The Radioactive Ion Beams facility in Brazil § Introduction: RIB in the world § The RIBRAS (Radioactive Ion Beams in Brasil) system § Experiments with the single solenoid: elastic scattering mesurements,α-particle production,total reaction cross section § Experiments with the double solenoid system: resonant scattering measurements WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Nuclides chart in 1965 and in 2011 protons ~1200 known presently ~ 3500 and 283 stable protons neutrons neutrons WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler § Introduction The Nuclides Chart in 1965 and in 2005 protons ~1200 known nuclides neutrons Presently more than 3000 known nuclei and increasing ... WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • Introduction:the ends of the nuclear landscape • • • • • • WeaklyBound-Mai/2015 Natal - Brasil Halos and skins Borromean nuclei (3-body systems) New magic numbers and quenching of the shell gaps. Importance in astrophysics – overcoming the A=5,8 gap synthesis of elements heavier than Fe New shapes and deformations – fundamental symmetries Superheavy elements R. Lichtenthäler the ends of the nuclear landscape: light exotic nuclei 17Ne 8 7 8B 6 1p-halo 5 4 3 2 1 2H 20Ne 22Ne unstable neutron rich 19F 16O 17O 18O 18 20 14N 12C 13C 16 10B 11 B 7Be 6Li 9Be 10 7Li 3He 4 He 1H unstable proton rich 10 9 2p-halo proton number • 3H 8Li Be 8He 4 10 9Li 12 proton halo borromean 6He 11Li 2n-halo WeaklyBound-Mai/2015 Natal - Brasil 24O 11Be n neutron number stable neutron halo 8 6 1 2 14 22 1n-halo nuclei B.E(MeV) (structure) 11Li (T =8.75ms) 0.300 (n+n+9Li) 1/2 6He (T =807ms) 0.973 (2n+alfa) 1/2 11Be (T =13.81s) 0.501 (n+10Be) 1/2 8B (T =770 ms) 0.137 (p+7Be) 1/2 R. Lichtenthäler ρ 11Li R r Radius of nucleus (fm) For stable nuclei àR=r0*A1/3, r0~1.3 fm but for halo nuclei: 11Li,6He, 11Be ... R>r0*A1/3 Lithium isotopes 7Li 6Li 8Li 9Li Number of neutrons R > r0 A1/3 Tanihata - 1985 6He 3-body forces 11Li WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • Production of Radioactive Ion Beams(RIB) In-flight ISOL • Relatively easy to implement • Intense secondary beams • Not so good beam characteristics: emitance and contaminations WeaklyBound-Mai/2015 Natal - Brasil • More complex implementation • Requires a post accelerator • Good quality secondary beams R. Lichtenthäler RIB in the world Dubna Lanzhou Present intensities ~ 105 to 107 pps future: RIKEN (japão), FAIR (GSI), FRIB(EUA), SPIRAL2 (França), intensities will be of ~ 109 – 1012 pps !! WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • The São Paulo Pelletron Accelerator primary Li,Be,B,C,O,Si,Cl I~500nAe-µAe 8 UD WeaklyBound-Mai/2015 Natal - Brasil 2-5 MeV/A R. Lichtenthäler RIBRAS – since 2004 RIBRAS system WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler § The RIBRAS system scattering chamber primary beam mid scattering chamber primary target WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Superconducting solenoid • Magnet – NbTi • Field integral – 5 T.m. • Max. central field – 6.52 T • Max. current – 91.86 A • Inductance – 309 H • Stored Energy – 1.3 MJ • Lhe vessel 270 liters • Lhe boil-off rate 2.0 liters/day • LN2 Vessel 130 liters • LN2 – 15 liters/day B WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Selection by solenoids v// vt B ! ! ! F = qV ⊗ B Bρ = 6He 7Li y(m) v collimators solenoid 2mE q Z(m) lollipop WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler § The RIBRAS system First solenoid angular acceptance 2 deg<Δθ <6 deg ΔΩ=30 msr Bρ = mv 2mE = q q primary beam 1- primary target 2- collimator 3- Faraday cup 4- solenoid WeaklyBound-Mai/2015 Natal - Brasil 5- lollipop 6-collimator 7- scattering chamber,secondary target and detectors R. Lichtenthäler § The RIBRAS system The production target and Faraday cup pA I N T E G R A T O Berillium foil 12 µm R PRIMARY BEAM 1 inch 25 mm FARADAY CUP PRIMARY TARGET 2.5 cm WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler § The RIBRAS system Secondary Beam Production reaction 6He 9Be(7Li,6He) 8Li 9Be(7Li,8Li) 7Be 3He(6Li,7Be) 7Be 3He(7Li,7Be) 8B 3He(6Li,8B) 10Be 9Be(11B,10Be) 7Be 7Li(6Li,7Be) Intensity (pps) Iprimary ~ 300 nAe Neutron halo Borromean proton halo 10+5 10+5 10+5 10+5 10+4 10+4 105 Energy of the secondary beams 10-30 MeV depending on the beam. WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler § The RIBRAS system Scattering chamber and detection system – silicon telescopes 250 mm WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler § The RIBRAS system Detection system with 1 solenoid PPAC X-Y primary 20 µm y primary z silicon telescopes Secondary target lollipop WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler E-E Secondary beam profile: reaction 9Be(7Li,8Li) Parallel Plate Avalanche Counter (PPAC) X-Y position sensitive gas detector C. Mazur Saclay Y 2 cm 4-5 mm 3-4mm Primary beam spot + magnifying factor 1.5 of the 1st solenoid X WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Direct secondary beam at zero degrees 9Be(7Li,8Li)8Be cocktail beam ΔE particle 150 mm² ΔE E 20µm 1000 µm Detector at zero deg. no secondary target 7Li 8Li (0.98;1+) 8Li gs lollipop 8Li gs ΔE-E telescope 7Li2+ 8Li* FWHM=470 keV 8Li3+ 6He2+ p,d,t WeaklyBound-Mai/2015 Natal - Brasil 4He2+ alphas R. Lichtenthäler 7Be+9Be Identification spectra ΔE-E 6He+120Sn 6He+9Be 7Be 7Li 6Li α p dt t 6He+197Au 6He+58Ni WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler First solenoid tuned to let the 7Li of primary beam to come out. .. 8Li*(0.98MeV;1+) 8Li ΔE 7Li 8Li* 8Li gs gs 7Li lollipop detector E WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Secondary beam characteristics: -energy resolution (depend on the beam)~0.5-1.0 MeV - kinematics of the production reaction -energy straggling in the primary target beam Energy (MeV) Kinematic spread (MeV) Energy resolution Purity (1 solenoid) FWHM (MeV) -maximum angular divergence < 1.3-4.5 deg collimators and Faraday cup -intensities – from 104 to 106 pps/Ae production cross section, primary target thickness, primary beam intensity 8Li 28. 0.250 0.500 40-80 % 6He 14.4 0.200 0.800 16 % 7Be 26. 0.700 >1MeV 2% 9Be(7Li,6He)10B 6He 7Li target WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler above the Coulomb barrier: diffractive pattern Fraunhofer diffraction near-far interference nuclear rainbow Far side Near side 12C+16O Δθ=π/lg ; lg=kR WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Elastic scattering measurements Calculations • Optical Model • CDCC 3 and 4 body 6He+51V 4He+51V 6He+9Be 6He+27Al 6He+120Sn WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Angular Distributions 6He+120Sn 4-body CDCC- M. Rodríguez-Gallardo coupling to the breakup channel elastic scattering P. Faria et al PRC81,044605(2010) n Τ R x n y 6He α U6He-Τ = <φ6He|Uα-9Be+Un-9Be+Un-9Be|φ6He> modified 3-body CDCC – A.M Moro Eb(2n-α)=1.6 MeV Τ 2n R y α j=7 j=6 j=5 j=4 j=3 contínuum j=2 i=1 WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler gs 6He Elastic angular distributions with 6He and 11Be projectiles: damping of the Fresnel diffaction peak! 4 body CDCC calculations 9,10,11Be+64Zn diPietro et al. 6He+120Sn predictions! Y.Y. Yang et al. 8B+208Pb 6He+208Pb @ 27 MeV WeaklyBound-Mai/2015 Natal - Brasil θ1/4 lg R. Lichtenthäler Four-body effects in 6He+58Ni, V. Morcelle et al., PLB 732, 228 (2014) 4-body CDCC- M. Rodríguez-Gallardo Τ n R x n y 6He α No free parameters! U6He-Τ = <φ6He|Uα-T+Un-T+Un-T|φ6He> modified 3-body CDCC – A.M Moro Eb(2n-α)=1.6 MeV Τ 2n R y α WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 6He 6He+27Al elastic scattering, E. Benjamin et al, PLB647,30(2007) Optical Model Modified São Paulo potential WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 6He+9Be angular distributions, K.C.C. Pires PRC83,064603(2011) Δθ~30deg WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 6He+27Al E. Benjamin et al, PLB647,30(2007) 6He+27Al espalhamento elástico, E. Benjamin et al, PLB647,30(2007) Modelo optico Potencial de São Paulo modificado WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 6He+9Bi elastic scattering – an optical model analysis Τ 2n R y 6He α U6He-Τ = <φ6He|Uα-9Be+U2n-9Be|φ6He> where Uα-9Be is known empirically and U2n-9Be is adjusted to fit the data WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 6He+9Bi elastic scattering – optical model WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler What we learn? Characteristics of the optical potential r W long range absorption V system V(MeV) rr(fm) ar(fm) W(MeV) ri (fm) ai(fm) 6He+9Be 47 1.2 0.8 3.3 2.41 0.86 6He+120Sn 216 0.9 0.9 12.4 1.4 0.75 σ reac =< χel | W | χel > R=rr,i(Ap1/3+At1/3) WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler An alternative optical model analysis W • • • VF is a Folding potential, the parameters λ, ω, are close do 1 Ws, ri, ai=0.7 are obtained from a systematics by P. Mohr of the volume integrals JI for several systems WV=0 ΔI=12.7 MeV EI=1.171MeV for 120Sn WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler polarization potential r V Results for the potentials 6He+120Sn P. Mohr et al, PRC82,044606(2010) dependence of the absorptive potential (surface) with energy Energy 6He 4He r Reactions at the turning point Peripheral reactions 6He WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 4He S-matrices 6He ΔL 4He L0 WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler What we learn from total reaction cross section? § reduced reaction cross section σ red = § Reduced reaction cross section X reduced energy σ reac exotic ( A p1 / 3 + At 1 / 3 ) 2 tightly bound reduced energy E red = E cm 1/ 3 1/ 3 ( A p + At ) Z p Zt σ reac =< χel | W | χ el > WeaklyBound-Mai/2015 Natal - Brasil σhalo=σ6He+120Sn-σ4He+120Sn ~760 mb ~ 1/2 of the total reaction cross section P.N. de Faria et al. PRC81,044605(2010) R. Lichtenthäler • Reduced total reaction cross section Reaction cross-section obtained from the elastic scattering (CDCC,OM,CC) σ red = E red 6He+120Sn exotic tightly bound σ reac ( A p1 / 3 + At 1 / 3 ) 2 σhalo=σ6He+120Sn-σ4He+120Sn Ecm 1/ 3 1/ 3 = ( A p + At ) Z p Zt WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Reduced total reaction cross section for medium-heavy masses Wong formula σ red = 2E σ reac !w Wong formula WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Reduced cross-sections for intermediate mass systems A~60 exotic 6He+58Ni 6He+51V 6He+64Zn weakly bound tightly bound 8B+58Ni 6Li+51V 9Be+64Zn 6Li+58Ni 6Li+64Zn 7Be+58Ni 4He+58Ni 4He+51V 16O+64Zn WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Reduced cross section for light systems (9Be target). enhancement WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Percent enhancement for several systems [this work] [this work] [this work] guideline σ reac (exp) − σ psp ( 6 Li) Δσ = σ psp ( 6 Li) WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • other reaction channels: breakup or transfer? elastic 6He ΔE breakup 6He+120Sn 7Li target 4He fusion transfer 4He 6He alphas E (channels) WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • other reaction channels: breakup or transfer? 120Sn(6He,α)122Sn Continuum’ Q-optimum considerations EBf EB=0.973 MeV Qopt=0 for neutron transfer 2n-transfer 6He But for breakup Q<0 ! 14.983MeV very weak 122Sn WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Alpha particles from the 6He+120Sn collision: two neutron (6He,4He) transfers? energy distribution of alphas angular distributions total cross section 650 mb ~ σhalo DWBA 2n-transfer to continuum and bound states (calculations by A. Moro) WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • The double solenoid system – since 2011 scattering chamber mid scattering chamber primary beam primary target WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • The double solenoid system Crossover mode Solenoid 1 Solenoid 2 Primary beam lollipop colimator Faraday cup lollipop 1 meter Primary target Secondary target parallel mode Solenoid 1 Solenoid 2 Rad. shield γ detector WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 6He Beam purity 1 solenoid 6He 2 solenoids 6He beam 16% Solenoid 1 beam 92% purity Solenoid 2 absorber Primary beam lollipop Faraday cup Primary target WeaklyBound-Mai/2015 Natal - Brasil Colimator Beam blocker (lollipop) R. Lichtenthäler 8Li Beam purity 1 solenoid double solenoid Solenoid 1 Solenoid 2 absorber Primary beam lollipop Faraday cup Primary target WeaklyBound-Mai/2015 Natal - Brasil Colimator Beam blocker (lollipop) R. Lichtenthäler Excitation function measurements. Experiments with the thick target method -resonances in 6He+p=7Li and 8Li+p=9Be. CH2 12 mg/cm2 protons 6He E6He=12.2 MeV E cm = E lab Silicon telescope ΔE E spectrum of light particles range MT 1 = E lab M p + MT 7 resonances in the CN 50µm 1000µm 11.7 11.2 Ecm+Q 7He 10.8 p+6He ; 9.975 MeV 7Li WeaklyBound-Mai/2015 Natal - Brasil GS ; 0 MeV ; 3/2- R. Lichtenthäler 15 mg/cm2 pure carbon target α 6He no protons t d α p WeaklyBound-Mai/2015 Natal - Brasil d t R. Lichtenthäler p(6He,p)6He WeaklyBound-Mai/2015 Natal - Brasil p(6He,p)6He excitation functions R. Lichtenthäler 6He on pure carbon target alphas tritium no protons WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler p(6He,p)6He excitation function p(6He,n)6Li excitation function by Rogachev et al. PRL WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler The p(8Li,p)8Li scattering WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Evidence of a four-body state in 9Be J=5/2J=5/2+ multi-channel R-matrix analysis α t p n Eexc=18.7 MeV Eexc 9Be GS This resonance is observed only in the 8Li(p,d)7Li reaction and not in the inverse reaction indicating that the 7Li is excited. WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler • The future 2004 2011 2015 γ WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler 2015 gamma cave neutron detector WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler RIBRAS collaboration: Universidade de São Paulo, IFUSP R. Lichtenthäler Fo, A. Lépine-Szily, V.Guimarães, M. A. Gonzalez Alvarez, K.C.C. Pires, R. Pampa Condori, V.Scarduelli, L.Gasques, V. A. Zagatto, U.U. da Silva, E.Leistenschneider, N. Deshmukh, Y.Yang, S. Appannababu, G. A. Scotton, J. Duarte IEAv-USP M. S. Hussein Universidad de Sevilla, Espanha M. Rodríguez-Gallardo, A.M. Moro Université Libre de Bruxelles P. Descouvemont University of Edinburgh A. Estrade Laboratorio Tandar, Buenos Aires, Argentina A. Arazi CEADEN, Havana, Cuba I.Padron, J. Arteche, R. Arteche Instituto de Pesquisas Energeticas e Nucleares (IPEN) J.M.B. Shorto Universidade Federal Fluminense (UFF) P.R.S. Gomes, J. Lubian, P. N. de Faria, D. R. Mendes, M.C. Morais Universidade Federal de São Paulo (UNIFESP) M. Assunção Universidade Federal Rural do Rio de Janeiro (UFRRJ) V. Morcelle Universidade Federal da Bahia (UFBA) A. Barioni University of Notre Dame, EUA J. Kolata Faculty of Science, The M.S. University of Baroda, India Surjit Mukherjee WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler Thank you! WeaklyBound-Mai/2015 Natal - Brasil R. Lichtenthäler