11] M. A. Liu, B. Wahren, and G. B. K. Hedestam, Human Gene Therapy 17 (2006) 1051. [12] O. Zelphati, L. S. Uyechi, L. G. Barron, and F. C. Szoka, Jr., Biochimica Et Biophysica Acta 1390 (1998) 119. [13] T. W. Kim, Y. J. Kim, H. Chung, I. C. Kwon, H. C. Sung, and S. Y. Jeong, Journal of Controlled Release 82 (2002) 455. [14] L. M. Verissimo, in Programa de Pós-Graduação em Biologia Molecular e Genética Vol. Mestre, Universidade Federal do Rio Grande do Norte, Natal, 2007, p. 56. [15] J. P. F. Macedo, L. L. Fernandes, F. R. Formiga, M. F. Reis, T. Nagashima, L. A. L. Soares, and E. S. T. Egito, Aaps Pharmscitech 7 (2006). 68 ARTIGOS DERIVADOS DA TESE [16] C. H. Liu and S. Y. Yu, Colloids Surf B Biointerfaces 79 (2010) 509. [17] T. W. Kim, H. Chung, I. C. Kwon, H. C. Sung, and S. Y. Jeong, Pharmaceutical Research 18 (2001) 54. [18] Y. J. Kim, T. W. Kim, H. Chung, I. C. Kwon, H. C. Sung, and S. Y. Jeong, International Journal of Pharmaceutics 252 (2003) 241. [19] S. M. Kwon, H. Y. Nam, T. Nam, K. Park, S. Lee, K. Kim, I. C. Kwon, J. Kim, D. Kang, J. H. Park, and S. Y. Jeong, Journal of Controlled Release 128 (2008) 89. [20] F. Liu, J. Yang, L. Huang, and D. Liu, Pharmaceutical Research 13 (1996) 1642. [21] C. Olbrich, U. Bakowsky, C.-M. Lehr, R. H. Muller, and C. Kneuer, Journal of Controlled Release 77 (2001) 345. [22] S. Bhattacharya and A. Bajaj, Chem Commun (Camb) (2009) 4632. [23] E. Martini, E. Fattal, M. C. de Oliveira, and H. Teixeira, International Journal of Pharmaceutics 352 (2008) 280. [24] H. Teixeira, C. Dubernet, V. Rosilio, A. Laigle, J. R. Deverre, D. Scherman, S. Benita, and P. Couvreur, Journal of Controlled Release 70 (2001) 243. [25] H. Chung, T. W. Kim, M. Kwon, I. C. Kwon, and S. Y. Jeong, Journal of Controlled Release 71 (2001) 339. [26] K. Bouchemal, S. Briancon, E. Perrier, and H. Fessi, International Journal of Pharmaceutics 280 (2004) 241. [27] C. F. Hung, T. L. Hwang, C. C. Chang, and J. Y. Fang, International Journal of Pharmaceutics 289 (2005) 197. [28] S. W. Yi, T. Y. Yune, T. W. Kim, H. Chung, Y. W. Choi, I. C. Kwon, E. B. Lee, and S. Y. Jeong, Pharmaceutical Research 17 (2000) 314. [29] S. Bhattacharya and S. S. Mandal, Biochimica Et Biophysica Acta-Biomembranes 1323 (1997) 29. [30] S. J. Eastman, C. Siegel, J. Tousignant, A. E. Smith, S. H. Cheng, and R. K. Scheule, Biochimica Et Biophysica Acta 1325 (1997) 41. [31] T. W. Kim, H. Chung, I. C. Kwon, H. C. Sung, B. C. Shin, and S. Y. Jeong, International Journal of Pharmaceutics 295 (2005) 35. [32] H. S. Yoo, S. M. Kwon, Y. J. Kim, H. Chung, I. C. Kwon, J. Kim, and S. Y. Jeong, Journal of Controlled Release 98 (2004) 179. [33] H. Teixeira, C. Dubernet, F. Puisieux, S. Benita, and P. Couvreur, Pharmaceutical Research V16 (1999) 30. [34] H. Teixeira, V. Rosilio, A. Laigle, J. Lepault, I. Erk, D. Scherman, S. Benita, P. 69 ARTIGOS DERIVADOS DA TESE Couvreur, and C. Dubernet, Biophysical Chemistry 92 (2001) 169. [35] H. S. Yoo, O. Mazda, H. Y. Lee, J. C. Kim, S. M. Kwon, J. E. Lee, I. C. Kwon, H. Jeong, Y. S. Jeong, and S. Y. Jeong, Journal of Controlled Release 112 (2006) 139. 70 ARTIGOS DERIVADOS DA TESE TABLES LIST Table 1: Emulsions composition: Basic emulsion (BE), DOTAP containing emulsion (ED) and Stearylamine containing emulsion (ES) Component BE ED ES Captex® 355 (MCT) 5.0%(w/w) 5.0%(w/w) 5.00%(w/w) Span 80® 0.80%(w/w) 0.80%(w/w) 0.80%(w/w) Stearylamine -- -- 0.16%(w/w) Tween 80® 1.20% 1.20% 1.20% DOTAP -- 0.08% -- Distilledwater Qsp. 100% Qsp. 100% Qsp. 100% Table 2: Characterization of Basic Emulsion (BE), DOTAP Emulsion (ED) and Stearylamine Emulsion (ES). Formulation Size (nm) Zeta Potential (ζ) (mV) PI BE 175± 1 -17± 2 0.244 ED 177 ± 1 +33± 1 0.238 ES 141 ± 3 +48 ± 9 0.169 Table 3: Characterization of Stearylamine Emulsions incorporated in Aqueous Phase (AP) or Oily (Phase). Formulation Size (nm) Zeta Potential (ζ) (mV) PI AP 141 ± 3 +48 ± 9 0.201 OP 115 ± 2 +54 ± 2 0.173 71 ARTIGOS ARTIGOS DERIVADOS DERIVADOS DA DA TESE TESE FIGURES LIST FI GURES L I ST Figure 1.TEM FIGURE 1.TEMmicrographs micrographsofofcationic cationicnanoemulsions nanoemulsions(A) (A)DOTAP DOTAPemulsion emulsion and and (B) (B) SA emulsion. emulsion. SA (A) (B) 72 ARTIGOS DERIVADOS DA TESE Figure 2: Micro-emultocrit results showing creaming rate of nanoemulsions and lipoplexes. Creaming Index (%) % of Creaming 2 1,5 1 Without DNA 0,5 With DNA 0 ED ES AP ES OP Formulation Figure 3: Agarose gel electrophoresis picture showing DNA compaction of ED (A) and ES (B) nanoemulsions. A B 73 ARTIGOS DERIVADOS DA TESE Figure 4: Agarose gel electrophoresis picture showing DNA compaction. (A) ES AP Nanoemulsions - Lane 1 shows the positive control: plasmid [0.46 μg] and lane 10 shows the negative control: nanoemulsion. Lanes 2 to 9 show the follow ratios of EC/DNA (nmol/μg): 25.81; 51.62; 64.53; 77.43; 90.34; 103.24; 116.15 and 129.05. OC: Open circular form; SC: Supercoiled form. (B) ES OP (B) nanoemulsions - Agarose gel electrophoresis picture showing DNA compaction of ES OP. Lane 1 shows the positive control: plasmid [0,46μg] and lane 8 shows the negative control: nanoemulsion. Lanes 2 to 7 show the follow ratios of EC/DNA (nmol/μg): 64.53; 77.43; 90.34; 103.24; 116.15 and 129.05. OC: Open circular form; SC: Supercoiled form. (A) (B) 74 ______________________________ Artigo em Redação ______________________________ 4.3 PHYSICOCHEMICAL AND IN VIVO EVALUATION OF LIPOSOMES RECOVERED BY HYALURONIC ACID FOR TARGETING CD44 RECEPTOR OF RETINAL CELLULES Lourena Mafra Verissimo1, 2 Chiara Faedo2 Sophie Rey2 E. Sócrates Tabosa do Egito1 Francine Behar-Cohen3 Amelie Bochot2 Elias Fatal2 1 Universidade Federal do Rio Grande do Norte (UFRN), Laboratório de Sistemas Dispersos (LASID), Natal/RN, Brazil 2 Paris Sud 11 University, UMR CNRS 8612, Pharmacie Galenique, Faculty of Pharmacy, Châtenay-Malabry, France 3 Centre de Recherche des Cordeliers, Pierre et Marie Curie University, UPMC UMRS 872, Paris, France * Corresponding author: Prof. Elias Fattal University of Paris Sud 11 School of Pharmacy 5 rue JB Clément 92296 Châtenay-Malabry France Tel: 33146835582 Fax: 33146835946 E-mail: [email protected] 76 ARTIGOS DERIVADOS DA TESE INTRODUCTION The eye is a promising target organ for gene therapy because of its unique features like easy accessibility and convenient methods of direct assessment of visual function as an effect of therapy. It presents a small volume tissue to be treated, the need of drug concentration for treatment is low and the diffusion of active products from the eye into the circulation is minimal. Besides, the eye benefits from a relative immune privilege, minimizing the potential immune and inflammatory reactions that may follow the intraocular injection of foreign antigens (1, 2). Many eye diseases are chronic and progressive, like macular degeneration and glaucoma, and others are due to genetic mutations, like retinal degeneration. Several methods of nucleic acids delivery to ocular cells have been investigated. Thought viral vectors has been widely studied, nonviral vectors for potential gene replacement and therapy have been developed in order to overcome the drawbacks of viral vectors (3). Nanocarriers such as polymeric micelles are promising methods of corneal gene delivery (4, 5) and various nonviral vectors as liposomes and polymers, have been studied for gene delivery to the retina (1, 6). All types of nucleic acids have been developed for the treatment of ocular diseases, mainly infectious and cell proliferative diseases affecting mostly the posterior segment of the eye. However, to improve the efficiency of such molecules, the use of controlled and/or targeted delivery systems is surely needed since they allow protection against degradation, increase the intracellular penetration and permit the long-term delivery avoiding repeated administrations (7). Hyaluronan (HA), a multifunctional, high molecular weight glycosaminoglycan, is a component of the majority of extracellular matrices. It exerts a biological effect by binding to families of cellular receptors, the hyaladhedrins. Receptor binding activates signal pathways in endothelial cells leading to proliferation, migration and differentiation collectively termed angiogenesis (8). It appears to exert its biological effects through binding interactions with at least two cell surface receptors: CD44 and receptor for HA-mediated motility (RHAMM). RHAMM and CD44, through interactions with their ligands, are both important to processes required for the formation of new blood vessels (9). It has also been demosntrated in animal models that introduction of reagents interfering with CD44–ligand interactions can inhibit inflammatory responses, local 77 ARTIGOS DERIVADOS DA TESE tumour growth and metastatic spread indicating that CD44 may be a potential target for therapeutic intervention in these disease states (10, 11). Lipoplexes containing a Hyaluronic acid-dioleoylphosphatidylethanolamine (HA- DOPE) conjugate were designed to target the CD44 receptor on breast cancer cells (12) and lung cancer cells (13). They demonstrated that cationic liposomes containing the HA-DOPE conjugate mediated good transfection on CD44 expressing cell lines in culture. It has been shown that CD44 receptor and Hyaluronic acid (HA) are both present on the ocular surface and retina and play an important role in the physiology of corneal hydration and epithelial regeneration. Besides, the presence of hyaluronan in a formulation for ocular gene delivery might increase the residence time due to its mucoadhesive properties (14-17). Therefore, the aim of this study was analyze the biodistribution of lipoplexes recovered by HA to evaluate the possibility of its use as gene delivery system for ophthalmic maladies. MATERIALS AND METHODS Chemicals The lipids L-alpha-dioleoylphosphatidylethanolamine (DOPE) and N-[1-(2,3Dioleoyloxy)propyl]-N,N,Ntrimethylammoniummethylsulfate (DOTAP) were purchased from Avanti Polar Lipids (USA). High molecular weight hyaluronic acid (HA) (1500 KDa) was obtained from Acros Organics (Belgium); while 1-ethyl-3-[3dimethyl)aminopropyl]carbodiimide (EDAC) and molybdenum blue spray reagent 1.3% were purchased from Sigma-Aldrich (France). Plasmid The plasmid pCMV-luc (7.1 Kb) was kindly provided by Professor Renoir (Université Paris XI, France). It expresses the luciferases protein under CMV promoter and can also be used to assess transfection as well as expression efficiency. The plasmid pCMV-GFP (3.4 Kb) was purchased from PlasmidFactory (Germany). It expresses the EGFP (Enhanced Green Fluorescent Protein) under a CMV promoter and can be used to assess transfection as well as expression efficiency. It was endotoxin free and presented research grade. 78 ARTIGOS DERIVADOS DA TESE Animals 9 months old Lewis rats female were used in this work. These animals were treated in accordance with the Association for Research in Vision and Ophthalmology (ARVO). Experimental procedures were submitted and approved by the ethic committee of Paris Descartes University. HA-DOPE conjugate synthesis and characterization HA-DOPE conjugate was synthesized by an adapted protocol previously described (12). Briefly, 14 mg of HA was dissolved in 5 mL of distilled water and preactivated for 2 h at 37°C by incubation with 6 mg of EDAC at pH 4 adjusted by titration with HCl0.1 N. After that, a suspension of DOPE (360 μg) was added to the HA solution and the pH was adjusted at 8.6with a 0.1 M borate buffer pH 9.4. The reaction proceeded for 24 h at 37°C.To ensure total elimination of DOPE (as demonstrated by thin layer chromatography) the mixture was further dialyzed. Dialysis was carried out using a Spectra/Por regenerated cellulose membrane with a molecular cutoff of 15,000.Sample volume was 6.0 mL while the volume of the dialysis fluid was 3 L. The dialysis bag was changed 3 times in 24h ensuring elimination of the last traces of DOPE. Although DOPE is known to self-aggregate, the dilution was such that it allows total removal of DOPE. The solution containing the HA-DOPE conjugate was purified by ultrafiltration (MWCO 10 kDa) (Amicon Ultrafiltration, Millipore Corporate, France). Through this process, the HA-DOPE conjugate was completely retained over the filter, while EDAC and all other byproducts of the reaction were washed away. DOPE that did not react with HA was present as very small traces and was also eliminated during ultrafiltration. These purification methods do not allow removal of free HA which remained in the solution containing the HA-DOPE conjugate. The final product was then lyophilized and the reactions were monitored by TLC using F254 silica gel precoated sheets (Saint- Quentin-Fallavier, France). After migration of the mobile phase, sheets were exposed to iodine vapors through molybdenum blue solution (100 mg/100 mL ethanol). Preparation and Characterization of Liposomes and Lipoplexes Liposomes were prepared by the hydration film method. Briefly, the lipids (1,2dioleoyl-3-trimethylammoniumpropane phosphoethanolamine (DOPE) and (DOT AP), 1,2-dioleoyl-sn-glycero-3- rhodamine-phosphatidylethanolamine (PE79 ARTIGOS DERIVADOS DA TESE Rhodamine) dissolved in chloroform were mixed to reach a final lipid mass ratio of 5.0:4.7:0.3 respectively. The chloroform was evaporated under vacuum and the resulting lipid film was hydrated with milliQ water to a final concentration of 1 and 10 mg/ mL and vortexed for 8 min. In order to prepare HA-DOPE containing liposomes the conjugate was dissolved in Milli-Q water (1 mg/mL) and added in to the lipid suspensions in final concentration of 10 % (HA-DOPE/lipid). Plasmid DNA, pCMV-luc or pCMV-GFP (1 μg), was complexed with plain cationic liposomes or cationic liposomes containing HA-DOPE at a 2:1 lipid/DNA ratio (w/w) as described above. After formation, lipoplexes were incubated at room temperature for 30 min in the case of pCMV-luc. Concerning pCMV-GFP lipoplexes, kinetics studies were made in the interval time between 30 min and 7 days. The main physicochemical characteristics as droplet size, polydispersity index (PI) and zeta potential of both, liposomes and lipoplexes, were then evaluated by photon correlation spectroscopy (PCS) and electrophoretic mobility, respectively, at 25°C and at an angle of 173° (Malvern Zetasizer Instrument, England). In vivo studies To study the intraocular distribution of liposomes, 10 μl of each cationic DOTAP/DOPE/PE-Rhodamine liposomes formulation was injected into the vitreous body of the rats. Eight Lewis rats were anesthetized by intraperitoneal injection of 0.15 mL pentobarbital (5.47 g/100 mL saline). Pupils were dilated by instillation of one drop of tropicamide 5%. One drop of tetracaine 1% was administered for local anesthesia. Intravitreal injections (10 μL) were performed in both eyes using sterile syringes fitted with a 30-gauge needle (Microfine, Becton Dickinson AG, Meylan, France), as previously described (18). For therapeutic study, 4 groups of rats received one intravitreal injection of different formulations in both eyes as described in Table 1 and were sacrificed in day 3 or 7. Immunohistochemistry was used to identify internalization of liposomes. For sections, rat eyes were enucleated and post-fixed in 4% paraformaldehyde and cryoprotected using sucrose. They were embedded in optimal cutting-temperature (OCT) compound (Tissue-Tek; Miles Inc., Bayer Diagnostics, Puteaux, France), frozen in liquid nitrogen and stored at −80 °C. Cryostat frozen sections (10 μm thick) (Leica CM 3050S, Wetzlar, Germany) were performed and mounted on gelatin-coated slides for immunohistochemical analysis. 80 ARTIGOS DERIVADOS DA TESE RESULTS AND DISCUSSION Liposomes and Lipoplexes were prepared by hydration film method and were composed by DOTAP/DOPE/PE-Rhod (5.0/4.7/0.3 w/w/w). Four different groups of formulations (1 or 10 mg of lipids, containing or not 10% of HA-DOPE) were made and each of them were complexed with pCMV –luc or pCMV -GFP . The results of Size, Polydispersity Index (PI) and zeta potential of liposomes and lipoplexes are shown in Table 2 A and B respectively. Liposomes presented a variation of medium size values between 300 and 500 nm depending on the formulation. The addition of HA-DOPE conjugate does not highly modify size of formulations but decreases zeta potential values. This was expected since HA is negatively charge and the conjugate is placed in the system’s interfaces. Concerning lipoplexes, it is observed that the addition of plasmid DNA reduces size, PI and turns zeta potential negative, which was expected because of the negative charge of DNA. However, there was a difference in size between the ones using pCMVluc as nucleic acid, and the others using pCMV-GFP. Lipoplexes containing pCMV-luc present a medium size around 250 nm, a PI around 0.250 and zeta potential value around -25 mV. However, lipoplexes of 10 mg/mL of lipids formed with pCMV-luc precipitated after complex formation and could not be used for further studies, even with good results of size, PI and Zeta Potential. pCMV-GFP lipoplexes showed higher medium size values and PI increased significantly after complexation time of 30 minutes. In order to investigate if the difference between the plasmids studied could interfere in the complexation time, kinetics studies were made for pCMG-GFP lipoplexes in one interval of 7 days. Figure 1 shows the results of kinetics studies for formulations of 1mg/mL of lipids concentration (A) and 10 mg/mL of lipids concentration (B), both containing HADOPE conjugate. It was observed that after 2 days pCMV-GFP lipoplexes were well formed for both formulations. The higher time for complex formation between the two plasmids could be explained by the difference in conformation between them. pCMG-GFP presents a more supercoiled conformation and therefore, could get more time to form stable complexes. The design of highly efficient carriers for gene delivery has been approached by many research groups. These nonviral vectors should be able not only to cure diseases with genetic defects but also to treat and prevent major chronic diseases such as cancer, cardiovascular diseases and rheumatoid arthritis. Among the nonviral gene delivery 81 ARTIGOS DERIVADOS DA TESE systems, cationic liposomes have been widely investigated. Lipoplexes containing a Hyaluronic acid-dioleoylphosphatidylethanolamine (HA-DOPE) conjugate had already been designed to target the CD44 receptor on breast cancer (12) and lung cancer cells (13) and the physical-chemical characteristics showed in this study agree with the results demonstrated by these previous works. Because these systems were formulated for ophthalmic administration, we evaluated size and PI of formulations after dilution in NaCl 0.9%. The results are shown in Figure 2. It is shown that there is no difference between size and PI after dilution of formulations in NaCl 0.1 mM or 0.9%. This means that these formulations could be used in biological fluids without aggregates formation. In vivo studies of pCMV-luc lipoplexes were carried out using only the concentration of 1 mg/mL of lipids. It had been demonstrated that liposomes and lipoplexes containing HA could penetrate into the retina and that inflammation severity seemed to impact on system stability resulting in the delayed release of Vasoactive Intestinal Peptide (VIP) turning this system one efficient strategy to obtain a sustained delivery of VIP in ocular and lymph node tissues (18). In the present study, immunohistochemistry analysis showed that after 3 and 7 days of incubation in the animals, the formulations caused high inflammation and destroyed the retina. In order to evaluate if the inflammation was caused by the endotoxins presented in the plasmid that was not previously purified, lipoplexes containing pCMV-GFP with high purity and endotoxin free were evaluated. Figure 3 shows the results of immunohistochemistry for lipoplexes in a concentration of 1 mg/mL of lipids without HA-DOPE (A), lipoplexes in a concentration of 1 mg/mL of lipids with HA-DOPE (B), lipoplexes in a concentration of 10 mg/mL of lipids without HA-DOPE (C), and lipoplexes in a concentration of 10 mg/mL of lipids with HA- DOPE (D). It is observed that all lipoplexes formulations induced inflammation into the vitreous and that inflammatory cells internalize the lipoplexes. Therefore, it can be say that inflammation is caused by the formulations and not by endotoxins present in the pCMV-luc. Comparing the formulations containing or not HADOPE, it is observed in a qualitatively analysis that HA-DOPE conjugate decreases the inflammation caused by the lipoplexes, but this could just be confirmed after quantitative analysis, as counting of inflammatory cells. Because all formulations caused inflammation, it would be interesting to investigate what could be the reason for that. Some possibilities could be the charge and toxicity of cationic surfactants or the residue of solvents. 82 ARTIGOS DERIVADOS DA TESE CONCLUSIONS The eye is a good candidate for gene therapy because of its easy accessibility and the fact that the eye is an immune-privileged site. While recent trends in the literature show that non-viral chemical routes for ocular gene delivery are being developed, most of the systems chosen for delivery are not specially designed to overcome its barriers. The presence of HA and receptor CD44 in ocular surface and retina promoted the interest in studying the biodistribution of liposomes containing HADOPE conjugate. It was demonstrated that the difference in size and conformation of plasmids interferes in the complex formed between DNA and lipids. Also, it was demonstrated that lipoplexes containing pCMV-GFP can be used in a concentration 10 times higher than the lipoplexes prepared with pCMV-luc. This could be interesting because the amount of liposomes instilled in the eyes of the animals could be lower, which is more comfortable and less problematic. Unfortunately, all the formulations caused inflammation in the animals’ eyes and further studies should be made to investigate the possible reasons of that. 83 ARTIGOS DERIVADOS DA TESE REFERENCES 1. R. Naik, A. Mukhopadhyay, and M. Ganguli. Gene delivery to the retina: focus on non-viral approaches. Drug Discov Today 14: 306-15 (2009). 2. C. Andrieu-Soler, R. A. Bejjani, T. de Bizemont, N. Normand, D. BenEzra, and F. Behar-Cohen. Ocular gene therapy: a review of nonviral strategies. Mol Vis 12: 133447 (2006). 3. C. Bloquel, J. L. Bourges, E. Touchard, M. Berdugo, D. BenEzra, and F. BeharCohen. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 58: 1224-42 (2006). 4. K. A. Williamsand D. J. Coster. Gene therapy for diseases of the cornea - a review. Clin Experiment Ophthalmol 38: 93-103 (2010). 5. J. Hao, S. K. Li, W. W. Kao, and C. Y. Liu. Gene delivery to cornea. Brain Res Bull 81: 256-61 (2010). 6. K. Hironaka, Y. Inokuchi, Y. Tozuka, M. Shimazawa, H. Hara, and H. Takeuchi. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. Journal of Controlled Release 136: 247-253 (2009). 7. E. Fattal and A. Bochot. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 58: 1203-23 (2006). 8. J. Gaffney, S. Matou-Nasri, M. Grau-Olivares, and M. Slevin. Therapeutic applications of hyaluronan. Mol Biosyst 6: 437-43 (2009). 9. R. C. Savani, G. Cao, P. M. Pooler, A. Zaman, Z. Zhou, and H. M. DeLisser. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HAmediated motility in endothelial cell function and angiogenesis. J Biol Chem 276: 36770-8 (2001). 10. C. M. Isackeand H. Yarwood. The hyaluronan receptor, CD44. Int J Biochem Cell Biol 34: 718-21 (2002). 84 ARTIGOS DERIVADOS DA TESE 11. V. M. Plattand F. C. Szoka, Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5: 474-86 (2008). 12. C. Surace, S. Arpicco, A. Dufay-Wojcicki, V. Marsaud, C. Bouclier, D. Clay, L. Cattel, J. M. Renoir, and E. Fattal. Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol Pharm 6: 1062-73 (2009). 13. S. Taetz, A. Bochot, C. Surace, S. Arpicco, J. M. Renoir, U. F. Schaefer, V. Marsaud, S. Kerdine-Roemer, C. M. Lehr, and E. Fattal. Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44expressing lung cancer cells. Oligonucleotides 19: 103-16 (2009). 14. S. N. Zhu, B. Nolle, and G. Duncker. Expression of adhesion molecule CD44 on human corneas. Br J Ophthalmol 81: 80-4 (1997). 15. N. P. Liu, W. L. Roberts, L. P. Hale, M. C. Levesque, D. D. Patel, C. L. Lu, and G. J. Jaffe. Expression of CD44 and variant isoforms in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 38: 2027-37 (1997). 16. L. E. Lerner, D. M. Schwartz, D. G. Hwang, E. L. Howes, and R. Stern. Hyaluronan and CD44 in the human cornea and limbal conjunctiva. Exp Eye Res 67: 481-4 (1998). 17. M. Hornof, M. de la Fuente, M. Hallikainen, R. H. Tammi, and A. Urtti. Low molecular weight hyaluronan shielding of DNA/PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. J Gene Med 10: 70-80 (2008). 18. L. Lajavardi, S. Camelo, F. Agnely, W. Luo, B. Goldenberg, M. C. Naud, F. BeharCohen, Y. de Kozak, and A. Bochot. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release 139: 22-30 (2009). 19. A. M. Henriques, C. Madeira, M. Fevereiro, D. M. Prazeres, M. R. Aires-Barros, and G. A. Monteiro. Effect of cationic liposomes/DNA charge ratio on gene expression and antibody response of a candidate DNA vaccine against Maedi Visna virus. Int J Pharm 377: 92-8 (2009). 85 ARTIGOS DERIVADOS DA TESE ARTIGOS DERIVADOS DA TESE ARTIGOS DERIVADOS DA TESE T ABL E L EGENDS: TABLE LEGENDS: T ABL E L EGENDS: Table 1: Distribution of animals and formulations for in vivo studies. Table Table 1: Distribution of animals forininvivo vivo studies. 1: Distribution of animalsand andformulations formulations for studies. Group Animal Group 1 2 For mulation T ime of For mulation T ime of analysis Animal Rat 1 analysis Day 3 DOPE/DOTAP/PE-Rhod 1 mg/mL Rat 1 DOPE/DOTAP/PE-Rhod 1 mg/mL DOPE/DOTAP/PE-Rhod 1 mg/mL 1 Rat 2 Rat 2 DOPE/DOTAP/PE-Rhod 1 mg/mL Rat 3 Rat 3 Day 3 Day 7 Day 7 DOPE/DOTAP/PE-Rhod 1 mg/mL + HADOPE Day 3 DOPE/DOTAP/PE-Rhod 1 mg/mL + HADOPE Day 3 2 Rat 4 DOPE/DOTAP/PE-Rhod 1 mg/mL + HADOPE Rat 4 DOPE/DOTAP/PE-Rhod 1 mg/mL + HADOPE 3 3 4 4 Day 7 Day 7 RatRat 5 5 DOPE/DOTAP/PE-Rhod 10 mg/mL mg/mL DOPE/DOTAP/PE-Rhod 10 RatRat 6 6 DOPE/DOTAP/PE-Rhod 10 mg/mL mg/mL DOPE/DOTAP/PE-Rhod 10 Day Day 3 3 Day Day 7 7 RatRat 7 7 DOPE/DOTAP/PE-Rhod 10 mg/mL mg/mL++HADOPE HADOPE DayDay DOPE/DOTAP/PE-Rhod 10 3 3 DOPE/DOTAP/PE-Rhod 10 7 7 RatRat 8 8 DOPE/DOTAP/PE-Rhod 10 mg/mL mg/mL++HADOPE HADOPE DayDay Table 2: Characterization liposomes(A) (A) and and lipoplexes Table 2:2:Characterization of liposomes lipoplexes(B). (B). Table Characterization ofof liposomes (A) and lipoplexes (B). L iposomes L iposomes Size (nm) PI Z eta (mV ) 526 ± 7 0.291 ± 0.03 +73 ± 2 +39 ± 1 Size (nm) 1 mg/mL Lipids PI 1 mg/mL Lipids 526 ± 7 436 ± 8 0.279 ± 0.02 1 mg/mL Lipids with HADOPE 10 mg/mL Lipids 436 ±8 334 ± 6 0.445 ± 0.01 10 mg/mL Lipids 10 mg/mL Lipids with HADOPE 334±±10 6 402 10 mg/mL Lipids with HADOPE 402 ± 10 (A) 1 mg/mL Lipids with HADOPE Size (nm) (A) L ipoplexes L ipoplexes 1 mg/mL Lipids luc GFP 10 mg/mL Lipids luc GFP 0.279 ± 0.02 +77+39 ±1 ±1 0.445± ±0.01 0.01 +39+77 0.440 ± 1± 1 0.440 ± 0.01 +39 ± 1 PI Z eta (mV ) PIpCM V pCM V -luc GFP pCM V - pCM VZ- eta pCM(mV V- ) luc GFP pCM V - pCM V - pCM V -luc GFP luc GFP 0.242 ± 0.02 0.249 ± 0.03 -26 ± 2 -36 ± 2 248 ± 10 319 ± 11 0.218 ± 0.01 0.198 ± 0.02 -25 ± 1 -41 ± 2 231± 11 380 ± 15 0.244 ± 0.02 0.233 ± 0.03 -24 ±3 -57 ± 2 1 mg/mL Lipids with HADOPE 277 ± 12 331 ± 3 10 mg/mL Lipids with HADOPE 258 ± 9 10 mg/mL Lipids +73 ± 2 248 ± 10 319 ± 11 0.218 ± 0.01 0.198 ± 0.02 -25 ± 1 -41 ± 2 1 mg/mL Lipids with HADOPE 277 ± 12 331 ± 3 1 mg/mL Lipids 0.291 ± 0.03 pCM V - (nm) pCM V Size pCM V - pCM V - Z eta (mV ) 0.242 ± 0.02 0.249 ± 0.03 -26 ± 2 -36 ± 2 383 ± 15 0.254 ± 0.05 0.271± 0.07 -31 ± 1 -55 ± 1 231± 11 380(B) ± 15 0.244 ± 0.02 0.233 ± 0.03 -24 ±3 -57 ± 2 10 mg/mL Lipids with HADOPE 258 ± 9 383 ± 15 0.254 ± 0.05 0.271± 0.07 -31 ± 1 -55 ± 1 (B) 86 ARTIGOS DERIVADOS DA TESE FIGURE LEGENDS: Figure 1: Kinetics studies of lipoplexes containing HADOPE (10%) formed by pCMVGFP in concentrations of 1 mg/mL of lipids (A) and 10 mg/mL of lipids (B). 87 ______________________________ Capítulo 4 Considerações Finais CONSIDERAÇÕES FINAIS 5. CONSIDERAÇÕES FINAIS A Biotecnologia é um ramo muito amplo da Tecnologia que se ocupa da transformação ou tratamento de materiais de origem biológica onde se insere a terapia gênica. Durante os últimos anos, o desenvolvimento de diferentes vetores para o transporte de genes às células de mamíferos tem despertado um enorme interesse devido à possibilidade de tratamento de doenças humanas de origem genética. Apesar do enorme progresso, para que a terapia gênica seja segura e eficientemente aplicada clinicamente, uma série de problemas técnicos ainda necessita de resolução. O Sucesso da terapia gênica requer um conhecimento considerável quanto à natureza da patologia alvo, do período de tratamento, e da segurança e eficiência das ferramentas de transporte gênico. Um vetor ideal seria aquele que fosse biocompatível, não imunogênico e estável na circulação sanguínea, protegesse o ADN durante o transporte, pudesse acomodar um tamanho ilimitado de material genético, fosse disponível em uma forma concentrada, pudesse ser facilmente produzido, pudesse ser direcionado para tipos celulares específicos, não permitisse replicação autônoma do material genético, pudesse garantir uma expressão gênica em longo prazo e fosse nãotóxico. Infelizmente, tal vetor ainda não existe e nenhum dos sistemas de entrega de DNA atualmente disponíveis para transferência gênica in vivo pode ser aplicado de maneira universal. Os vetores não virais mediados por lipídeos catiônicos, como lipossomas e nanoemulsões catiônicos, são bastante promissores para utilização na terapia gênica e um grande progresso tem sido alcançado no desenvolvimento destes sistemas no que concerne o transporte de genes em células de mamíferos em estudos in vivo e in vitro. Lipossomas e nanoemulsões catiônicas apresentam biocompatibilidade, baixa toxicidade, e a possibilidade de serem produzidos em larga escala, o que é fundamental em futuras aplicações clínicas. As características físico-químicas destes sistemas podem ser controladas variando seus constituintes como lipídeos catiônicos, lipídeos neutros, cotensoativos, e núcleo oleoso (no caso das nanoemulsões). Além disso, o maior tempo de circulação ou a vetorização célula-específica destes sistemas podem prolongar sua circulação sanguínea e melhorar seus efeitos terapêuticos reduzindo os efeitos adversos. Contudo, os lipídeos catiônicos ainda apresentam alguns problemas como baixa 91 CONSIDERAÇÕES FINAIS eficiência de transfecção e incompatibilidade sérica quando comparados aos vetores virais. Alguns fatores como, a composição e arquitetura dos lipídeos, a razão de carga lipídeo/ADN, os diferentes tipos celulares, força iônica e as estruturas dos lipoplexos ainda precisam ser otimizados para o sucesso da terapia gênica em ensaios clínicos. Após atingir a membrana celular, um dos maiores obstáculos é a instabilidade destes sistemas no citoplasma e conseqüentemente, seu transporte até o núcleo. Logo, ainda existe uma enorme necessidade de continuação nas pesquisas de desenvolvimento de vetores eficientes, que possam ajudar os agentes terapêuticos a atravessarem as barreiras começando pela membrana celular, passando pelo citoplasma até chegar ao núcleo. Neste trabalho, dois diferentes tipos de vetores não virais, nanoemulsões e lipossomas catiônicos, foram avaliados. Ambos os sistemas se apresentaram físicoquimicamente adequados possibilitando que os estudos in vitro e in vivo possam ser realizados posteriormente. No caso das nanoemulsões, as que contêm DOTAP parecem ser mais eficientes na formação dos lipoplexos. No entanto, os resultados também apontam que não se pode descartar a utilização da EA como lipídeo catiônico para esta finalidade. Considerando o segundo tipo de sistema, os lipossomas, observou-se que a presença do conjugado ácido hialurônico – DOPE (HA-DOPE) na sua interface não interfere nas suas características físico-químicas, tornando o sistema promissor para vetorização às células que expressam o receptor CD44 e que estes sistemas apresentam as características necessárias para administração vitreal. Apesar dos grandes desafios enfrentados pela pesquisa na área da terapia gênica, existe uma evolução notável especialmente no que concerne o desenvolvimento de novos vetores não virais e diferentes formulações que podem ser utilizadas para tratamento de diferentes tipos de doenças e administrados através das mais diversas vias. 92 ______________________________ Anexo Trabalhos derivados da tese TRABALHOS DERIVADOS DA TESE 6. ANEXO 6.1 RESUMOS PUBLICADOS EM CONGRESSOS 1. VERÍSSIMO, Lourena Mafra; JÚNIOR ALEXANDRINO, Francisco; MARTINS, Alexandre da Silva; SILVA, André Leandro; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. DIFFERENCE ON PHYSICOCHEMICAL PROPERTIES AND DNA COMP ACTION EFFICIENCY OF NANOEMULSIONS FOR THERAPY GENE USING DISTINCT SURFACTANTS. In: 70TH INTERNATIONAL CONGRESS OF FIP, 2010, Lisboa. 70th International Congress of FIP, 2010. 2. VERISSIMO, L. M.; ALEXANDRINO JÚNIOR, F.; SILVA, A. L.; MARTINS, A. S.; SILVA, K. G. H.; Silva, G. C.; AGNEZ-LIMA, L.F.; EGITO, E. S. T.. REPRODUCIBILITY EVALUATION OF STEARYLAMINE CONTAINING NANOEMULSIONS FOR GENE THERAPY. In: 3rd International NanoBio Conference, 2010, Zurique, Suiça. 3rd International NanoBio Conference, 2010. 3. VERÍSSIMO, Lourena Mafra; JÚNIOR ALEXANDRINO, Francisco; SILVA, André Leandro; MARTINS, Alexandre da Silva; SILVA, Acarízia Eduardo; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. AVALIAÇÃO DA CITOTOXICIDADE DE NANOEMULSÕES CATIÔNICAS CONTENDO ESTEARILAMINA PARA TERAPIA GÊNICA. In: XX CONGRESSO PANAMERICANO DE FARMÁCIA E XIV CONGRESSO DA FEDERAÇÃO FARMACÊUTICA SUL-AMERICANA, 2010, Porto Alegre. XX Congresso PanAmericano de Farmácia e XIV Congresso da Federação Farmacêutica Sul-Americana, 2010. 4. VERÍSSIMO, Lourena Mafra; SILVA, André Leandro; JÚNIOR ALEXANDRINO, Francisco; MARTINS, Alexandre da Silva; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. AVALIAÇÃO DA ESTABILIDADE DE NANOEMULSÕES PARA MICROEMULTÓCRITO. In: TERAPIA XX GÊNICA CONGRESSO PAN- ATRAVÉS DO AMERICANO DE 94 TRABALHOS DERIVADOS DA TESE FARMÁCIA E XIV CONGRESSO DA FEDERAÇÃO FARMACÊUTICA SULAMERICANA, 2010, Porto Alegre. XX Congresso Pan-Americano de Farmácia e XIV Congresso da Federação Farmacêutica Sul- Americana, 2010. 5. VERÍSSIMO, Lourena Mafra; SILVA, André Leandro; JÚNIOR ALEXANDRINO, Francisco; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. AVALIAÇÃO QUALITATIVA DA INFLUÊNCIA DO TEMPO NA FORMAÇÃO DE LIPOPLEXOS PARA TERAPIA GÊNICA. In: II Simpósio Internacional de Genética Clínica da UFRN, 2010, Natal. II Simpósio Internacional de Genética Clínica da UFRN, 2010. 6. VERÍSSIMO, Lourena Mafra; SILVA, André Leandro; JÚNIOR ALEXANDRINO, Francisco; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. INFLUENCIA DEL CAMBIO DE LA FASE DE INCORPORACIÓN DE ESTEARILAMINA EN EL PROCCESO DE COMPLEJACIÓN DEL ADN POR NANOEMULSIÓN CATIÓNICA. In: 2da Escuela de Nanomedicinas - 1er Simposio Latinoamericano de Nanomedicinas, 2010, Buenos Aires. 2da Escuela de Nanomedicinas - 1er Simposio Latinoamericano de Nanomedicinas - Libro de Resúmenes, 2010. p. 49-50. 7. VERÍSSIMO, Lourena Mafra; SILVA, André Leandro; JÚNIOR ALEXANDRINO, Francisco; MARTINS, Alexandre da Silva; SILVA, Kattya Gyselle de Holanda e; BRUXEL, Fernanda L; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. INVESTIGATION OF STEARYLAMINE LOADING PROCESS ON AQUEOUS AND OIL PHASE OF CATIONIC NANOEMULSIONS. In: 2nd Conference Innovation in Drug Delivery: From Preformulation to Development Through Innovative Evaluation Process, 2010, Aix en Provence. 2nd Conference Innovation in Drug Delivery: From Preformulation to Development Through Innovative Evaluation Process - Programme and Abstracts, 2010. 8. VERÍSSIMO, Lourena Mafra; JÚNIOR ALEXANDRINO, Francisco; SILVA, André Leandro; ARAÚJO, Ivonete Batista; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. THE ROLE OF DOTAP AND STEARYLAMINE ON THE DNA COMPACTION PROCESS OF CATIONIC EMULSIONS FOR GENE 95 TRABALHOS DERIVADOS DA TESE THERAPY. In: CIFARP 2009 7th INTERNATIONAL CONGRESS OF PHARMACEUTICAL SCIENCES, 2009, Ribeirão Preto. CIFARP 2009 7th INTERNATIONAL CONGRESS OF PHARMACEUTICAL SCIENCES, 2009. 9. VERÍSSIMO, Lourena Mafra; SILVA, André Leandro; JÚNIOR ALEXANDRINO, Francisco; ARAÚJO, Ivonete Batista; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. PRE-VALIDATION STEP ON THE SPECTROPHOTOMETRIC ANALYSIS FOR NUCLEIC ACIDS. In: CIFARP 2009 7th INTERNATIONAL CONGRESS OF PHARMACEUTICAL SCIENCES, 2009, Ribeirão Preto. CIFARP 2009 7th INTERNATIONAL CONGRESS OF PHARMACEUTICAL SCIENCES, 2009. 10. VERÍSSIMO, Lourena Mafra; SILVA, André Leandro; JÚNIOR ALEXANDRINO, Francisco; AGNEZ-LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. INFLUENCE OF THE CATIONIC AGENT OF AN EMULSION SYSTEM INTENDED FOR GENE THERAPY ON DNA COMPACTION PROCESS. In: Meeting on Nanotechnology, Liposomes and Health, 2009, Itaparica. Meeting on Nanotechnology, Liposomes and Health, 2009. 11. AMORIM, Marcelo Vitor de Paiva; VERÍSSIMO, Lourena Mafra; AGNEZ- LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. INFLUENCE OF DOTAP AND PLASMID DNA ON THE STABILITY OF NANOEMULSIONS FOR GENE THERAPY. In: I International Symposium in Pharmaceutical Sciences of Northeast Brazil, 2008, Natal. I International Symposium in Pharmaceutical Sciences of Northeast Brazil, 2008. 12. EGITO, Eryvaldo Sócrates Tabosa Do; VERÍSSIMO, Lourena Mafra; AGNEZLIMA, Lucymara Fassarela; AMORIM, Marcelo Vitor de Paiva. EVALUATION OF A NEW EMULSION FORMULATION FOR GENE DELIVERY. In: PSWC 2007 Pharmaceutical Sciences World Congress, 2007, AMSTERDAM. Optimising Drug Therapy: an imperative for world health, 2007. 13. VERÍSSIMO, Lourena Mafra; AMORIM, Marcelo Vitor de Paiva; AGNEZ- LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. CHARACTERIZATION 96 TRABALHOS DERIVADOS DA TESE OF A NEW NANOEMULSION FOR GENE DELIVERY. In: CIFARP 6th International Congress of Pharmaceutical Sciences, 2007, Ribeirao Preto. CIFARP 6th International Congress of Pharmaceutical Sciences, 2007. 14. AMORIM, Marcelo Vitor de Paiva; VERÍSSIMO, Lourena Mafra; AGNEZ- LIMA, Lucymara Fassarela ; EGITO, Eryvaldo Sócrates Tabosa Do. PERSPECTIVAS DA UTILIZAÇÃO DE SISTEMAS EMULSIONADOS PARA TERAPIA GÊNICA. In: XVIII Congresso de Iniciação Científica da UFRN - CIC 2007, 2007, Natal. XVIII Congresso de Iniciação Científica da UFRN - CIC 2007, 2007. 15. AMORIM, Marcelo Vitor de Paiva; VERÍSSIMO, Lourena Mafra; AGNEZ- LIMA, Lucymara Fassarela; EGITO, Eryvaldo Sócrates Tabosa Do. UTILIZAÇÃO DO MÉTODO DE SONICAÇÃO PARA OBTENÇÃO DE EMULSÕES PARA TERAPIA GÊNICA. In: IX Congresso Científico da UNP Educação, Ciência e Cultura: Construindo a Cidadania, 2007, Natal. IX Congresso Científico da UNP Educação, Ciência e Cultura: Construindo a Cidadania, 2007. 97 TRABALHOS DERIVADOS DA TESE 6.2 ARTIGO PUBLICADO NO JOURNAL OF DRUG TARGETING Pharmaceutical emulsions: a new approach for gene therapy Lourena Mafra Verissimo, Lucymara Fassarela Agnez Lima, Lucila Carmem Monte Egito, Anselmo Gomes de Oliveira, E. Sócrates Tabosa do Egito. Journal of Drug Targeting Jun 2010, Vol. 18, No. 5, Pages 333-342: 333-342. Summary: The concept of gene therapy involves the experimental transfer of a therapeutic gene into an individual’s cells and tissues to replace an abnormal gene aiming to treat a disease, or to use the gene to treat a disease just like a medicine, improving the clinical status of a patient. The achievement of a foreigner nucleic acid into a population of cells requires its transfer to the target. Therefore, it is essential to create carriers (vectors) that transfer and protect the nucleic acid until it reaches the target. The obvious disadvantages of the use of viral vectors have directed the research for the development of a nonviral organized system such as emulsions. In fact, recently, there has been an increase of interest in its use in biotechnology as a nonviral vector for gene therapy. This review focuses on the progress of cationic emulsions and the improvement of the formulations, as a potential delivery system for gene therapy. Keywords Cationic emulsions, gene transfection, gene therapy, carrier systems, delivery system 98 TRABALHOS DERIVADOS DA TESE TRABALHOS DERIVADOS DA TESE 99 TRABALHOS DERIVADOS DERIVADOSDA DATESE TESE TRABALHOS 100 TRABALHOS DERIVADOS DA TESE 101 TRABALHOS DERIVADOS DERIVADOS DA DA TESE TESE TRABALHOS 102 TRABALHOS DERIVADOS DERIVADOSDA DATESE TESE TRABALHOS 103 TRABALHOS DERIVADOS DA TESE 104 DERIVADOS DA DA TESE TESE TRABALHOS DERIVADOS 105 TRABALHOS TRABALHOS DERIVADOS DERIVADOS DA TESE 106 DERIVADOS DA DA TESE TESE TRABALHOS DERIVADOS 107 TRABALHOS DERIVADOS DERIVADOS DA DA TESE TESE TRABALHOS 108 TRABALHOS DERIVADOS DA TESE 6.3 ARTIGO ACEITO NO THE AMERICAN JOURNAL OF PATHOLOGY MICROGLIA/MACROPHAGES MIGRATE THROUGH RETINAL EPITHELIUM BARRIER BY A TRANSCELLULAR ROUTE: INVOLVEMENT IN DIABETIC RETINOPATHY ROLE OF PKCΖ IN MICROGLIA/MACROPHAGES TRAFFICKING DURING DIABETIC RETINOPATHY IN GOTO KAKIZAKI RATS. 1,2,3 Samy Omri 1,2,3,4 , Francine Behar-Cohen 1,2,3 Sennlaub 1,2,3 , Yvonne de Kozak 5 1,2,3 , Boubaker Omri Florian 1,2,3 , Lourena Mafra Verissimo , Laurent Jonet 1,2,3,4 , , Michèle Savoldelli 1,2,3 , Patricia Crisanti Crisanti P and Omri B contributed equally to the work 1 INSERM, U872 Physiopathology of ocular diseases: Therapeutic innovations, Paris, France 2 Centre de Recherche des Cordeliers, Pierre et Marie Curie University, UPMC UMRS 872, Paris, France 3 Paris Descartes University, UMRS 872, Paris, France 4 Department of Ophthalmology, Hôtel-Dieu de Paris, France 5 Paris Sud 11 University, UMR CNRS 8612, Physico-chemistry-PharmacotechnyBiopharmacy, Faculty of Pharmacy, Châtenay-Malabry, France Number of text pages: 25 Number of table: 1 Number of figures: 7 Short running title: Transcellular RPE route for retinal microglia Corresponding author Correspondence to: Crisanti P. Centre de recherche des Cordeliers 15 Rue de l’Ecole de Medecine, 75270 Paris Cedex 06, France. Tel 33 1 40 46 78 67 Fax: 33 1 40 46 78 65; e-mail: [email protected] 109 TRABALHOS DERIVADOS DA TESE ABSTRACT Diabetic retinopathy is associated with ocular inflammation leading to retinal barriers breakdown, macular edema and visual cell loss. We investigated molecular mechanisms involved in microglia/macrophages trafficking in retina and retinal pigment epithelium (RPE) and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. During early stages of diabetes (up to 5 months), low number of microglia/macrophages was detected in the subretinal space together with numerous pores in RPE cells that allowed inflammatory cells trafficking between retina and choroid. Expression of intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV1) and the atypical PKCζ involved in glucose transport to cell membrane, was identified around RPE pores. In late stages of diabetic retinopathy (12 months of hyperglycemia), the number of pores decreased simultaneously with accumulation of microglia/macrophages in the subretinal space. Intravitreal injection of PKCζ inhibitor in 12 months-old GK rats, reduced iNOS expression in microglia/macrophages, blocked their migration through the retina preventing their subretinal accumulation. We show here that a transcellular pathway through RPE contributes to microglia/macrophages retinal trafficking, a physiological process in which PKCζ plays a key role. During diabetic retinopathy, slowing of this process leads to subretinal accumulation of activated microglia/macrophages that may participate to retinal pathogenic processes. 110 TRABALHOS DERIVADOS DA TESE INTRODUCTION 1, 2 Diabetes is associated with immune imbalance and inflammation . Diabetic retinopathy is a severe complication of type 2 diabetes, leading to blindness due to macular edema and loss of photoreceptors. Ruptures of ocular barriers and local inflammation have been demonstrated as pathogenic events during the course of 2 diabetes . The inner blood retinal barrier is formed by tight-junctions between vascular endothelial cells whilst the outer retinal barrier is specific to the eye and consists of the tight-junction present in a monolayer epithelium, the retinal pigment epithelial cells (RPE). The apical side of RPE faces the photoreceptor outer segments (the neuroretina) and the basolateral side lies on the Bruch’s membrane, which separates the RPE from the fenestrated endothelium of the choriocapillaris. The RPE is a selective exchange platform between the systemic circulation and the retina. The subretinal space between 2 RPE and the neuroretina is an immune-privileged site and RPE and subretinal space are the main sites of pathological manifestations during diabetes onset. Microglial cells, the main resident sentinel immune cells are located around vessels in 3-8 the healthy retina . These cells become activated, accumulate in the subretinal space 9-12 in diabetic retinopathy 13 , and may become neurotoxic . Whilst activation of microglia induced by hyperglycemia has been associated with the early development of diabetic retinopathy, the chronic activation of microglia induced the release of cytokines 14 that cause neuronal cell death . In addition, chronic hyperglycemia also causes oxidative stress that results in the activation of the atypical PKCζ which controls the activity of the transcription factor NF-κB, and regulates the expression of inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), ICAM-1, thus controlling 15-17 vascular permeability and leukostasis . We have previously shown that PKCζ is expressed in ocular macrophages in a rat model of ocular inflammation. Further, specific local inhibition of PKCζ reduced retinal vascular leakage, iNOS expression in 15 cells infiltrating the eye, and ocular cytokines production . Over expression of iNOS 18-23 was also found in retinas of diabetic rodents and patients . 111 TRABALHOS DERIVADOS DA TESE Goto Kakizaki (GK) rat is a Wistar non-obese model of non-insulin dependent type 2 diabetes. These rats present hyperglycemia from 14 weeks after birth. Since microglial 9 activation has been reported in human diabetic retinopathy and since 15 microglia/macrophages play a critical role in inflammation and tissue damage , we investigated in the present study microglia/macrophages retinal trafficking and activation during diabetes in GK rats. We show for the first time the presence of pores in the RPE similar to those described in the vascular endothelium in inflammatory 24-26 situation . We then studied the role of RPE pores in the accumulation of microglia/macrophages cells in the subretinal space at late stages of diabetic retinopathy in GK rats. We also analyzed the role of PKCζ (molecule involved in glucose transport to cell membrane) in microglia/macrophages retinal accumulation by inhibiting PKCζ activity in 12 months GK rats. MATERIALS AND METHODS Animals The animals used in this work were treated in accordance with the Association for Research in Vision and Ophthalmology (ARVO). Experimental procedures were submitted and approved by the ethic committee of Paris Descartes University. GK rats (Taconic Europe, Denmark), a Wistar non-obese model of Non-Insulin Dependent type 2 Diabetes were used at different ages of hyperglycemia. They present hyperglycemia from 14 weeks after birth to the time of sacrifice significantly different from controls as shown in table 1. Plasma glucose > 250mg/ dl was considered as diabetic state. Controls were selected from age-matched non-diabetic rats and with plasma glucose < 150mg/ dl. Glycemia was measured using Accutrend GC and Accucheck compact equipments (Roche). Immunohistochemistry on cryostat ocular sections and on flat mounts of retina or RPE/ choroids Immunohistochemistry was used to identify microglia/ macrophages and proteins involved in transcellular pathways at 2, 5 and 12 months. For sections, rat eyes were enucleated and post-fixed in 4% paraformaldehyde and cryoprotected using sucrose. They were embedded in optimal cutting-temperature 112 TRABALHOS DERIVADOS DA TESE (OCT) compound (Tissue-Tek; Miles Inc., Bayer Diagnostics, Puteaux, France), frozen in liquid nitrogen and stored at−80 °C. Cryostat frozen sections (10 μm thick) (Leica CM 3050S, Wetzlar, Germany) were performed and mounted on gelatin-coated slides for immunohistochemical analysis. (n=7 per group). For flatmounts, rat eyes were enucleated, fixed in 4% paraformaldehyde (PFA) for 15 min at room temperature and sectioned at the limbus; the anterior segments were discarded. Retinas and choroids were fixed separately for additional 15min in acetone at - 20°C. Specimens were incubated overnight at 4°C with primary antibodies diluted in PBS supplemented with 10% fetal calf serum (FCS) and 0.1% Triton X-100. (n=9 per group). Antibodies Primary antibodies used were: rabbit polyclonal anti-caveolin-1 (# 3238) (Cell Signaling Saint Quentin Yvelines, France) (dilution 1:200), rabbit polyclonal antioccludin (71-1500) (Zymed, San Francisco, CA, USA) (dilution 1:200), mouse monoclonal anti-PKCζ (ab57432) raised against to amino acid 165-255 specific of the N-terminal region of the human PKCζ sequence (Abcam, Cambridge, UK) (dilution 1:400), mouse monoclonal anti-ICAM-1 (MCA773) (Serotec, Oxford, UK) (dilution 1:200), rabbit polyclonal anti-ionized calcium binding adaptor molecule 1, anti-IBA-1, a specific marker for microglia/ macrophages (Wako, Richmond, USA) (dilution 1:400), mouse monoclonal iNOS (sc-7271) (Santa Cruz Biotechnology, CA, USA) (dilution 1:75), mouse monoclonal anti glial fibrillary acidic protein-Cy3, (C9205) (Sigma aldrich, St. Louis, MO USA) (dilution 1:200), Rhodamine Phalloidin (R415) (dilution 1 :400), anti zonula-occludens-1 (ZO-1) (sc-10804) (Santa Cruz Biotechnology, CA, USA) (dilution 1: 100). The corresponding Alexa secondary antibodies (Invitrogen life technology Carlsbad) were used to reveal the primary antibodies, and sections were counterstained with 4', 6-diamino-2-phenylindol (DAPI) (Sigma aldrich St. Louis, MO USA). Sections and flatmounts were viewed with a fluorescence microscope (BX51; Olympus, Rungis, France) and confocal microscope (LSM 510 laser scanning microscope Zeiss, Carl Zeiss, Le Pecq, France). Three dimensional reconstruction and projection of Zstacks was performed with Zen 2009 LE software (Carl Zeiss). Images were then exported to Photoshop software for preparation of final images. All immunostainings were repeated at least 3 times, and staining that omitted the primary antibody served as negative control. 113 TRABALHOS DERIVADOS DA TESE Western Blotting analyses Proteins were extracted from 5 neuroretinas and RPE/ choroids from GK rats at 2, 5 and 12 months of hyperglycemia and from non diabetic controls. Proteins were homogenized in lysis buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 1 mM EGTA, 150 mM NaCl, 0.5% Nonidet P40, 1% Triton X-100, β-mercaptoethanol) containing a protease inhibitor cocktail (Roche, France). Protein concentration was determined using a Bradford assay. Proteins (40–50 μg) were subjected to SDS-PAGE in a 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and electroblotted onto nitrocellulose membranes (Schleicher and Schuell BioScience, Dassel, Germany). Membranes were incubated with: anti-PKCζ mouse monoclonal antibody (ab57432) raised against amino acid 165-255 of the N-terminal region of the human PKCζ sequence) (dilution 1:400), rabbit polyclonal anti-p-PKCζ (Thr 560) ab59412 obtained from Abcam, Cambridge, UK) (dilution 1:200), rabbit polyclonal anti pPKCζ (Thr 410) SC-12894-R (dilution 1:400) and rat anti-β-tubulin SC-5274 (dilution 1:400) obtained from Santa Cruz Biotechnology CA, USA), rabbit polyclonal anti-caveolin-1 (# 3238) Cell Signaling, Saint Quentin Yvelines, France) (dilution 1:400), mouse monoclonalanti-ICAM-1 (MCA773 Serotec, Oxford, UK,) (dilution 1:400).Then membrane were incubated with corresponding secondary antibodies: peroxidase conjugated F(ab)2 fragment (Caltag, Burlingame, Canada). Immunoreactive bands were detected with the ECL Western Blotting Detection Reagents Kit (Amersham Biosciences, Orsay, France). The relative abundance of individual proteins identified was quantified by scanning densitometry. The relative band intensity of CAV-1, ICAM1, was calculated in comparison to b-tubulin after densitometry analysis. For the phosphorylated PKCζ Thr 410 and Thr 560 the relative band intensity was calculated in comparison to nonphosphorylated PKCζ after densitometry analysis (Adobe photoshop software). Intravitreal injection of PKCζ specific inhibitor (PKCζi). Rats were anesthetized with intramuscular injection of ketamine (88 mg/kg; Virbac, France) and chlorpromazine (Largactil, 0.6 mg/kg; Sanofi-Aventis, Paris, France). Pupils were dilated by instillation of 1 drop of 5% tropicamide (Ciba Vision, Toulouse, France) and 1 drop of 1% tetracaine (Ciba Vision) was administered for local anesthesia. Under a surgical microscope, an intravitreal injection of 4 µL of either sterile pyrogen-free saline or PKCζi was performed using a sterile syringe and 30114 TRABALHOS DERIVADOS DA TESE gaugeneedle (Microfine; Becton Dickinson, Meylan, France). The needle was left in the eye for 10 seconds to allow aqueous humor to leave the eye via the trabecular meshwork rather than by reflux along the needle track. The injection was performed near the apex of the cornea, taking care not to damage the iris or the lens. For inhibitory experiments, we injected PKCζi into the vitreous (4µL, 0.15µM in PBS) (myr-SIYRRGARRWRKL (ref. 539624 obtained from Calbiochem, San Diego, CA, USA) of 12 months-old diabetic GK rats and their controls (n=15 per group). Rats were sacrificed 48 hours after PKCζi injection and eyes were used for immunohistochemistry on sections (n=7/ n=5), on flatmounted tissues (n=9/ n=5) and for western blots (n=5/ n=5). To evidence the cellular targets of the peptide, we performed intravitreous injections (3µl, 0.15µM in PBS) of a fluorescent peptide 5- Carboxytetramethylrhodamine (5-TAMRA) conjugated with the PKCζi (myr-K-(5TAMRA)-SIYRRGARRWRKL) (Proteogenix (France) in 12 months-old diabetic GK rats and their controls (n=15 per group). Intravitreal injection of rhodamine-liposome (Rh-Lip) We have previously shown that after intravitreous injection, rhodamine-conjugated 27 liposomes were internalized in microglia . To study the intraocular distribution of microglia, we injected 3µl of cationic DOTAP/DOPE/ PE-Rhodamine liposomes into the vitreous body of control and 5 months-old diabetic rats (n= 3). Cationic DOTAP/DOPE/ PE-Rhodamine liposomes were prepared as follows. Briefly, the lipids (1,2-dioleoyl-3-trimethylammoniumpropane phosphoethanolamine (DOPE) and (DOTAP), 1,2-dioleoyl-sn-glycero-3- rhodamine-phosphatidylethanolamine (PE- Rhodamine) dissolved in chloroform were mixed to reach a final lipid mass ratio of 5.0: 4.7: 0.3 respectively. The chloroform was evaporated under vacuum and the resulting lipid film was hydrated with milliQ water to a final concentration of 1 mg/ mL. Liposomes containing 3% PE-Rhodamine had a size below 450 nm and exhibited positive zeta potential values higher than +50 mV (≥ +70mV). Quantification of activated microglia/macrophages in the neuroretina Round IBA-1 stained cells were counted on neuroretina flatmounts from control or 12 months-old diabetic rats injected with saline or with PKCζi (n=3 rats per group and 4 areas per eye). The cell number was expressed as the mean number of round activated 115 TRABALHOS DERIVADOS DA TESE IBA-1 positive cells/ mm². Quantification of microglia/macrophages infiltrating the eye Microglia/macrophages (IBA-1 stained cells) were counted on cryostat sections in retina from control or 12 months-old diabetic rats injected with saline or with PKCζi (n=7 rats per group and 12 sections per eye). For this quantification, 2 areas were chosen on each section: the inner retina i.e. from the ganglion cell layer (GCL) to the outer plexiform layer (OPL) and the outer retina i.e. from the outer nuclear cell layer (ONL) to the RPE, as shown in figure 1A. The cell number was expressed as the mean number of IBA-1 positive cells/ retinal sections. Quantification and criteria to identify transcellular pores A transcellular pore was identified by three dimensional analyses as a circular intracytoplasmic structure, delineated by PKCζ, ICAM-1, CAV-1 and actin fluorescence in both the x-y and the z dimensions. With these criteria, quantification of transcellular pores was performed on 9 eyes per experiment on whole flatmount of RPE from 2, 5 and 12 months-old GK diabetic rats and their non diabetic controls. Number of transcellular pores was expressed as the mean number of pores/ whole flatmount. Semi-thin and ultra-thin sections Eyes were fixed for 1 h in 2.5% glutaraldehyde in cacodylate buffer (0.1 M, pH 7.4). Eyeballs were dissected, fixed for 3 h, postfixed in 1% osmium tetroxide in cacodylate buffer, and dehydrated in graduated ethanol solutions. Samples were included in epoxy resin and oriented. Semi-thin sections (1 μm, ultra microtome Reichert Ultracut E [Leica]), were stained by toluidine blue. Ultra-thin sections (80 nm) were contrasted by uranyl acetate and lead citrate and were observed with an electron microscope JEOL 100 CX II (JEOL) with 80 kV. Statistics Values are expressed as mean ± SEM. Student t test was used when comparing two groups or using the non parametric Mann–Whitney U-test when comparing three or more groups (Prism software version 4.0c; GraphPad Software, San Diego, CA). Statistical significance was accepted as P value <0.05 116 TRABALHOS DERIVADOS DA TESE RESULTS Subretinal accumulation of microglia/macrophages and alteration of RPE in diabetic rats after 12 months of hyperglycemia In order to compare the distribution of microglia/macrophages in retina from diabetic rats versus controls, IBA-1, a specific marker for microglia and macrophages, was used. In control rats, few microglia/macrophages are located in the inner retinal layers (INL) and in the choroid but no IBA-1 positive cells are detected in the outer retina or in the subretinal space (Fig.1A). By contrast, after 12 months of hyperglycemia in GK rats, numerous IBA-1 positive cells accumulate in the retina and the subretinal space (Fig.1B and inset for higher magnification). Indeed, the number of IBA-1 positive cells significantly increased after 12 months of diabetes, in the inner and outer layers of the retina (Fig.1C). The study in semi-thin ocular sections of GK rats confirmed the presence of cells between disorganized outer segments of photoreceptors (OS) and the RPE (Fig.1F, arrow). In addition, diabetes was associated with important alterations of the RPE outer retinal barrier. To visualize RPE tight junctions, RPE flatmounts were stained with Zonula-occludens-1 (ZO1). It shows that in non-diabetic rats, ZO-1 labelled the regular hexagonal membrane of RPE cells (Fig.1E) whereas in diabetic rats, RPE cytoplasmic membrane showed a complete disorganization of ZO-1 labelling (Fig.1G). Trans-epithelial pores are evidenced in RPE cells of diabetic After 5 months of diabetes using phalloidin staining of RPE/ choroids flatmounts, we observed significant F-actin remodeling, with a central actin ring forming a ―pore‖ in some RPE cells, with apparent maintenance of cell membrane integrity (Fig.2A). Semithin sections of these flatmounts showed a focal cytoplasmic invagination towards the choroid at the level of the pore (Fig.2B1). In electron microscopy sections, the RPE nucleus appeared unchanged and a pore was observed in the center of the cell; in the vicinity of the invaginated RPE, capillaries in the choroid had vertical orientation (Fig.2B2). Co-localization of CAV-1 and ICAM-1 is detected around the pore in RPE (Fig.2C-E) supporting the hypothesis that a transcellular pathway occurs in the RPE of diabetic 117 TRABALHOS DERIVADOS DA TESE rats. In RPE from control non-diabetic rats, PKCζ was located in the cytoplasm and partly colocalized with occludin at the tight-junctions (Fig.3A, E). By contrast, in 5 months diabetic rats, whilst cell-cell junctions were not yet altered at this time point, PKCζ clearly delineated the pore in RPE cells (Fig.3B-D, F-G). Confocal microscopy observation showed that the apical (Fig.3C) and basal (Fig.3D) side of the pore were stained by anti-PKCζ and the tight-junctions stained with anti-occludin antibodies, demonstrating that the pores crossed the whole cell thickness without altering tightjunctions. Confocal microscopy combined with 3D imaging of RPE flatmounts from non diabetic (Fig.3E, E’) or diabetic rats (Fig.3F, F’, G, G’) allowed scanning of the whole RPE thickness from the apical side towards the baso-lateral side. In non diabetic rats (Fig.3E, E’) PKCζ was localized in the cytoplasm and at the membrane, partially co-localized with occludin. In diabetic rats, (Fig.3F, F’, G, G’), PKCζ stained the pore from the basal up to the apical side of RPE cells. Furthermore, double staining for CAV-1 and PKCζ (Fig.3H-J) showed a similar distribution, suggesting that in RPE cells PKCζ, F-actin, ICAM-1 and CAV-1 contribute to the pore formation. The pores: a transcellular route for microglia/macrophages through the RPE RPE flatmount from 5 months old GK rat were studied by confocal scanning microscopy with triple staining for IBA-1/ PKCζ/ DAPI, to visualize both microglia/macrophages and the pores. Orthogonal images of the RPE monolayer were reconstructed from a stack of confocal sections taken from the apical towards the basal membrane of the RPE layer (Fig.4A). The first Z-sections of the confocal stack analysis highlighted the beginning of the cell process as a green point. We identified IBA-1 positive cells with intact nuclei, inside the whole length of the transcellular pore. Microglia/macrophages transmigration through RPE was also confirmed using 3D images (Fig.4B). In parallel, frozen sections prepared from diabetic retina were stained for IBA-1. On transversal sections, we were able to observe IBA-1 positive cells just below the RPE layer (Fig.4C-D) with some cytoplasmic extensions between RPE cells, suggesting that microglia/macrophages may pass through the RPE barrier. To determine whether microglia/macrophages could exit from retina through RPE barrier, intravitreal rhodamine-liposomes (Rh-Lip) injection was performed in control and diabetic rats at 5 months. Rh-Lip were internalized in activated microglia/macrophages identified by IBA-1 staining. Indeed, double stained Rh-Lip/ 118 TRABALHOS DERIVADOS DA TESE IBA-1 cells were mainly detected in the inner retina and in the subretinal space (Fig.4F) but IBA-1 positive cells containing Rh-Lip could also be observed in the choroid at the basolateral side of RPE indicating that cells might have migrated from the subretinal space towards the choroid (Fig.4G). Pores density in RPE from diabetic and non-diabetic rats RPE pores were quantified in diabetic and non-diabetic rats at 2, 5 and 12 months (Fig.5A). Whilst in control non-diabetic animals, the number of pores/ mm2 significantly increased from 5 to 12 months, in diabetic rats it significantly increased from 2 to 5 months to significantly decrease at 12 months. The reduced number of RPE pores at 12 months in diabetic rats correlated well with the increasing number of subretinal microglia/macrophages at this time point (Fig.1B). The decrease of pores was associated with significant lower expression of CAV-1 and ICAM-1 at 12 months (Fig.5B-C). Interestingly, expression of PKCζ did not significantly change in diabetic eyes (not shown), but its phosphorylated (p Thr 410) active form increased during early stages of diabetes (2 and 5 months) and then significantly decreased at 12 months (Fig.5D). At this time point we observed a lower number of transcellular pores in RPE suggesting a role for PKCζ in pore formation process. Interestingly, in 12 months old non-diabetic rats (Fig.5A), pores were observed within RPE cells with high amounts of CAV-1 and activated PKCζ similar to young diabetic rats (5 months). These data suggest a physiological role for a transcellular route through RPE cells taking place in aging non diabetic rats and in an accelerated manner in diabetic retina, reinforcing the idea that type 2 diabetes can be viewed as a form of premature aging. Intravitreal injection of the PKCζinhibitor in 12 months old diabetic rats deactivated microglia/ macrophages, blocked their migration and impaired pore formation To ascertain that PKCζ activity participated to microglia cells trafficking and pores formation, control and diabetic 12 months old rats were given one intravitreal injection of PKCζ inhibitor (PKCζi) 48 hours before sacrifice. We first evaluated the distribution of PKCζi conjugated with the fluorochrome (TAMRA) at 48 hours after its intravitreous injection in control and diabetic rats. The peptide was mainly located in microglia/macrophages (as shown by IBA-1 co-labeling) as well as in RPE cells 119 TRABALHOS DERIVADOS DA TESE (Fig.6C, D). It is interesting to note that when PKCζi was injected into the vitreous (Fig. 6C, D) microglia/macrophages were not observed in the subretinal space of diabetic rats, suggesting a role of PKCζ in microglia/macrophages migration. Moreover, we show that PKCζ activity was reduced in the retina of diabetic rats as evaluated by its autophosphorylation on Thr 560 which decreased 2.5-fold in non diabetic rats injected into the vitreous with PKCζ i and 4.4fold in diabetic rats (Fig.6E). The quantification of microglia/macrophages was performed in the inner retina (GCL, INL) and outer retina (ONL, RPE) of non-diabetic and diabetic rats. Results indicated that intravitreal injection of PKCζi decreased significantly (10-fold) the number of microglia/ macrophages in the subretinal space and the outer retina of diabetic rats compared to non treated diabetic rats (Fig.6F). Furthermore, inhibition of PKCζ activation significantly reduced pore formation in RPE from treated diabetic and control rats compared to RPE from untreated diabetic and control rats (respectively 5 and 3.5fold) (Fig.6G). To evaluate microglia activation state, flatmounts of the neuroretina were double stained by GFAP/ IBA-1 (Fig.7A-H), iNOS/ IBA-1 (Fig.7I-J). In 12 months old-diabetic rats, IBA-1 labelling of flat-mounted neuroretina showed round amoeboid shape activated microglial cells located around blood vessels surrounded by GFAP stained astrocytes (Fig.7B, D). PKCζ inhibition induced a change in microglia morphology showing a resting dendritic shape with long branching processes and a small cellular body (Fig.7, G, H) similar to that observed in 12 months old non diabetic rats (Fig. 7C). Quantification of activated microglia was performed by counting round activated IBA-1 cells in neuroretina flatmounts (Fig 7I). The number of activated IBA-1 cells was significantly increased in diabetic retinas compared to non diabetic controls. The intravitreal injection of PKCζi decreased the number of activated IBA-1 cells in diabetic rats and controls. In addition, PKCζ inhibition suppressed iNOS expression as shown in a macrophage/microglial cell present in the retina of a PKCζi treated GK rat (Fig.7J, K) further demonstrating that PKCζ inhibition deactivated microglia/macrophages. DISCUSSION Low grade inflammation has been evidenced in the retina of diabetic animals and 9, 14, 17-19, 28 diabetic patients . Particularly, microglial cells activation was found to be an 120 TRABALHOS DERIVADOS DA TESE early marker of diabetic changes in different animal models and to potentially release neurotoxic agents at advanced stages of diabetes. Indeed activated microglia produce cytotoxic substances, such as tumor necrosis factor α (TNF-α), reactive oxygen species, 14, 29, 30 proteases, and excitatory amino acids, which may induce neuronal degeneration . Moreover, the role of microglia has been confirmed in human retina at different stages of diabetes with accumulation of activated cells in the outer retina and subretinal space 9 in case of advanced macular edema . The central question of our study was how, in vivo, in the time course of diabetes, macrophages/microglial cells trafficking is modified leading to subretinal accumulation and potential toxicity. Unexpectedly, we observed that ―pores‖ in RPE cells are formed in normal old non diabetic rat retinas and that at the early stages of diabetic retinopathy, when tight junctions between RPE cells are intact, these pores serve as a migratory pathway for inflammatory cells (microglia/macrophages). At more advanced stages of diabetes (12 months), the number of pores decreases in RPE paralleling the accumulation of subretinal activated microglia/macrophages. In the vascular endothelium, it has become increasingly clear that in addition to the ―paracellular‖ route, a ―transcellular‖ route is used by leukocytes or lymphocytes for 24-26 migration through the endothelial cell body . However, no such phenomenon has been previously described in epithelia. In our study, we report strong data favouring the hypothesis that a transcellular pathway takes place in RPE cells: -the identification of ―tunnel structures‖ crossing the whole cell thickness with preserved tight-junctions, -the recruitment of ICAM-1 and CAV-1 around the pores and the involvement of PKCζ in the pore formation, -the identification of IBA-1 positive cells (microglial resident cells) crossing the RPE through the pore. Presence of microglia/macrophages in the retina of diabetic GK rat could be related to the expression of ICAM-1, which is essential for inflammatory cells migration. In this context, glucose was shown to enhance ICAM-1 expression in a dose-dependent manner. Further, in RPE cells of rats presenting a diabetes induced by STZ, an up31 regulation of ICAM-1 was reported . In addition, transcellular migration of 32, 33 inflammatory cells requires CAV-1 protein . As previously shown in vascular endothelial cells, we show in the present study that colocalization of CAV-1 and ICAM1 is present at the pore border of RPE supporting the hypothesis that a transcellular 121 TRABALHOS DERIVADOS DA TESE pathway occurs through RPE pores of diabetic rats. What is the link between diabetes and RPE transmigration of microglia/macrophages? We have demonstrated that at the early stages of diabetes, a RPE transcellular pathway is functional. At later stages of diabetes (12 months), decreased ICAM-1 and CAV-1 protein expression in RPE cells and accumulation of subretinal microglia/macrophages are observed together with significant decrease of RPE pores. This suggests that a reduction of this RPE functional pathway could contribute to subretinal microglia/macrophages accumulation. To ascertain that a migration of cells from the retina towards the choroid could occur through RPE, we injected into the vitreous cationic liposomes containing rhodamine. In normal rats, such liposomes injected into the vitreous do not cross the outer retinal barrier and are engulfed by resident or 27 activated macrophages and by RPE cells . In 5 months-old diabetic rats, intense uptake of Rh-Lip is observed in activated microglia. A more striking finding was that we could identify IBA-1 positive cells containing Rh-Lip migrating into the choroid at a time when the RPE tight junctions are preserved further suggesting that a RPE transcellular pathway is operating. We also showed herein that PKCζ is a new molecule participating in this process. Our results are supported by a recent review reporting that inhibition of PKCζ activity prevented the TNF-α-induced ICAM-1 clustering and the early onset of endothelial 26 adhesivity . Activation of the PKCζ/ NF-κB signaling pathway induced the 25 transcription of cytokines and the adhesion molecules ICAM-1 and CAV-1 required for inflammatory cells transcellular migration. Indeed, blocking PKCζ activity in LPSinduced ocular inflammation led to a decrease of inflammation via the inhibition of 15 PKCζ/ NF-κB signaling pathway 34, 35 . Besides its role in the junction regulation , PKCζ could also participate in the pore formation since CAV-1 interacts with PKCζ via its scaffolding domain. This may explain the propensity to accumulate PKCζ in caveolae, where it may be directly activated by ceramides contained within such 36 domains . Taken together, our results show that a transcellular pathway involving proteins similar to those described in vascular endothelial cells can occur in the outer retinal barrier constituted by RPE cells. We also show in the present study that PKCζ is activated during the early stages of the diabetic retinopathy (2 and 5 months) when the number of pores is increasing, and its 122 TRABALHOS DERIVADOS DA TESE activation is significantly reduced at later stage when pores number also decreases. To further determine the role of PKCζ activation in the pores formation, an intravitreous injection of a specific fluoresceine labeled PKCζ inhibitor (PKCζi) was performed. It showed that PKCζi was efficiently phagocytosed by IBA-1 positive cells and RPE cells. Furthermore, PKCζ inhibition reduced microglia/macrophages migration and activation, as confirmed by lower iNOS production and deactivated cell morphology. Under these conditions of PKCζ inhibition, the subretinal microglia/macrophages accumulation was impaired and the number of RPE cell pores was reduced, demonstrating that PKCζ is involved in microglia/macrophages trafficking during DR. Very recently, it was shown that PKCζ plays a crucial role in retinal vascular permeability induced by TNF-α suggesting its possible implication in diabetes-induced 37 blood retinal barrier breakdown . In conclusion, migration of microglia/macrophages through the RPE seems to be a physiological process facilitating cell trafficking between retina and choroid. During early stages of diabetes, we show that the number of RPE pores increased. In later stages of diabetes, the number of RPE pores decreased resulting in subretinal accumulation of activated microglia/macrophages and subsequent retinal damages. Therefore, the alteration of the transcellular migration pathway could further worsen diabetic induced photoreceptor death. Intravitreal injection of PKCζi prevented microglia/macrophages subretinal accumulation and activation. Targeting microglia/macrophages activation and trafficking using PKCζ inhibitors may be of great interest for preventing diabetic retinopathy. 123 TRABALHOS DERIVADOS DA TESE ACKNOWLEDGMENTS This work was supported by the National Institutes of Health and Medical Research: INSERM, by the Fedération des Aveugles et Handicapés Visuels de France: (FAF), by the Association CRO; Research Center in Ophtalmology", and by the Association Retina France (AFRP). We are grateful to Christophe Klein (UMRS 872 Centre de Recherche des Cordeliers) for technical assistance. We are grateful to Amélie Bochot and Elias Fattal (Paris Sud 11 University, UMR CNRS 8612, Physico-chemistryPharmacotechny-Biopharmacy, Faculty of Pharmacy, Châtenay-Malabry, France) for Rhodamine-Liposomes gift. 124 TRABALHOS DERIVADOS DA TESE REFERENCES 1. Wellen KE, Hotamisligil GS: Inflammation, stress, and diabetes, J Clin Invest 2005, 115:1111-1119 2. Xu H, Chen M, Forrester JV: Para-inflammation in the aging retina, Prog Retin Eye Res 2009, 28:348-368 3. Hickey WF, Kimura H: Perivascular microglial cells of the CNS are bone marrow derived and present antigen in vivo, Science 1988, 239:290-292 4. Perry VH, Gordon S: Macrophages and microglia in the nervous system, Trends Neurosci 1988, 11:273-277 5. Streit WJ, Graeber MB, Kreutzberg GW: Functional plasticity of microglia: a review, Glia 1988, 1:301-307 6. Lassmann H, Schmied M, Vass K, Hickey WF: Bone marrow derived elements and resident microglia in brain inflammation, Glia 1993, 7:19-24 7. Ling EA, Wong WC: The origin and nature of ramified and amoeboid microglia: a historical review and current concepts, Glia 1993, 7:9-18 8. Ling EA: Monocytic origin of ramified microglia in the corpus callosum in postnatal rat, Neuropathol Appl Neurobiol 1994, 20:182-183 9. Zeng HY, Green WR, Tso MO: Microglial activation in human diabetic retinopathy, Arch Ophthalmol 2008, 126:227-232 10. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, Debre P, Sirinyan M, Deterre P, Ferroukhi T, Cohen SY, Chauvaud D, Jeanny JC, Chemtob S, Behar-Cohen F, Sennlaub F: CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, J Clin Invest 2007, 117:2920-2928 11. Xu H, Chen M, Manivannan A, Lois N, Forrester JV: Age-dependent accumulation oflipofuscin in perivascular and subretinal microglia in experimental mice, Aging Cell 2008,7:58-68 12. Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD: Turnover of resident retinal microglia in the normal adult mouse, Glia 2007, 55:1189-1198 13. Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT: Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD, PLoS One 2009, 4:e7945 125 TRABALHOS DERIVADOS DA TESE 14. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy, Diabetes 2005, 54:15591565 15. de Kozak Y, Omri B, Smith JR, Naud MC, Thillaye-Goldenberg B, Crisanti P: Proteinkinase Czeta (PKCzeta) regulates ocular inflammation and apoptosis in endotoxin-induced uveitis (EIU): signaling molecules involved in EIU resolution by PKCzeta inhibitor andinterleukin-13, Am J Pathol 2007, 170:1241-1257 16. Banan A, Zhang L, Fields JZ, Farhadi A, Talmage DA, Keshavarzian A: PKC-zeta prevents oxidant-induced iNOS up regulation and protects the microtubules and gut barrier integrity, Am J Physiol Gastrointest Liver Physiol 2002, 283:G909-922 17. Kern TS: Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy, Exp Diabetes Res 2007, 2007:95103 18. Du Y, Sarthy VP, Kern TS: Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats, Am J Physiol Regul Integr CompPhysiol 2004, 287:R735-741 19. Abu El-Asrar AM, Desmet S, Meersschaert A, Dralands L, Missotten L, Geboes K: Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus, Am J Ophthalmol 2001, 132:551-556 20. Du Y, Smith MA, Miller CM, Kern TS: Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine, J Neurochem 2002, 80:771-779 21. Kowluru RA, Engerman RL, Kern TS: Abnormalities of retinal metabolism in diabetes or experimental galactosemia VIII. Prevention by aminoguanidine, Curr Eye Res2000, 21:814-819 22. Kowluru RA: Retinal metabolic abnormalities in diabetic mouse: comparison with diabetic rat, Curr Eye Res 2002, 24:123-128 23. Kowluru RA: Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats, Diabetes 2003, 52:818-823 24. Dejana E: The transcellular railway: insights into leukocyte diapedesis, Nat Cell Biol2006, 8:105-107 25. Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ: Lymphocytetranscellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and Factin-rich domains, Nat Cell Biol 2006, 8:113-123 126 TRABALHOS DERIVADOS DA TESE 26. Rahman A, Fazal F: Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration, Antioxid Redox Signal 2009, 11:823-839 27. Camelo S, Lajavardi L, Bochot A, Goldenberg B, Naud MC, Fattal E, Behar-Cohen F,de Kozak Y: Ocular and systemic bio-distribution of rhodamine-conjugated liposomes loaded with VIP injected into the vitreous of Lewis rats, Mol Vis 2007, 13:2263-2274 28. Wang AL, Yu AC, He QH, Zhu X, Tso MO: AGEs mediated expression and secretion of TNF alpha in rat retinal microglia, Exp Eye Res 2007, 84:905-913 29. Zeng XX, Ng YK, Ling EA: Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats, Vis Neurosci 2000, 17:463-471 30. Rungger-Brandle E, Dosso AA, Leuenberger PM: Glial reactivity, an early feature of diabetic retinopathy, Invest Ophthalmol Vis Sci 2000, 41:1971-1980 31. Hirano Y, Sakurai E, Matsubara A, Ogura Y: Suppression of ICAM-1 in retinal and choroidal endothelial cells by plasmid small-interfering RNAs in vivo, Invest Ophthalmol VisSci 51:508-515 32. Marmon S, Hinchey J, Oh P, Cammer M, de Almeida CJ, Gunther L, Raine CS, Lisanti MP: Caveolin-1 expression determines the route of neutrophil extravasation throughskin microvasculature, Am J Pathol 2009, 174:684-692 33. Marmon S, Hinchey J, Raine CS, Lisanti MP: Chemokine transport and leukocyte extravasation through dermal microvasculature in the absence of caveolae, J Dermatol Sci2009, 53:225-228 34. Gopalakrishnan S, Hallett MA, Atkinson SJ, Marrs JA: aPKC-PAR complex dysfunction and tight junction disassembly in renal epithelial cells during ATP depletion, AmJ Physiol Cell Physiol 2007, 292:C1094-1102 35. Etienne-Manneville S, Hall A: Cell polarity: Par6, aPKC and cytoskeletal crosstalk, Curr Opin Cell Biol 2003, 15:67-72 36. Fox TE, Houck KL, O'Neill SM, Nagarajan M, Stover TC, Pomianowski PT, Unal O,Yun JK, Naides SJ, Kester M: Ceramide recruits and activates protein kinase C zeta (PKCzeta) within structured membrane microdomains, J Biol Chem 2007, 282:1245012457 37. Aveleira CA, Lin CM, Abcouwer SF, Ambrosio AF, Antonetti DA: TNF-(65) signals through PKC{zeta}/NF-{kappa}B to alter the tight junction complex and increase retinal endothelial cell permeability, Diabetes 2010 127 TRABALHOS DERIVADOS DA TESE FIGURE LEGENDS TABLE 1. Weight and blood glucose concentration in normoglycemic controls and hyperglycemic diabetic GK rats. Values are expressed as the mean +/- SEM. *P< 0,05 control vs. diabetic FIGURE 1. Microglia/macrophages accumulation in the subretinal space of 12 month sold diabetic GK rats A-B: Sections from 12 months old GK rat retina immunostained with IBA-1 antibody (green)and DAPI (blue) associated with phase contrast. In 12 months-old non-diabetic rats, rare IBA-1 positive cells are located in the inner retina (A). In 12 months-old diabetic GK rats, number of IBA-1 positive cells increases in the inner retina and accumulate in the subretinal space (arrowhead and inset) (B). C: Cellular counts of IBA-1 positive cells on cryostat sections of the retina showed a significant increase of their number in the inner retina (1.9-fold) and subretinal space (7.6-fold) in 12 months-old diabetic rats vs. non diabetic rats. (n= 7 eyes per group); *, P< 0, 05. D, F: Vacuolization of RPE cells is observed (asterisk), and presence of a large subretinal cell(arrowhead, F) is detected between disorganized outer segments of photoreceptors (OS) in 12months old diabetic GK rats compared to non diabetic controls (D), toluidine blue–stainedsemi-thin sections. E, G: RPE flatmounts stained by ZO-1 (red) and DAPI show RPE cells morphology changes and syncytium formation (*) in 12 months old diabetic rats (G) as compared to control (E). Scale bar: 25 μm (A-G). (GCL) ganglion cell layer, (IPL) inner plexiform layer, (INL) inner nuclear layer, (OPL) outer plexiform layer, (ONL) outer nuclear layer, (RPE) retinal pigmented epithelium, (OS) outer segment of photoreceptors. FIGURE 2. ICAM-1, CAV-1 expression, actin recruitment and cell invagination strongly suggest the presence of a transcellular pore in diabetic RPE A: RPE flatmount from 5 months old diabetic GK rat stained by phalloidin (red) and DAPI(blue) shows the formation of a central intracytoplasmic actin ring (arrow) in some RPE cells. 128 TRABALHOS DERIVADOS DA TESE B1-B2: Semi and ultra-thin sections of the pore visualized by actin in A, show invagination of the RPE cells from the apical toward the basal part (arrow), highlighting the direction of the pore formation in the RPE (B1). On ultrathin section, the cell nucleus is preserved, displaced laterally by a pore formation in the cell (B2). C-E: Triple staining by CAV-1 (green), ICAM-1 (red) and DAPI (blue) shows colocalization of CAV-1 and ICAM-1 surrounding the pore with preserved nucleus on the edge of the cell (arrow) (E). Scale bar: 25 μm (A-B1-C-D-E), 5μm (B2). FIGURE 3. Involvement of PKCζin the pore formation A-G: Double staining of RPE flat mounts from 5 months-old GK rats by PKCζ (red) and occludin (green). In non diabetic rats, cytoplasmic and membrane PKCζ localization (A).Under diabetic conditions, PKCζ labeling delineates the pore in the center of RPE cell(arrow). RPE cell junctions are not altered (B). C-D: Higher magnification of confocal images from apical and basal side of the cell, with the pore double stained by anti-PKCζ (red) and anti-occludin (green). E’-F’-G’: 3D imaging corresponding to the top view projection of all z-series sections of RPEcell imaged on E, F, G confirmed the distribution of PKCζ around the pore crossing the cellfrom the apical to the basal side. H-I-J: Triple staining by CAV-1 (green), PKCζ (red) and DAPI (blue) shows the colocalization of CAV-1 and PKCζ around the pore. Scale bar: 25 μm. FIGURE 4. Transcellular migration of microglia/macrophages through RPE pores A: RPE flatmount from 5 months old GK rat immunostained with PKCζ (red), IBA-1 (green),DAPI (blue) and imaged by confocal microscopy. Top view projection of all zseries sections of a representative IBA-1 positive cell (green) in a transcellular pore delimited by PKCζ expression (red). The first Z –sections of the confocal stack analysis highlighted the beginning of the cell process as a green point (arrow). The end Zsections clearly show a microglia/macrophage within the pore. B: 3D imaging corresponding to projection of all z-series sections of RPE cell and IBA1positive cell imaged in A, confirmed the presence of IBA-1 positive cell inside the pore. C-D: Sections from 5 months old GK rat retina immunostained with IBA-1 antibody (green) and DAPI (blue) associated with phase contrast. IBA-1 staining shows a 129 TRABALHOS DERIVADOS DA TESE macrophage/microglia passing through the RPE (arrow) (C) and showing a cytoplasmic extension between 2 RPE cells (arrowhead) (D). E-G: Retinal sections 72 hrs after intravitreous injection of rhodamine-liposome (RhLip)(red), macrophages/microglia stained with IBA-1 (green). E: In 5 old months non diabeticrats, liposomes are engulfed by IBA-1 positive cells in the inner retina (black arrow). F: Atthe same age in diabetic GK rats, numerous IBA-1 positive cells having engulfed Rh-Lip are located in the outer retina and subretinal space (black arrows) and under the RPE, in the choroid (white arrow). Higher magnification confirmed that IBA1 positive cells loaded with Rh-Lip have migrated from the vitreous through the retina and RPE towards the choroid. Scale bar: 25 μm. (RPE) retinal pigmented epithelium, (OS) outer segment of photoreceptor. FIGURE 5. Quantification of the number of pores in RPE cells and CAV-1, ICAM1,PKCζexpression in the time course of diabetes A: Quantification of pores as a function of aging in non-diabetic and diabetic GK rats. In diabetic rats, the density of pores increases with a maximum at 5 months (2.8-fold) and then decreases at 12 months (3-fold). In non-diabetic rats, pore density increases significantly only at 12 months (4.4-fold from 5 to 12 months) to reach a higher density compared to olddiabetic rats (7-fold). (n=9 eyes per group). *, P< 0, 05 vs. non diabetic; #, P<0, 05 vs. five months. Number of transcellular pores was expressed as the mean number of pores/whole flatmount. B-D: Immunoblotting of RPE/ choroid: expression of β-tubulin, CAV-1 (B), ICAM-1 (C)and, phosphorylated PKCζ Thr 410 (D) in 2, 5 and 12 months non-diabetic and diabetic rats. In diabetic rats, ICAM-1 and CAV-1 increase significantly during the early phase of diabetes(2 and 5 months) and then decrease at 12 months. PKCζ activity evaluated by Thr 410immunodetection (D) showed the same timing of expression as CAV-1 and ICAM-1. In non diabeticrats, ICAM-1 significantly increases at 12 months (C). * P<0, 05 vs. non diabetic; #, P<0, 05 vs. five months. (Closed bar: diabetic; open bar: nondiabetic). 130 TRABALHOS DERIVADOS DA TESE FIGURE 6. Effects of PKCζinhibition on microglia/macrophages retinal infiltration and on the pore density Retinal sections from non-diabetic (Control) (A, C) or 5 months-old diabetic GK rats (Diabetic) (B, D) were immunostained with anti-IBA-1 (green). PKCζ myristoylated inhibitory peptide conjugated with fluorochrome TAMRA (TAMRA- PKCζ inhibitor) (red)was injected into the vitreous 48 hours before sacrifice. TAMRA- PKCζ inhibitor (red) is phagocytosed by IBA-1 positive cells and by RPE cells (C, D) and it blocks the mobilization of IBA-1 positive cells in the internal layers of the retina impeding them to reach the external layers of the retina in diabetic conditions (D) compared to non diabetic controls (B). (GCL) ganglion cell layer; (INL) inner nuclear layer; (ONL) outer nuclear layer; (RPE) retinal pigmented epithelium. Scale bar: 25μM. E: Proteins from non diabetic (control) and diabetic GK rat retinas treated or not with PKCζi were analysed by immunoblotting and quantified for PKCζ autophosphorylation site: phosphorylated PKCζ Thr 560. (n=5 eyes per group); *, P< 0,05 vs. without PKCζ inhibitor(PKCζi) injection. F: Quantification of IBA-1 positive cells density in the inner retina and in the subretinal spaceon retinal sections, confirmed that PKCζ inhibition significantly increased the IBA-1 positive cell density in the inner retina of diabetic rats compared to non diabetic controls, whereas educed their number in the outer retina. (n=7 eyes per group); *, P< 0,05 vs. without PKCζi injection. The cell number was expressed as the mean number of IBA-1 positive cells /retinal sections. G: Pore density was evaluated by counting the number of pores in RPE flatmounts from 12months-old GK diabetic and non-diabetic rats. The pore density was reduced in old diabetic rats as compared to controls and PKCζ inhibition significantly decreased the pore density inboth cases. (n=9 eyes per group); *, P< 0,05 vs. without injection. (Closed bar: diabetic; openbar: non diabetic). FIGURE 7. Effects of PKCζon microglia/macrophages activation A-H: IBA-1 (green) and GFAP (red) immunostaining on whole neuroretina flamounts from12 months-old non diabetic (A, E) or diabetic GK rats (B, F). Non diabetic controls treated with the PKCζ inhibitor (E) or not treated (A) showed in the retina, microglia with an activated form (G, C respectively). By contrast, in diabetic 131 TRABALHOS DERIVADOS DA TESE GK rats not treated with PKCζ inhibitor (B), microglia showed a round, amoeboid shape (D), whereas PKCζ inhibition (F) induced a change in IBA-1 positive cells morphology, indicating a return to a normal resting microglia (H). Quantification of round activated IBA-1 microglia/macrophages (green) in neuroretina flatmounts. Graph shows the mean number of cells/ mm2 counted in 4 areas in 3 separate flatmounts (I). Double staining of IBA-1 positive cells (green) with iNOS (red) showed that in diabetic GK rats treated with PKCζ inhibitor (K) IBA-1 positive cells do not express iNOS as compared to activated IBA-1 positive cells in the diabetic GK rats non treated (J). Scale bar:25 μm. 132 TRABALHOS DERIVADOS DA TESE 133 TRABALHOS DERIVADOS DA TESE 134 TRABALHOS DERIVADOS DA TESE 135 TRABALHOS DERIVADOS DA TESE 136 TRABALHOS DERIVADOS DA TESE 137 TRABALHOS DERIVADOS DA TESE 138 TRABALHOS DERIVADOS DA TESE 139 TRABALHOS DERIVADOS DA TESE 140 TRABALHOS DERIVADOS DA TESE TRABALHOS DERIVADOS DA TESE 141 TRABALHOS DERIVADOS DA TESE TRABALHOS DERIVADOS DA TESE 142 TRABALHOS DERIVADOS DA TESE TRABALHOS DERIVADOS DA TESE 143 TRABALHOS DERIVADOS DA TESE TRABALHOS DERIVADOS DA TESE 144 TRABALHOS DERIVADOS DA TESE TRABALHOS DERIVADOS DA TESE 145