Statoil Peregrino A oil plataform CATALOGUE OF THE BENTHIC MARINE LIFE FROM PEREGRINO OIL FIELD, CAMPOS BASIN, BRAZIL Instituto Biodiversidade Marinha (Marine Biodiversity Institute) CATALOGUE OF THE BENTHIC MARINE LIFE FROM PEREGRINO OIL FIELD, CAMPOS BASIN, BRAZIL Editors Frederico Tapajós de Souza Tâmega Paula Spotorno de Oliveira Marcia Abreu de Oliveira Figueiredo RIO DE JANEIRO 2013 Editors – Frederico Tapajós de Souza Tâmega, Paula Spotorno de Universidade Federal do Rio de Janeiro – UFRJ, Universidade Federal Oliveira Echinodermata), and Museu Oceanográfico “Prof. E. C. Rios”, Oliveira & Marcia Abreu de Oliveira Figueiredo Designers – Paula Spotorno de Oliveira and Gabriel Spotorno de Web developer – Gabriel Spotorno de Oliveira Photo credits – Frederico Tapajós de Souza Tâmega (Fig. page 1, Figs. 2A–2B, Figs. 3A–3H and Rhodophyta Figs. 04–05), Carlos Renato Rural do Rio de Janeiro – UFRRJ (Laboratories of Annelida), Museu Nacional – UFRJ (Laboratories of Porifera, Cnidaria, Crustacea and Universidade Federal do Rio Grande – FURG (Laboratory of Malacology). Rezende Ventura (Echinodermata, Figs. 103–123), Cristiana Silveira How to cite this book: Tâmega, F.T.S.; Spotorno-Oliveira, P. & Cardoso (Crustacea Figs. 66–81), Luciana Vieira Granthom Costa Biodiversidade Marinha, Rio de Janeiro, 140 pp. Serejo (Crustacea Fig. 65), Débora de Oliveira Pires (Cnidaria Figs. 22–27), Fernando Moraes (Porifera Figs. 06–21), Irene Azevedo (Ascidiacea Figs. 124–125), Paula Spotorno de Oliveira (Mollusca Figs. 28–58, Bryozoa Figs. 82–101 and Brachiopoda Fig. 102) and Raquel Meihoub Berlandi (Polychaeta Figs. 59–64). Cover – Paula Spotorno de Oliveira Map artwork – Paula Spotorno de Oliveira, Fernanda Siviero and Frederico Tapajós de Souza Tâmega Editing images – Paula Spotorno de Oliveira Referees – Andrea de Oliveira Ribeiro Junqueira and Júlio César Monteiro Name of project – Peregrino Environmental Peregrino Calcareous Algae Project, PEMCA Coordination – Marcia Abreu de Oliveira Figueiredo Participating institutions – Instituto Biodiversidade Marinha, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Figueiredo, M.A.O. 2013. Catalogue of the benthic marine life from Peregrino C357 oil field, Campos Basin, Brazil. Instituto Catalogue of the benthic marine life from Peregrino oil field, Campos Basin, Brazil [electronic resource] / Frederico Tapajós de Souza Tâmega, Paula Spotorno de Oliveira, Marcia Abreu de Oliveira Figueiredo, editors. – Rio de Janeiro: Instituto Biodiversidade Marinha, 2013. – 140 p. : 125 il.; color. ; 21 cm. Includes bibliography ISBN 978-85-67038-00-1 (PDF format). ISBN 978-85-67038-01-8 (HTML format). 1. Benthic fauna. 2. Campos Basin. 3. Marine biodiversity. 4. Rhodolith. I. Figueiredo, Marcia Abreu de Oliveira. II. Oliveira, Paula Spotorno de. III. Tâmega, Frederico Tapajós de Souza de. CDD 574.92 Cataloging in Publication record prepared by Andréa Oliveira S. de Avila – CRB10 0003/2013. CATALOGUE OF THE BENTHIC MARINE LIFE FROM PEREGRINO OIL FIELD, CAMPOS BASIN, BRAZIL Organizer Instituto Biodiversidade Marinha (Marine Biodiversity Institute) Financial support STATOIL Brasil Óleo e Gás Ltda (Statoil Brazil Oil and Gas LLC) Agência Nacional de Petróleo, Gás Natural e Biocombustíveis – ANP (National Oil, Gas and Biofuels Agency) Contents Acknowledgments……………....………………………………………………………………………..................................................................................................................................................... 09 Introduction ...............................………………………………………………………….......................................................................................................................................................................... 10 Introduction to the catalogue…………………………………………………………...................................................................................................................................................................... 11 General features of rhodolith beds.................................…………………………………………............................................................................................................................... 11 Sampling methods and identified taxa……………………………………………….......………………..….............................................................................................................. 12 Frederico Tapajós de Souza Tâmega & Marcia Abreu de Oliveira Figueiredo Characterization of the Peregrino Oil Field………………………………………………………………………………………………………….......……....................................... 16 Ricardo Coutinho & Fernanda Siviero Results – Biodiversity Survey……………………………………………………………………....................................................................................................................................................... 18 Phylum Rhodophyta Wettstein, 1922………………………………………………………………………………......................................................................................................... 20 Frederico Tapajós de Souza Tâmega; Alexandre Bigio Villas-Boas & Marcia Abreu de Oliveira Figueiredo Phylum Porifera Grant, 1836……………………………………………………………………………………................................................................................................................... 24 Fernando Moraes Phylum Cnidaria Hatschek, 1888……………………………………………………………………………...................................................................................................................... 36 Débora de Oliveira Pires Phylum Mollusca Cuvier, 1797……………………………………………………………………………………................................................................................................................ 42 Paula Spotorno de Oliveira Phylum Annelida Lamarck, 1809 Class Polychaeta Grube, 1850……………………………………………………………………………………............................................................................................... 60 Paulo Cesar Paiva, Raquel Meihoub Berlandi & Ana Claudia dos Santos Brasil Phylum Arthropoda Latreille, 1829 Subphylum Crustacea Brünnich, 1772……………………………………………………………………………….................................................................................... 66 Cristiana Silveira Serejo & Irene Azevedo Cardoso 7 Phylum Bryozoa Ehrenberg, 1813……………………………………………………………………………………......................................................................................................... 78 Paula Spotorno de Oliveira Phylum Brachiopoda Duméril, 1806………………………………………………………………………….................................................................................................................. 90 Paula Spotorno de Oliveira Phylum Echinodermata Klein, 1734………………………………………………………………………………............................................................................................................ 94 Carlos Renato Rezende Ventura Phylum Chordata Bateson, 1885 Subphylum Tunicata (Urochordata) Lamarck, 1816 Class Ascidiacea Nielsen, 1995………………………………………………..................………………................................................................................. 108 Luciana Vieira Granthom Costa & Frederico Tapajós de Souza Tâmega Conclusion…………………………………………………………………………………….......................................................................................................................................................................... 112 References……………………………………………………………………………………......................................................................................................................................................................... 116 Index of taxa by scientific name....…………………………………………………………............................................................................................................................................................. 126 Author list…………........................………………………………………………………………………….................................................................................................................................................. 130 Tables……………………...........................................................................................…………………………………………….................................................................................................................. 134 Table 1. Sampling data from study sites of PEMCA Project…………………………………………………………………………………………………...................................... 135 Table 3. List of Cnidaria taxa recorded at the Peregrino oil field. ……………………………………………………………………………………......................................... 136 Table 2. List of Porifera taxa recorded at the Peregrino oil field………………………………………………………………………….....................................…………......... Table 4. List of Molluscan taxa recorded at the Peregrino oil field.……………………………………………………………………………………...................................... 136 137 Table 5. List of Polychaeta taxa recorded at the Peregrino oil field…………………………………………………………………………......................................................... 138 Table 6. List of Crustacea taxa recorded at the Peregrino oil field…………………………………………………………………………........................................................... 138 Table 7. List of Bryozoan taxa recorded at the Peregrino oil field…………………………………………………………………………............................................................ 139 Table 8. Brachiopoda taxon recorded at the Peregrino oil field……………………………………………………………………………............................................................. 139 Table 9. List of Echinodermata taxa recorded at the Peregrino oil field…………………………………………………………………………........................................... Table 10. List of Ascidiacea taxa recorded at the Peregrino oil field…………………………………………………………………………..................................................... 140 140 8 Acknowledgments We are grateful to the crew and captains of the Brazilian Navy vessels: Diadorin and Aspirante Moura for their assistance and also to Ricardo Coutinho, Alézio da Silva Dias, Fernanda Neves Sivieiro, José Eduardo de Arruda Gonçalves, Júlio César Monteiro and Rodrigo Araújo Gonçalves for field work support. Alanna Dahan Martins (Echinodermata), Celso de Souza (Porifera), Clovis Barreira e Castro (Cnidaria), Elinia Medeiros Lopes (Echinodermata), Guilherme Muricy (Porifera), Jaime Jardim (Mollusca-Polyplacophora), Leandro Manzoni Vieira (Bryozoa), Marcela Rosa Tavares (Echinodermata) and Marcello Guimarães Simões (Brachiopoda) kindly helped with the identification of some taxa. Financial support was given by STATOIL Brasil Óleo e Gás Ltda (Statoil Brazil Oil and Gas LLC) and the Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (National Oil, Natural Gas and Biofuels Agency) - ANP. SISBIO license no 20820-2 and 20826-1. 9 Introduction 10 Introduction to the catalogue Frederico Tapajós de Souza Tâmega & Marcia Abreu de Oliveira Figueiredo The Peregrino oil field is located at Campos Basin (Rio de Janeiro State), which, despite being a major oil production area, remains undiscovered with regard to its marine life. The surveyed sea bottom is at a depth of approximately 100 m, within an area of approximately 15,750 km2, and is characterized by calcareous nodules known as “rhodoliths”. Produced by free-living calcareous algae and incrusting fauna, these biogenic structures transform the poor sedimentary soft bottom into a complex habitat that aggregates several marine life forms. The highly diverse benthic community presents probably new species for science, relatively unknown invertebrates and calcareous algae of the Brazilian continental shelf. General features of rhodolith beds Living rhodolith beds are distributed in tropical and cold- temperate oceans, from shallow to deep waters exceeding 200 m (Littler et al., 1991). In Brazil, rhodolith beds are widespread from the northeast to the south and are considered to be the largest calcareous algae carbonate deposits in the world (Foster, 2001). Although their potential for sustainable fisheries and the increasing demand for marine carbonate extraction has caused scientists to seek conservation management (e.g., Birkett et al., 1998; Fazakerley & Guiry, 1998), the community structure studies of soft bottoms conducted on the Brazilian continental shelf do not often include or refer to rhodoliths as one of their major components. Rhodoliths are considered habitat modifiers or bioengineers that, by virtue of their branching and interlocking nature, provide relatively 11 stable and three-dimensional habitats (Bruno & Bertness, 2001). The size, shape and branched-pattern growth have an important role in the species richness and abundance of the associated invertebrates (Steller et al., 2003; Figueiredo et al., 2007; Sciberras et al., 2009). The beds also provide a surface to wich macroalgae attach (e.g., Hily et al., 1992; Amado-Filho et al., 2010) in this environment. Although dead rhodoliths within natural stands can hold dense faunal assemblages, live rhodoliths play an important ecological role as a nursery habitas, supporting richer communities than non-carbonate sediments (Figueiredo et al., 2007; Harvey & Bird, 2008). Indeed, some juvenile invertebrates prefer to settle, seek refuge from predators and optimize their food supply on live rhodolith beds rather than on impacted grounds (Kamenos et al., 2004; Steller & Cárceres-Martinez, 2009). Rhodolith beds usually concentrate a great species richness and abundance of Annelida, Mollusca and Crustacea in their infauna, whereas Cnidaria, Bryozoa and Porifera characterize the epifauna that incrust rhodoliths (Bordehore et al., 2003; Steller et al., 2003; Hinojosa-Arango & Riosmena-Rodriguez, 2004; Figueiredo et al., 2007; Harvey & Bird, 2008; Sciberras et al., 2009; Amado-Filho et al., 2010). Rhodolith beds have been shown to provide a highly heterogeneous substratum that enriches soft bottom communities in shallow waters, though little is known about deep-water communities. This catalogue presents a taxonomic list of the flora and faunal groups in the Peregrino rhodolith bed, which is likely the most extensive offshore living rhodolith bed in the world. Two calcareous red algae (Rhodophyta) are the major components of these rhodolith structures, and the following faunal groups were recorded: Porifera, Cnidaria, Mollusca, Polychaeta, Crustacea, Bryozoa, Brachiopoda, Echinodermata and Ascidiacea. The taxa described in this catalogue were the most frequent observed in a total of 210 taxa; however, 31 taxa remain without specific identification. A precise identification at the species level is under investigation and may result in some previously unknown species. Sampling methods and identified taxa Twenty-two sampling stations were located at the Peregrino oil field, Campos Basin (23°17'776"S - 41°14'218"W; 23°21.2´S - 041°17.05´W), 46 nautical miles from the Cabo Frio region in the north of Rio de Janeiro State (Fig. 1). Three field surveys were conducted, in June and November 2010 and April 2011, aboard the Brazilian Navy vessels Diadorin and Aspirante Moura (Figs. 2A, 2B). The sampling of fauna species was performed using the following two sampling methods: a van Veen grab of 20 L (Fig. 3A) and a dredge of 160 L (Fig. 3B); the latter is more widely used for sampling large amount of rhodoliths (Figs. 3C, 3D). The data from the study sites (sampling dates and depth, time, position and duration of trawling and sampler used) are described in Table 1. After collection, the sampler was placed on the vessel, and the organisms were sorted into major taxonomic groups. The algae samples were preserved in 4% formalin solution, and the fauna samples anesthetized with magnesium chloride (8%) for 30 minutes and then fixed in 70% to 90% alcohol. Specimens of each taxonomic group (Phylum) were labeled and storage according to the study site (Fig. 3E). After arrival at the harbor of Arraial do Cabo, the samples were placed in plastic boxes and sent to the experts on each group (Fig. 3F). The biological collections are held at the following: Instituto de Pesquisa Jardim Botânico do Rio de Janeiro – JBRJ (Botanical Garden of Rio de Janeiro Research Institute); Universidade Federal do Rio de 12 Janeiro – UFRJ (Federal University of Rio de Janeiro); Universidade Echinodermata; and Museu Oceanográfico “Prof. E. C. Rios”, Universidade de Janeiro), Laboratories of Annelida; Museu Nacional – UFRJ (National University Federal Rural do Rio de Janeiro - UFRRJ (Rural Federal University of Rio Museum), Laboratories of Porifera, Cnidaria, Crustacea and Federal do Rio Grande – FURG (Oceaonographic Museum, Federal of Figure 1. Peregrino oil field located in Rio de Janeiro State and position of each sampling sites. 13 Rio Grande), Laboratory of Malacology. Rouse & Pleijel, 2001; Nogueira & San Martín, 2002; San Martín, 2003; Nogueira, 2005; Amaral et al., 2006; Nogueira & Abbud, 2009), Crustacea (e.g., Williams, 1984; Barnard & Karaman, 1991; Melo, 1996; 1999; Poore, 2001), Bryozoa (e.g., Marcus, 1937; 1938; 1939; 1941; 1955; Braga, 1967; 1968; Ramalho, 2006; Vieira et al., 2007; 2008; 2010a;b;c; Vieira, 2008; Santana et al., 2009; Ramalho et al., 2009), Brachiopoda Figure 2. Brazilian Navy vessels Diadorin (A) and Aspirante Moura (B). The specimens were physically sorted into taxonomic groups using forceps and fine paintbrushes, placed into Petri dishes and observed using stereoscopic and optical microscopes (Figs. 3G, 3H); images were recorded with a digital camera after fixation. Identification at the lowest possible taxonomic level was performed by consulting specific literature for each Phylum, including Rhodophyta (e.g., Woelkerling, 1988; Womersley, 1996; Harvey et al., 2005; Farias et al., 2010), Porifera (e.g., Boury-Esnault, 1973; Hooper & van Soest, 2002; Lerner et al., 2006; Muricy et al., 2007; 2008; van Soest et al., 2011), Cnidaria (e.g., Cairns, 1979; 2000; Verseveldt & Bayer, 1988), Mollusca (e.g., Abbott, 1974; Kaas & Van Belle, 1987; Sweeney et al., 1992; Díaz & Puyana &, 1994; Rios, 1994; 2009), Polychaeta (e.g., Zibrowius, 1970; (e.g., Simões et al., 2004; Simões & Mello, 2006), Echinodermata (e.g., Mortensen, 1928; Phelan, 1970; Tommasi, 1966; 1970a; Lawrence, 1987; Hendler et al., 1995; Rowe & Gates, 1995; Brusca & Brusca, 2003; Amaral et al., 2006) and Ascidiacea (e.g., Van Name, 1945; Kott, 1952; Rodrigues, 1966; Monniot & Monniot, 1968; Millar, 1969; Monniot, 1970; Cascon & Lotufo, 2005; Rocha et al., 2011; 2012; Dias et al., 2012). In this catalogue we take the opportunity to present an updated checklist of the currently known flora and fauna in the Peregrino oil field. A taxonomic illustrated checklist in the catalogue of the benthic marine life from Peregrino oil field is provided, comprising a total of 122 taxa, 2 taxa of Rhodophyta, 16 of Porifera, 6 of Cnidaria, 31 of Mollusca, 6 of Polychaeta, 17 of Crustacea, 20 of Bryozoa, 1 of Brachiopoda, 21 of Echinodermata and 2 of Ascidiacea. Additional information on the taxa recorded is also presented. 14 Figure 3. Samplers used: van Veen grab (A) and dredge (B). Rhodolith samples and associated fauna after dredging (C, D). Sorted fauna samples and transport to the laboratory (E, F). Stereomicroscope (G) and optical microscope (H) used in the identification of the algae and fauna specimens. 15 Characterization of the Peregrino Oil Field Ricardo Coutinho & Fernanda Siviero The Peregrino oil field is part of the Campos Basin (Block BM-C-7). The field location is approximately 85 km from Cabo Frio and 118 km from Water (AC) to the open ocean as the vortex grows and the Brazil Current (BC) is destabilized. This withdrawal of water may cause the rise of colder Cabo de São Tomé where it reaches a maximum depth of 200 m before the waters. Coastal Water (low S), Tropical Water (high S, 36°C) and Água Central do of ACAS. The second phase occurs when the warm water at the surface is bottom; in the winter, the temperature ranges from 20 to 22°C at the returns to a oligotrophic environment due to a decrease in phytoplankton break of the continental shelf; its orientation is SW-NE. The oil field is characterized as an area influenced by the following three water masses: Atlântico Sul (ACAS) (low T, 18°C). In the summertime, the water temperature ranges from 18 to 24°C at the surface and 16 and 18°C at the surface and 16 and 22°C at the bottom. The mean temperature at the bottom is higher in winter than in summer and may be related to the The cycles of upwelling off the coast of Cabo Frio can be summarized in three phases. The first phase is the upwelling of the nutrient-rich waters followed by an increase in primary production and a parallel decrease in nutrient concentrations. The third phase is subsidence in which the water because of the depletion of nutrients (Gonzalez-Rodriguez et al., 1992). In the Peregrino region, the waters of the BC (AC-AT) are persistence of the wind during the summer and the subsequent characterized by having fewer nutrients and low nitrate levels (4 mM) and and 0.4 m/s toward the SW. The bottom currents show a correlation mM, respectively. maintenance of the upwelling phenomenon near the coast. The average speed of the current background area is between 0.2 between the low temperature at the bottom and the current along the coast. This area is dominated by the dynamic current from Brazil that is shallow (0-75 m), warm (6-24°C) and of high salinity (34.5 to 37/00) and by the synoptic wind during the passage of cold fronts and the tidal regime. This area is also characterized by the large-scale South Atlantic Subtropical High, with synoptic winds due to very frequent cold fronts. The intensity of these northwest winds is higher during the summer and spring, promoting upwelling events during this period. Calado et al. (2010) showed that an unstable cyclonic meander can displace a significant volume of Coastal orthophosphate (0.4 μM) levels. In contrast, ACAS has the highest concentrations of nitrate and orthophosphate, reaching values of 18 and 1.3 Therefore, a high rate of productivity and accumulation of phytoplankton biomass is related to the external nutrient input of the continent or from ACAS. Furthermore, a zooplankton density of > 10 org. L-1 (66 mg m-3 dry weight), reaching values of 100 org. L-1 (220 mg m-3 dry weight), has been observed after the end of the summer upwelling (Valentin, 2001). During this period there is an increase in the depth of the thermocline and photic layer, which produces an increased flow of particulate organic carbon that is exported to the bottom. 16 Results – Biodiversity Survey 18 Phylum Rhodophyta Wettstein, 1922 20 Phylum Rhodophyta Frederico Tapajós de Souza Tâmega; Alexandre Bigio Villas-Boas & Marcia Abreu de Oliveira Figueiredo Introduction Rhodolith beds are marine communities dominated by free-living calcareous algae both now (Foster, 2001) and in the past (Bassi et al., 2009; 2012) and are widely distributed from depths of 20 to 100 m in the southwestern Atlantic (Kempf, 1970; Amado-Filho et al., 2012; Henriques, et al., 2012). These assemblages are composed of four or more species of rhodolith-forming red calcareous algae (Villas-Boas et al., 2009; Amado-Filho et al., 2010). Other macroalgae comprise at least one quarter of the known species of the Brazilian central shelf (Yoneshigue-Valentin et al., 2006), though the species richness and abundance varies seasonally, similar to beds elsewhere in the world (e.g., Steller et al., 2003; Sciberras et al., 2009). Sedimentary soft bottoms covered by rhodoliths are found surrounding coral reefs in northeastern Brazil (Leão et al., 2003) where an expansive and contiguous rhodolith beds was recently mapped on the Abrolhos shelf (Amado-Filho et al., 2012), contrasting with an isolated small rhodolith bed reported at a lower latitude (Gherardi, 2004). 21 The morphological features of rhodolith-forming species are remarkably variable; nonetheless, they indicate adaptations to many environmental and biological factors, such as wave exposure, light intensity, sediment deposition, competition and herbivory (Steneck 1986; Steneck & Dethier, 1994). Because rhodolith beds remain poorly understood, new species are likely to be found (e.g., Villas-Boas et al., 2009). This report is the first attempt at an overall survey to describe the species composition at Campos Basin, the largest oil production area in the country and a priority area for marine life conservation. Results Two rhodolith-forming species from the Peregrino oil field were recorded. Systematics Class Florideophyceae Cronquist, 1960 Order Corallinales P. C. Silva & H. W. Johansen,1986 Family Hapalidiaceae J. E. Gray, 1864 Subfamily Melobesioideae A. S. Harvey & Woelkerling,1995 Genus Mesophyllum Marie Lemoine, 1928 Species Mesophyllum engelhartii (Foslie) W. H. Adey (Fig. 4) Geographic and bathymetric distributions: Australia and New Zealand (Chapman & Parkinson, 1974; Woelkerling & Harvey, 1993), Mexico (Riosmena-Rodriguez & Vásquez-Elizondo, 2012), Brazil (Amado-Filho et al., 2010; Riosmena-Rodriguez & Vásquez-Elizondo, 2012; Figueiredo et al., 2012), Namibia (John et al., 2004) and South Africa (Chamberlain & Keats, 1995). Found intertidally in pools and on reef edges and subtidally to 15 m. Data available in Guiry & Guiry (2013). Remarks: Substrata include rock, mollusks, sponges and various green, brown and red algae (Womersley, 1996). Species present at all sampling stations. Figure 4. Mesophyllum engelhartii 22 Genus Lithothamnion Heydrich, 1897 Species Lithothamnion sp. (Fig. 5) Geographic distribution: Biogeographically, Lithothamnion appears to be widespread, considering the high number of known species, but many records require confirmation. Data available in Guiry & Guiry (2013). Remarks: A revision of the Lithothamnion species from Rio Grande do Norte, Bahia and Santa Catarina States was previously conducted (Farias et al., 2010). Lithothamnion sp. differs from others species of Lithothamnion found elsewhere in Brazil. Unidentified species present at all sampling stations. Figure 5. Lithothamnion sp. 23 Phylum Porifera Grant, 1836 24 Phylum Porifera Introduction Fernando Moraes Sponges (Porifera) comprise one of the major invertebrate groups on consolidated sea beds worldwide and high-latitude lakes. They are abundant in all oceans, from the tidal line to deep sea where the species colonize rocks, shells, coral skeletons, sand, mud and several other hard and soft substrates. Sponges are also very abundant in shelf areas to a depth of 90 m depth particularly in Brazil (e.g. Ridley & Dendy, 1887; Sollas, 1888; Boury-Esnault, 1973; Muricy et al., 2008). Approximately 8,350 species are known in the worldwide of which more than 443 are registered in Brazil (Muricy et al., 2011; van Soest et al., 2013). The most diverse class, Demospongiae, is represented in Brazilian waters by 380 species in 63 families, comprising 70% of the 90 currently accepted families of this class (reviewed in Muricy et al., 2011). In Brazil, knowledge of sponge fauna from the continental shelf began with the historic expedition of H.M.S. Challenger (Ridley & Dendy, 1887; Sollas, 1888) and has currently been driven by environmental and governmental policies (The Assessment of the Sustainable Yield of the Living Resources in the Exclusive Economic Zone Project - REVIZEE) and 25 the demands of oil and gas companies (Muricy et al., 2006; 2007; 2008; Hajdu & Lopes, 2007; Vieira et al., 2010d; Lopes et al., 2011). Muricy et al (2011) reviewed the taxonomy of Porifera in Brazil, presenting 443 registered sponge species and 340 others characterized at the genus and higher systematic levels, information that indicates the high potential for the description of new species and demonstrates the need for the refinement of the taxonomy of several groups. The taxonomy of Porifera is difficult, relying on morphological and anatomical features for the identification of species – some of which are altered after collection, such as color. In the last decade, illustrated identification guides published in Brazil including anatomical descriptions of species, have supported the development of taxonomic studies and faunistic surveys along the coast and oceanic islands of the Brazilian Economic Exclusive Zone (Muricy & Hajdu, 2006; Muricy et al., 2008; Moraes, 2011; Hajdu et al., 2011). Results A total of 16 Porifera taxa from the Peregrino oil field were recorded (Table 2). Systematics Class Demospongiae Sollas, 1885 Order Astrophorida Sollas, 1888 Family Geodiidae Gray, 1867 Genus Erylus Gray, 1867 Species Erylus sp. (Fig. 6) Geographic distribution: The genus Erylus is cosmopolitan (Adams & Hooper, 2001) and occurs in Brazil from north to south along the coast and at all oceanic islands (Mothes & Lerner, 2001; Moraes et al., 2006; Moraes & Muricy, 2007; Vieira et al., 2010d). Remarks: The genus Erylus is quite diverse, with 69 species worldwide (van Soest et al., 2011) and six species in Brazil (Moraes & Muricy, 2007; Vieira et al., 2010d). Erylus is characterized by the presence of aspidasteres. Species-level identification requires a detailed analysis of the morphology of different asterose microscleres using scanning electron microscopy and comparison with the literature. Figure 6. Erylus sp. 26 Family Ancorinidae Schmidt, 1870 Genus Tribrachium Weltner, 1882 Species Tribrachium schmidtii Weltner, 1882 (Fig. 7) Geographic and bathymetric distributions: Tropical western AtlanticCaribbean and Brazil. This species was collected by the REVIZEE Program between 50-140 m in the States of Bahia and Rio de Janeiro in Brazil (Muricy et al., 2007); it occurs between depth of 12 and 700 m. Remarks: The external form and set of spicules of T. schmidtii are very characteristic. Its habitat is unconsolidated sediment in which its base remains buried, whereas the papillae are exposed above the sea floor. Figure 7. Tribrachium schmidtii Order Hadromerida Topsent, 1894 Family Suberitidae Schmidt, 1870 Genus Protosuberites Swartschewsky, 1905 Species Protosuberites sp. (Fig. 8) Geographic and bathymetric distributions: There is only one record of this genus in Brazil, identified in the Cagarras Archipelago, Rio de Janeiro State, in shallow waters (Monteiro & Muricy, 2004, as Protosuberites sp.). Figure 8. Protosuberites sp. 27 Family Timeidae Topsent, 1928 Genus Timea Gray, 1867 Species Timea sp. (Fig. 9) Geographic and bathymetric distributions: The genus Timea occurs in tropical and warm temperate waters from shallow depths to 165 m depth (Lehnert & Heimler, 2001). Order Lithistida incertae sedis Family Desmanthidae Topsent, 1893 Genus Petromica Topsent, 1898 Species Petromica sp. (Fig. 10) Figure 9. Timea sp. Geographic distribution: The genus Petromica occurs in the Azores Archipelago, Caribbean, Brazil, South Africa and Ceylon (Muricy et al., 2001). In Brazil, it occurs in the northeast, southeast and south (Muricy et al., 2001; 2008; Muricy & Hajdu, 2006). Remarks: The genus Petromica has 10 species considered valid in the world (van Soest et al., 2011); there are two recorded species in Brazil (Muricy et al., 2001; 2008). These species occur in shallow waters and differ markedly from the Petromica sp. from the Peregrino oil field by external morphology (color and shape); specimens of the first group of species are white and have smooth papilae with oscules; the second is yellow with conulose Figure 10. Petromica sp. 28 papillae. Petromica sp. have a massive irregular shape and cream-white color. The material collected in the Peregrino field is likely a new species. Order Poecilosclerida Topsent, 1928 Suborder Microcionina Hajdu, van Soest & Hooper, 1994 Family Microcionidae Carter, 1875 Genus Clathria Schmidt, 1862 Species Clathria sp. (Fig. 11) Geographic and bathymetric distributions: The genus Clathria is cosmopolitan, occurring predominantly in shallow water (Hooper, 2002a). Remarks: The genus Clathria consists of more than 400 valid species worldwide (van Soest et al., 2011). A species-level identification of the material collected requires information on the external morphology (e.g., color in vivo), a detailed analysis of the spicules using scanning electron microscopy and revision of the genus Clathria in the Atlantic. 29 Figure 11. Clathria sp. Family Raspailiidae Hentschel, 1923 Subfamily Raspailiiniae Nardo, 1833 Genus Raspailia Nardo, 1833 Subgenus Raspaxilla Topsent, 1913 Species Raspailia (Raspaxilla) bouryesnaultae Lerner, Carraro & van Soest, 2006 (Fig. 12) Geographic and bathymetric distributions: In Brazil, at Campos dos Goytacazes, Rio de Janeiro State at 39 m depth (Boury-Esnault, 1973) and Ilha dos Corais, Santa Catarina State at 12 m depth (Lerner et al., 2006). Remarks: The material studied is similar to that described for the type locality, which is from the same region as the Peregrino oil field. The in vivo yellow color described for the Santa Catarina material cannot be compared Figure 12. Raspailia (Raspaxilla) bouryesnaultae with the studied material, due to the lack of this information. Genus Eurypon Gray, 1867 Species Eurypon sp. (Fig. 13) Geographic distribution: The genus Eurypon is cosmopolitan (Hooper, 2002b); there is only one record in Brazil in Tamandaré, Pernambuco State (Muricy & Moraes, 1998, as Eurypon sp.). Remarks: The genus Eurypon has 41 valid species in the world (van Soest et al., 2011). Figure 13. Eurypon sp. 30 Suborder Myxillina Hajdu, van Soest & Hooper, 1994 Species Myxillina sp. (Fig. 14) Geographic distribution: Distributed worldwide (van Soest et al., 2013). Remarks: The suborder Myxillina contains species of a wide variety of morphological and anatomical features, with 11 families considered valid, but still requires a systematic review (van Soest, 2002). The features of the collected material from the Peregrino oil field are the same as the suborder Myxillina, but the morphological (shape) and anatomical features (spicules and skeleton) differ from those of any of the known genera or families in this group (van Soest, 2002). Therefore, the genera and species remain unidentified and are dependent on future taxonomic work. Figure 14. Myxillina sp. Family Desmacellidae Ridley & Dendy, 1886 Genus Desmacella Schmidt, 1870 Species Desmacella sp. (Fig. 15) Geographic and bathymetric distributions: The genus Desmacella occurs in all oceans in the world, predominantly in deep waters (Hajdu & van Soest, 2002). In Brazil there are records of three species of this genus in the States of São Paulo, Rio de Janeiro, Santa Catarina and Rio Grande do Sul, between 114-380 m depth (Hajdu & Lopes, 2007). Remarks: The genus Desmacella includes 30 species considered valid 31 Figure 15. Desmacella sp. worldwide (van Soest et al., 2011). The minimum depths of the three species of Desmacella recorded in Brazil ̶ D. annexa (Schmidt, 1870), D. aff. pumilio Schmidt, 1870 and Desmacella sp. (Lopes et al., 2011) ̶ match with the maximum record depth of dredging made in the Peregrino oil field. Order Halichondrida Gray, 1867 Family Axinellidae Carter, 1875 Species Axinellidae sp. (Fig. 16) Geographic and bathymetric distributions: This family is cosmopolitan, occurring from shallow water to the deep sea at 1800 m depth (Alvarez & Hooper, 2002). Remarks: The family Axinellidae has 10 genera and 300 species described, with a wide range of morphological features, such as variety of shapes and red, orange and yellow colors (Alvarez & Hooper, 2002). Figure 16. Axinellidae sp. 32 Family Halichondriidae Gray, 1867 Genus Topsentia Berg, 1899 Species Topsentia sp. (Fig. 17) Geographic distribution: The genus Topsentia occurs in three oceans, predominantly at low latitudes (Erpenbeck & van Soest, 2002). Remarks: The genus Topsentia has 35 species valid worldwide (van Soest et al., 2011); there is only one known species of this genus in Brazil, T. ophiraphidites (de Laubenfels, 1934) (e.g., Muricy et al., 2008). Family Bubaridae Topsent, 1894 Genus Bubaris Gray, 1867 Species Bubaris sp. (Fig. 18) Figure 17. Topsentia sp. Geographic and bathymetric distributions: The genus Bubaris has a wide distribution, including records in the Arctic, Atlantic, Mediterranean and Pacific Oceans and in the Antarctica, mostly deep sea (Alvarez & Hooper, 2002). Remarks: The genus Bubaris has nine species valid worldwide (van Soest et al., 2011). The species of this genus are incrusting and have no spicules as diagnosable features at the species level. There is a need for accurate information regarding color and surface features for a more detailed identification. In Brazil, there is only one record of a species of this genus, 33 Figure 18. Bubaris sp. for the States of São Paulo and Rio Grande do Sul, between 153-360 m depth (Hajdu & Lopes, 2007, as Bubaris sp.). Order Haplosclerida Topsent, 1928 Suborder Haplosclerina Topsent, 1928 Family Chalinidae Gray, 1867 Genus Haliclona Grant, 1836 Species Haliclona sp. (Fig. 19) Geographic and bathymetric distributions: The genus Haliclona is common in shallow tropical waters, but the family Chalinidae is distributed worldwide (Weerdt, 2002). Remarks: The genus Haliclona has six subgenera and approximately 430 species considered valid worldwide (Weerdt, 2002; van Soest et al., 2011). Species level identification is dependent on suitable information regarding the external morphology, particularly color, due to the simplicity of the Figure 19. Haliclona sp. spicules. Order Dictyoceratida Minchin, 1900 Family Irciniidae Gray, 1867 Genus Ircinia Nardo, 1833 Species Ircinia strobilina (Lamarck, 1816) (Fig. 20) 34 Geographic distribution: Tropical Western Atlantic: Caribbean and Brazil in the States of Ceará, Rio Grande do Norte, Pernambuco, Alagoas, Bahia and Espírito Santo (Muricy et al., 2007; 2008). This is a new record in Rio de Janeiro State. Remarks: The genus Ircinia has 75 species valid worldwide (van Soest et al., 2011). The material studied matches the description of Ircinia strobilina by Muricy et al. (2007), including the brown color with shades of black and the lack of black edges in the osculum. However, the shape of the studied sample is not that most commonly expected for this species in other regions (Caribbean and northeastern Brazil). Bryozoans and cnidarians (hydroids and hermatypic corals) were found associated with this species. Family Dysideidae Gray, 1867 Figure 20. Ircinia strobilina Genus Dysidea Johnston, 1842 Species Dysidea sp. (Fig. 21) Geographic and bathymetric distributions: The genus Dysidea occurs in a wide distribution in environments of hard substrate and shallow and deep waters around the world, including the Caribbean, Mediterranean, Australia, New Caledonia and Brazil (Vilanova & Muricy, 2001). Remarks: The genus Dysidea has 64 species valid worldwide (van Soest et al., 2011). The external morphological features (color and shape of osculum) are important for identification at the species level, but this genus, but this information was not available for the material analyzed from the Peregrino oil field. 35 Figure 21. Dysidea sp. Phylum Cnidaria Hatschek, 1888 36 Phylum Cnidaria Introduction Débora de Oliveira Pires There are approximately 11,000 extant Cnidaria species in the world, and almost all are exclusively marine (Brusca & Brusca, 2003). Among the corals, the most diverse group is the octocorals (Octocorallia), with approximately 2,000 species (Bayer, 1981). The next greatest diversity is found among the hard corals (Scleractinia), with approximately 1,400 species (Cairns et al., 1999). The central coast of Brazil harbors the areas of the greatest diversity of cnidarian in the South-Western Atlantic. There are records in this region, including the coasts of Bahia and Espírito Santo States, the Abrolhos Bank and the Vitória-Trindade Chain, of 57 species of octocorals and 33 species of Scleractinia between depths of 50 and 1819 m (Castro et al., 2006). One of the pioneering studies on the cnidarian fauna on the Brazilian platform was conducted by a foreign expedition, the voyage of the Hassler. The material collected was studied by Pourtalès (1874), who recorded seven species of corals. Voyages of the oceanographic vessel Prof. W. Besnard occurred in the late sixties, and some samples of azooxanthellate coral were collected off the coast of Rio de Janeiro. According to Tommasi (1970b), the most common species found within the calcareous algae beds south of Cabo Frio were Cladocora arbuscula (=C. debilis Milne Edwards & Haime, 1849), Dasmosmilia lymani (Pourtalès, 1871), Madracis mirabilis sensu Wells, 1973 and Trochocyathus sp. Later, Leite & Tommasi (1976) provided data on the distribution of C. debilis south of Cabo Frio. 37 In the 1970s, a summary of the coral fauna of the tropical coast of Brazil (Laborel, 1969; 1970) recorded nearly twenty species of azooxanthellate coral known elsewhere (Ceará to Cabo Frio). The material studied by Laborel was obtained from samplings by various expeditions, such as the Calypso, between November 1961 and February 1962. Cairns (1979) published the first comprehensive work on the fauna of azooxanthellate coral in the Caribbean and adjacent waters. The author recorded several species in Brazilian waters, including samples off the coast of Rio de Janeiro, between depths of 500 and 800 m depth, collected by the ship Walther Herwig. Among these species, the author recorded deep reefforming species such as Desmophyllum dianthus (Esper, 1794), Lophelia pertusa (Linnaeus, 1758), M. oculata and Solenosmilia variabilis Duncan, 1873. In their work on corals collected during "Operation Geomar X", Fernandes & Young (1986) recorded the azooxanthellate corals Caryophyllia parvula Cairns, 1979, C. debilis, Madracis asperula Milne Edwards & Haime, 1849 and Sphenotrochus auritus Pourtalès, 1874 between depths of 12 and 100 m. A compilation of deep-sea coral fauna (hydrocorals, hard corals, black corals and octocorals) from Campos Basin, of Rio de Janeiro State, was more recently published by Pires & Castro (2010). Results A total of six Cnidaria taxa from the Peregrino oil field were recorded (Table 3). Systematics Class Anthozoa Ehrenberg, 1834 SubClass Hexacorallia Haeckel, 1866 Order Scleractinia Bourne, 1900 SubOrder Caryophylliina Vaughan & Wells, 1943 Family Caryophylliidae Dana, 1846 Genus Coenocyathus Milne-Edwards & Haime, 1848 Species Coenocyathus parvulus (Cairns, 1979) (Fig. 22) Geographic and bathymetric distributions: Bahamas, Gulf of Mexico, Caribbean and Brazil, from 97 to 399 m in depth (Cairns, 2000). In Brazil, this species was recorded at Cumuruxatiba, Bahia State, at 130 m depth (Pires, 2007). Remarks: Small colonies and isolated specimens of this species were collected. Some polyps had tissues indicating that the specimens were alive. Some colonies showed small polyps indicating that they were growing. In other cases, only the skeleton was collected; some were damaged and eroded. Figure 22. Coenocyathus parvulus 38 Genus Cladocora Ehrenberg, 1834 Species Cladocora debilis Milne Edwards & Haime, 1849 (Fig. 23) Geographic and bathymetric distributions: Western Atlantic - Cape Hatteras to the Mississippi Delta, southern Caribbean coast (from Honduras to Venezuela), Brazil (Rio de Janeiro to Rio Grande do Sul, Saint Peter and Saint Paul Rocks from 32 to 480 m depth. Eastern Atlantic Mediterranean, Morocco, Gulf of Guinea, Madeira Island, Canary Islands, Cape Green, Ascension, St. Helena from 28 to 100 m depth (Cairns, 2000). Brazil - 19°43'S to 34°25'S, 46 to 438 m depth (Pires, 2007). Remarks: These are a colonial species very common in the collected samples. There are plenty of records of this species in calcareous algae beds (Tommasi, 1970b). Although this species forms small colonies, the majority of the material collected consisted of small tubular isolated fragments. C. debilis can form clusters representing a structured organism and is commonly found as dead fragments incrusted by sponges and polychaete tubes. The conglomerate of tubes bears numerous types of small invertebrates. 39 Figure 23. Cladocora debilis Family Turbinoliidae Milne Edwards & Haime, 1848 Genus Sphenotrochus Milne Edwards & Haime, 1848 Species Sphenotrochus auritus Pourtalès, 1874 (Fig. 24) Geographic and bathymetric distributions: Known only in the Atlantic coast of South America (Suriname to Uruguay) at 15 to 64 m depth (Cairns, 2000). Brazil - 01°12'S and 34°35'S, 15 to 82m depth (Pires, 2007). Remarks: Solitary species, quite common in Cabo Frio (RJ). This area represents the type locality of this species (64 m) (Cairns, 2000). Figure 24. Sphenotrochus auritus Family Flabellidae Bourne, 1905 Genus Javania Duncan, 1876 Species Javania cailleti (Duchassaing & Michelotti, 1864) (Fig. 25) Geographic and bathymetric distributions: Western Atlantic - Banquereau Bank, New Scotland to Suriname, including the Caribbean, Gulf of Mexico to Louisiana, USA. Wide distribution in the eastern Atlantic, Burdwood Bank, Chile, Galapagos, British Columbia, Japan and the Arabian Sea, from 30 to 2165 m (Cairns, 2000). Brazil - 17°04’S to 33°42'S, 107 to 250 m depth (Pires, 2007). Figure 25. Javania cailleti 40 SubClass Octocorallia Haeckel, 1866 Order Alcyonacea Lamouroux, 1812 Family Nidaliidae Gray, 1869 Genus Nidalia Gray, 1834 Species Nidalia sp.1 (Fig. 26) Remarks: Nidaliids have monomorphic polyps and clavate colonies with a stiff or firm texture and prominent calyces at a terminal cluster. Refer to Verseveldt & Bayer (1988) for some revisions within this family. Two colonies were collected from two sampling stations (Table 3). Figure 26. Nidalia sp.1 Species: Nidalia sp.2 (Fig. 27) Remarks: One colony was collected from the sampling stations (Table 3). Figure 27. Nidalia sp.2 41 Phylum Mollusca Cuvier, 1797 42 MOLLUSCA Phylum Mollusca Paula Spotorno de Oliveira Introduction The Mollusca Phylum is the second largest zoological group currently known second only to arthropods (Amaral et al., 2003). Approximately 100,000 described species have been estimated in the world (Brusca & Brusca, 2003). Among the benthic macrofauna they are numerically less abundant than polychaetes and peracarid crustaceans (Miyaji, 2001). The Class Gastropoda is usually the most diverse (80% of species), presenting a wide range of shapes, sizes and habits as a result of the intense adaptive radiation of the group, followed by the Class Bivalvia (27% of species). Other classes (Cephalopoda, Polyplacophora, Scaphopoda, Solenogastres, Caudofoveata and Monoplacophora) comprise the remaining species (approximately 3%) (Amaral et al., 2003). Mollusks have a high degree of morphological diversity with specimens in almost all environments (Amaral et al., 2003). The classes Gastropoda and Bivalvia are the best represented in benthic ecosystems, and their species have been used to characterize benthic associations (Diaz & Puyana, 1994). 43 As mollusks are primary consumers in aquatic ecosystems, they have been used as environmental indicators. Indeed, mollusks are an important different organism ecosystems for due to monitoring their contaminants economic importance and sedentary life (Feldstein, 2003). and in ecological There are 1,600 species reported on the Brazilian coast (Rios, 1994). Approximately 35% of these taxa occur in the State of Rio de Janeiro, representing a significant portion of all the Brazilian molluscan fauna (Santos et al., 2007). Since Rios (1994), 115 species have been added, mainly descriptions of new species and new records of occurrence (e.g., Leal, 1991; Simone, 1999; Absalão & Pimenta, 2003; Absalão et al., 2003a;b; Pimenta & Absalão, 2004). Results A total of 31 Molluscan taxa were recorded from the Peregrino oil field (Table 4). MOLLUSCA Systematics Class Polyplacophora Gray, 1821 Family Ischnochitonidae Dall, 1889 Genus Ischnochiton Gray, 1847 Species Ischnochiton marcusi (Righi, 1971) (Fig. 28) Geographic and bathymetric distributions: In Pernambuco and Piauí States (Brazil), from 11 to 30 m depth (Rios, 2009). Remarks: A complete specimen with soft parts. Habitat, on rocks; frequency, common in the Brazilian coast; trophic level, herbivore (Rios, 2009; Conquiliologistas do Brasil, 2013). Figure 28. Ischnochiton marcusi. Species Ischnochiton sp. (Fig. 29) Geographic and bathymetric distributions: Known only from the study locality (present study) at a depth of 101 m. Remarks: A complete specimen with soft parts. There is strong evidence that suggests the existence of an undescribed species of genus Ischnochiton. Figure 29. Ischnochiton sp. 44 MOLLUSCA Family Chaetopleuridae Plate, 1899 Genus Chaetopleura Shuttleworth, 1853 Species Chaetopleura asperrima (Gould, 1852) (Fig. 30) Geographic distribution: Espírito Santo State (Brazil) to Maldonado (Uruguay) (Rios, 2009). Remarks: Trophic level, herbivore (Conquiliologistas do Brasil, 2013). Class Gastropoda Cuvier, 1797 Family Fissurellidae Fleming, 1822 Genus Chaetopleura Sowerby, 1835 Figure 30. Chaetopleura asperrima Species Lucapina sowerbii (Sowerby I., 1835) (Fig. 31) Geographic and bathymetric distributions: From Pará to São Paulo; Fernando de Noronha, Abrolhos and Trindade Islands (Brazil); under rocks, from the intertidal zone to a depth of 45 m (Rios, 2009). Remarks: Habitat, gravel and rocks; frequency, uncommon on the Brazilian coast; trophic level, herbivore (Conquiliologistas do Brasil, 2013). Figure 31. Lucapina sowerbii 45 MOLLUSCA Family Calliostomatidae Thiele, 1924 Genus Swainson, 1840 Species Calliostoma carcellesi Clench & Aguayo, 1940 (Fig. 32) Geographic and bathymetric distributions: Occurs from the Rio de Janeiro State (Brazil) to Rio Negro (Argentina), from 30 to 55 m depth (Rios, 2009). Remarks: Habitat, in muddy and sandy bottoms (Conquiliologistas do Brasil, 2013). Figure 32. Calliostoma carcellesi Species Calliostoma pulchrum (C.B. Adams, 1850) (Fig. 33) Geographic and bathymetric distributions: States of Rio de Janeiro, Bahia and Piauí (Brazil), at 70 m depth (Rios, 2009). Remarks: Habitat, under rocks; frequency, rare on the Brazilian coast (Conquiliologistas do Brasil, 2013). Figure 33. Calliostoma pulchrum 46 MOLLUSCA Family Turbinidae Rafinesque, 1815 Genus Arene H. Adams & A. Adams, 1854 Species Arene bairdii (Dall, 1889) (Fig. 34) Geographic and bathymetric distributions: Amapá to Espírito Santo States and the Fernando de Noronha, Trindade and Martin Vaz Islands and Montague Seamounts (Brazil), from 35 to 270 m depth (Rios, 2009). Remarks: Habitat, gravel and sand bottoms; frequency, rare on the Brazilian coast (Conquiliologistas do Brasil, 2013). Figure 34. Arene bairdii Family Turritellidae Loven, 1847 Genus Turritella Lamarck, 1799 Species Turritella hookeri Reeve, 1849 (Fig. 35) Geographic and bathymetric distributions: Eastern Brazil (Rio de Janeiro, São Paulo, Santa Catarina and Rio Grande do Sul States), from 10 to 660 m depth (Rios, 2009). Remarks: Habitat, sand, silt and gravel bottoms; frequency, uncommon on the Brazilian coast (Conquiliologistas do Brasil, 2013). 47 Figure 35. Turritella hookeri MOLLUSCA Family Vermetidae Rafinesque, 1815 Genus Thylacodes Guettard, 1770 Species Thylacodes aff. decussatus (Gmelin, 1791) (Figs. 36) Geographic and bathymetric distributions: From Florida, Gulf of Mexico to the Caribbean, and in Brazil from Bahia to Rio de Janeiro States, from mid- littoral to 140 m depth (Spotorno-Oliveira, 2009; Spotorno et al., 2012). Remarks: This taxon is currently being studied. The vermetids are a distinct group of sessile gastropods that are rarely considered in marine community studies, presumably because of their complex taxonomy, and distinct shell morphology, impeding the recognition of species diversity in the field (Keen, 1960; Bieler, 1996). There are vermetid bioconstructions with other organisms, such as corals and coralline algae, in the northeast and southeast, between 3°S (northern coast of Ceará) and 22°S (northern coast of Rio de Janeiro), including the oceanic islands (Laborel & Kempf 1965; Soares-Gomes et al. 2001). The vermetid Thylacodes aff. decussatus and the coral Cladocora debilis were the most representative and frequently found specimens at the sampling stations (Tables 3 and 4). Trophic level, filter feeder (Conquiliologistas do Brasil, 2013). Figure 36. Thylacodes aff. decussatus 48 MOLLUSCA Family Ovulidae Fleming, 1822 Genus Cyphoma Röding, 1798 Species Cyphoma intermedium (G.B. Sowerby I., 1828) (Fig. 37) Geographic and bathymetric distributions: In Brazil in Santa Catarina State, at 70 m depth (Rios, 2009). Remarks: Habitat, found with Octocorallia; frequency, uncommon on the Brazilian coast; trophic level, carnivorous (Rios, 2009; Conquiliologistas do Brasil, 2013). Figure 37. Cyphoma intermedium Family Muricidae Rafinesque, 1815 Genus Siratus Jousseaume, 1880 Species Siratus formosus (Sowerby II, 1841) (Fig. 38) Geographic and bathymetric distributions: From Maranhão to Bahia States (Brazil), from 35 to 350 m depth (Rios, 2009). Remarks: Habitat, sandy bottom and corals; frequency, uncommon on the Brazilian coast; trophic level, carnivorous, feeding on small gastropods (Rios, 2009; Conquiliologistas do Brasil, 2013). This taxon was one of the most frequently found at almost all the sampling stations (Table 4). 49 Figure 38. Siratus formosus MOLLUSCA Family Buccinidae Rafinesque, 1815 Genus Metula H. Adams & A. Adams, 1853 Species Metula agassizi Clench & Aguayo, 1941 (Fig. 39) Geographic and bathymetric distributions: From Rio Grande do Sul to Rio de Janeiro States (Brazil), to a depth of 150 m (Rios, 2009). Remarks: Habitat, sandy and muddy bottoms; frequency, uncommon on the Brazilian coast; trophic level, carnivorous (Rios, 2009; Conquiliologistas do Brasil, 2013). Figure 39. Metula agassizi Family Volutidae Rafinesque, 1815 Genus Odontocymbiola Clench & Turner, 1964 Species Odontocymbiola macaensis Calvo & Coltro, 1997 (Fig. 40) Geographic and bathymetric distributions: From Santa Catarina to Rio de Janeiro States (Brazil), to a depth of 150 m (Rios, 2009). Remarks: Habitat, gravels and sandy bottoms; frequency, uncommon on the Brazilian coast; trophic level, carnivorous (Rios, 2009; Conquiliologistas do Brasil, 2013). Figure 40. Odontocymbiola macaensis 50 MOLLUSCA Family Fasciolariidae Gray, 1853 Genus Fusinus Rafinesque, 1815 Species Fusinus frenguellii (Carcelles, 1953) (Fig. 41) Geographic and bathymetric distributions: From Brazil (Rio de Janeiro State) to Argentina, from 30 to 160 m depth (Rios, 2009). Remarks: Habitat, sandy and muddy bottoms and mussels beds; frequency, common on the Brazilian coast (Rios, 2009; Conquiliologistas do Brasil, 2013). Family Marginellidae Fleming, 1828 Genus Prunum Herrmannsen, 1852 Species Prunum fulminatum (Kiener, 1841) (Fig. 42) Figure 41. Fusinus frenguellii Geographic and bathymetric distributions: Endemic to the Brazilian coast, from Amapá to Rio de Janeiro States (Cabo Frio) (Brazil), to a depth of 30 m (Rios, 2009). Remarks: Habitat, sandy and rocky bottoms, and corals (Conquiliologistas do Brasil, 2013). Figure 42. Prunum fulminatum 51 MOLLUSCA Species Prunum martini (Petit de la Saussaye, 1853) (Fig. 43) Geographic and bathymetric distributions: From Espírito Santo State (Brazil) to San Matias Gulf (Argentina), from 10 to 55 m depth (Rios, 2009). Remarks: Habitat, sandy bottoms; frequency, usually found in the digestive tract of Astropecten brasiliensis (Echinodermata, Asteroidea) and on the Bivalvia community of Glycymeris longior (Rios, 2009; Conquiliologistas do Brasil, 2013). Family Olividae Bruguière, 1789 Genus Amalda H. Adams & A. Adams, 1853 Figure 43. Prunum martini Species Amalda josecarlosi Pastorino, 2003 (Fig. 44) Geographic and bathymetric distributions: From Espírito Santo State (Brazil) to San Matias Gulf (Argentina), from 18 to 70 m depth (Rios, 2009). Remarks: Habitat, sandy and muddy bottoms; frequency, common on the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil, 2013). Figure 44. Amalda josecarlosi 52 MOLLUSCA Family Conidae Rafinesque, 1815 Genus Conus Linnaeus, 1758 Species Conus clerii Reeve, 1844 (Fig. 45) Geographic and bathymetric distributions: Endemic to the Brazilian coast, from Bahia to Rio Grande do Sul States, including Martim Vaz island, Montague and Colombia Seamounts, from 16 to 166 m depth (Rios, 2009). Remarks: Habitat, gravels and sandy and muddy bottoms; frequency, rare on the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil, 2013). Figure 45. Conus clerii Family Pseudomelatomidae Morrison, 1965 Genus Brachytoma Swainson, 1840 Species Brachytoma rioensis (E. A. Smith, 1915) (Fig. 46) Geographic and bathymetric distributions: From Rio de Janeiro to Rio Grande do Sul States (Brazil), from 75 to 125 m depth (Rios, 2009). Remarks: Habitat, sandy and muddy bottoms and rocks; frequency, uncommon on the Brazilian (Conquiliologistas do Brasil, 2013). 53 coast; trophic level, carnivorous Figure 46. Brachytoma rioensis MOLLUSCA Family Driliidae Olsson, 1964 Genus Fenimorea Bartsch, 1934 Species Fenimorea sp. (Fig. 47) Geographic and bathymetric distributions: Only known from the study locality (present study), from 95 to 106 m depth. Remarks: Eleven specimens were collected at the sampling stations (Table 4). Family Pseudomelatomidae Morrison, 1966 Genus Compsodrillia Woodring, 1928 Species Compsodrillia cf. haliostrephis (Dall, 1889) (Fig. 48) Figure 47. Fenimorea sp. Geographic and bathymetric distributions: From Rio Grande do Sul to São Paulo States (Brazil), at 80 m depth (Rios, 2009). Remarks: Habitat, sandy and muddy bottoms; frequency, uncommon on the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil, 2013). Figure 48. Compsodrillia cf. haliostrephis 54 MOLLUSCA Family Raphitomidae Bellardi, 1875 Genus Pleurotomella Verril, 1872 Species Pleurotomella aguayoi (Carcelles, 1953) (Fig. 49) Geographic and bathymetric distributions: From Rio de Janeiro State (Brazil) to Bahia Engano (Argentina), from 35 to 70 m depth (Rios, 2009). Remarks: Habitat, sandy and muddy bottoms; frequency, common on the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil, 2013). Class Bivalvia Linnaeus, 1758 Family Limopsidae Dall, 1895 Figure 49. Pleurotomella aguayoi Genus Limopsis Sassi, 1827 Species Limopsis janeiroensis E. A. Smith, 1915 (Fig. 50) Geographic and bathymetric distributions: Endemic to the Brazilian coast, from Rio de Janeiro to Rio Grande do Sul States (Brazil), from 70 to 190 m depth (Rios, 2009). Remarks: Habitat, gravels and sandy and muddy bottoms; frequency, uncommon on the Brazilian coast (Conquiliologistas do Brasil, 2013). Complete specimens with intact ligament (containing the soft parts) were collected in addition to disarticulated (and disassociated) single valves. 55 Figure 50. Limopsis janeiroensis MOLLUSCA Family Glycymerididae Newton, 1922 Genus Glycymeris Da Costa, 1778 Species Glycymeris pectinata (Gmelin, 1791) (Fig. 51) Geographic and bathymetric distributions: From Amapá to Espírito Santo States, from 25 to 75 m depth (Rios, 2009). Remarks: Habitat, gravels and sandy bottoms; frequency, uncommon on the Brazilian coast (Conquiliologistas do Brasil, 2013). The observation from this study is a new record for the Rio de Janeiro State, widening the geographical distribution of this species (present study). Figure 51. Glycymeris pectinata Family Pteriidae Gray, 1847 Genus Pteria Scopoli, 1777 Species Pteria hirundo (Linnaeus, 1758) (Fig. 52) Geographic and bathymetric distributions: The entire Brazilian coast, from 20 to 150 m depth (Rios, 2009). Remarks: Habitat, in gorgonians (Anthozoa) and dead shells; frequency, common on the Brazilian coast (Rios, 2009; Conquiliologistas do Brasil, 2013). Figure 52. Pteria hirundo 56 MOLLUSCA Family Limidae Rafinesque, 1815 Genus Lima Bruguière, 1797 Species Lima lima (Linnaeus, 1758) (Fig. 53) Geographic and bathymetric distributions: From Amapá to Rio de Janeiro States (Brazil), in shallow waters to a depth of 140 m (Rios, 2009). Remarks: Habitat, on rocks and in corals and sponges (Conquiliologistas do Brasil, 2013). This taxon was one of the most abundant among the mollusks (Table 4). Figure 53. Lima lima Family Plicatulidae Watson, 1930 Genus Plicatula Lamarck, 1801 Species Plicatula gibbosa Lamarck, 1801 (Fig. 54) Geographic and bathymetric distributions: The entire Brazilian coast to Uruguay, at 30 m depth (Rios, 2009). Remarks: Habitat, on rocks and dead shells and conglomerate calcareous, settling by the umbo of the right valve, usually forming clusters; frequency, common on the Brazilian coast (Rios, 2009; Conquiliologistas do Brasil, 2013). 57 Figure 54. Plicatula gibbosa MOLLUSCA Family Pectinidae Rafinesque, 1815 Genus Chlamys Röding, 1798 Species Chlamys tehuelchus (Orbigny, 1846) (Fig. 55) Geographic and bathymetric distributions: From Espírito Santo State (Brazil) to Nuevo Gulf (Argentina), from 10 to 120 m depth (Rios, 2009). Remarks: Habitat, sandy bottoms (Conquiliologistas do Brasil, 2013). Figure 55. Chlamys tehuelchus Family Verticordiidae Stoliczka, 1871 Genus Spinosipella Iredale, 1930 Species Spinosipella agnes Simone & Cunha, 2008 (Fig. 56) Geographic and bathymetric distributions: From Rio Grande do Norte, Pernambuco, São Paulo, Santa Catarina to Rio Grande do Sul States (Brazil), from 270 to 900 m depth (Rios, 2009). Remarks: Habitat, gravel and sandy bottoms; frequency, rare on the Brazilian Figure 56. Spinosipella agnes coast (Conquiliologistas do Brasil, 2013). 58 MOLLUSCA Class Scaphopoda Bronn, 1862 Family Dentaliidae Gray, 1847 Genus Paradentalium Cotton & Godfrey, 1933 Species Paradentalium disparile (d´Orbigny, 1853) (Fig. 57) Geographic and bathymetric distributions: From Amapá to Santa Catarina States (Brazil) (Rios, 2009). Specimens with soft parts were collected between 5 to 50 m depth (Penna, 1972) and empty shells from intertidal zones to 103 m depth (Caetano, 2007). Class Cephalopoda Cuvier, 1797 Family Octopodidae d’Orbigny, 1840 Genus Octopus Cuvier, 1797 Figure 57. Paradentalium disparile Species Octopus sp. (Fig. 58) Remarks: The octopus specimens analyzed were juveniles, rendering species confirmation difficult. It was not possible to determine whether this taxon is Octopus insularis Leite, Haimovici, Molina & Warnke, 2008 or Octopus vulgaris (Yarnall, 1969). DNA studies will be performed to determine the species identification. O. vulgaris is found worldwide in tropical and semitropical waters, from shallow waters to 200 m (Silva et al., 2002), whereas O. insularis occurs in shallow equatorial waters around the oceanic islands of Fernando de Noronha Archipelagos, Rocas Atoll, São Pedro and São Paulo Archipelago, and the mainland of northeastern Brazil (Leite et al., 2008). 59 Figure 58. Octopus sp. Phylum Annelida Lamarck, 1809 Class Polychaeta Grube, 1850 60 Phylum Annelida - Class Polychaeta Introduction Paulo Cesar Paiva, Raquel Meihoub Berlandi & Ana Claudia dos Santos Brasil Annelida is a group known as segmented worms, Polychaeta (Bristleworms) is the most diverse, with 9,000 extant species grouped into 70 families, which are almost all exclusively marine (Rouse & Pleijel, 2001). To date, 62 families and approximately 700 species of annelid Polychaeta have been found on the Brazilian Coast (Amaral et al., 2010). Despite great sampling efforts studies on polychaetes are normally concentrated in the southeastern-southern coast region, with the central coast of Brazil still poorly studied (Lana et al., 1996). However, a survey conducted through REVIZEE on the Central Coast of Brazil, including the coasts of Bahia and Espírito Santo States, the Abrolhos Bank and the VitóriaTrindade Chain, identified 88 species, with 64 occurring mainly on biogenic bottoms and 28 limited to depths to 100 m in with Aciculata being relatively more abundant on biogenic bottoms in comparison to Canalipalpata (Paiva, 2006a;b). Furthermore, the families Eunicidae and Syllidae were the most frequent and abundant in coral reefs and calcareous algae bottoms, showing a wide bathymetric range to 500 m (Nogueira et al., 2001; Nogueira & San Martín, 2002; Paiva, 2006a;b; Figueiredo et al., 2007). 61 According to this study, Eunicidae genera, such as Eunice and Lysidice, were more frequent on biogenic bottoms, whereas the family Oenonidae occurred exclusively on this type of bottom (Zanol et al., 2000; Paiva, 2006a). Espírito Santo State to the extreme north of Rio de Janeiro State is considered one of the most diverse Brazilian regions and shows specific regional differentiation from the fauna of northeastern and southeastern Brazil due to differences in oceanographic features; the region of Cabo Frio (RJ) is considered a transitional area between the tropical north to the subtropical and temperate south (Lana et al., 1996). Considering the limited number of studies on the fauna of Polychaeta associated with these environments, it is expected that future studies will increase the knowledge of the polychaete distribution pattern along the Brazilian coast. Results A total of six Polychaeta taxa from the Peregrino oil field were recorded (Table 5). Systematics SubClass Palpata Order Aciculata Rouse & Fauchald, 1997 SubOrder Phyllodocida Dales, 1962 Family Aphroditidae Malmgren, 1867 Genus Aphrogenia Kinberg, 1856 Species Aphrogenia alba Kinberg, 1856 (Fig. 59) Geographic and bathymetric distributions: North Atlantic (Gulf of Mexico) and Indian Ocean, Brazil (São Paulo, Rio Janeiro, Paraná, Santa Catarina and Rio Grande do Sul States). Sublittoral at 0–180 m depth (Amaral et al., 2010). Figure 59. Aphrogenia alba Family Acoetidae Kinberg, 1856 Genus Euarche Ehlers,1887 Species Euarche tubifex Ehlers, 1887 (Fig. 60) Geographic and bathymetric distributions: Brazil (Rio Grande do Sul and Rio de Janeiro States) at 195 m depth (Amaral & Nonato, 1984). Remarks: Habitat, sandy bottoms (Amaral & Nonato, 1984). Figure 60. Euarche tubifex 62 Family Sigalionidae Kinberg, 1856 Genus Pelogenia Schmarda, 1861 Species Pelogenia kinbergi (Hansen, 1882) (Fig. 61) Geographic and bathymetric distributions: Brazil (Alagoas, Bahia and Rio de Janeiro States), Florida and Bermuda (Nonato & Luna, 1970a;b; Amaral & Nonato, 1984), at of 37 m depth (Amaral et al., 2010; Berlandi et al, 2010a;b). Remarks: Habitat, muddy bottoms, corals, shells, sponges and crustose coralline algae (Amaral et al., 2010; Berlandi et al, 2010a;b). The sigalionids are mostly common in soft–sediments and abyssal depths, the species of this family are mainly carnivores (Fauchald & Jumars, 1979). Figure 61. Pelogenia kinbergi SubOrder Nereidiformia Family Nereididae Johnston, 1865 Species Ceratonereis hircinicola (Eisig, 1870) (Fig. 62) Geographic distribution: Indian Ocean, Madagascar, Atlantic Ocean, Mediterranean, Brazil (Paraíba, Bahia, Espírito Santo and Rio de Janeiro States, Santos & Lana, 2003; Paiva & Costa-Paiva, 2007). Remarks: The specimens were removed from rhodolith (infauna). This species can be found associated with biogenic bottoms, such as coral reefs. They have carnivorous habits and sexual reproduction with lecithotrophy 63 Figure 62. Ceratonereis hircinicola demersal or planktotrophic larvae (Santos & Lana, 2003; Paiva & CostaPaiva, 2007). Order Eunicida Family Eunicidae Savigny, 1818 Genus Eunice Cuvier, 1817 Species Eunice stigmatura (Verrill, 1900) (Fig. 63) Geographic and bathymetric distributions: Mexico and Brazil (Espírito Santo and Rio de Janeiro States) (Zanol et al., 2000), from 58 to 100 m depth (Zanol et al., 2000). Remarks: Habitat, sand and biogenic bottoms; trophic level, carnivorous (Zanol et al., 2000). The specimens were removed from rhodoliths (infauna). Figure 63. Eunice stigmatura Family Glyceridae Grube, 1850 Genus Glycera Savigny, 1818 Species Glycera brevicirris Grube, 1870 (Fig. 64) Geographic and bathymetric distributions: Red Sea, Madagascar, India, Indonesia, China, Salomon Island, California Gulf, Panama, North Carolina, Caribbean and Brazil (Rio de Janeiro and São Paulo States). Intertidal to 110 m depth (Amaral et al., 2006). Figure 64. Glycera brevicerris 64 Phylum Arthropoda Latreille, 1829 Subphylum Crustacea Brünnich, 1772 66 Phylum Arthropoda - Subphylum Crustacea Introduction Cristiana Silveira Serejo & Irene Azevedo Cardoso Crustacea is a widespread group, with more than 67,000 species occurring in all marine environments. In addition to this high diversity and wide distribution in marine habitats, some crustaceans also live in freshwaters and terrestrial habitats. The Class Malacostraca is the most diverse among crustaceans, with more than 40,000 described species. Among malacostracans members of Order Decapoda and Superorder Peracarida, such as Amphipoda, Cumacea, Isopoda and Tanaidacea, are commonly sampled in shallow and deep-sea marine Brazilian waters (Serejo et al., 2006; 2007). Many species are specific to biological substrates, such as algae, sponges, corals and mussel beds. However, there is a characteristic fauna that inhabits unconsolidated substrate, with granulometry playing an important role in the distribution and quality of the species. Such features as latitude and depth, together with different water masses and the temporal scale, are also very important factors to be considered in the distribution and zonation of the species. As an example, Pires-Vanin (2001) studied isopod assemblages from the continental shelf and slope of the Ubatuba region (23º30S) and found distinct groups divided among various depths. A zonation into the following three areas was observed: 67 the inner shelf at shallow waters to 50 m, an outer shelf from 50 m to 130 m and the shelf break from 130-240 m. Later, Pires-Vanin (2008) studied the São Sebastião shelf based on benthic mega and macrofauna. Crustaceans were abundant, representing 74% of the megafauna and 64% of the macrofauna. The presence of two water masses in the region - Coastal Water (CW) and South Atlantic Central Water (SACW) - was the main factor structuring the megafaunal communities, whereas the depth and bottom type were determinant for the macrofauna. The rhodolith-forming calcareous algae generated a heterogeneous hard substrate with different microhabitats, enabling an increase in the diversity of these regions, depending on the water turbulence and time of year (Figueiredo et al., 2007; Amado-Filho et al., 2007). Silva-Karam et al. (2009) examined with the spatial distribution of decapod crustaceans in the calcareous algae rhodolith bed at Arvoredo Island in Santa Catarina and found 194 specimens in 27 samples, with 18 species and 11 morphotypes. Results A total of 17 Crustacea taxa were recorded from the Peregrino oil field (Table 6). Systematics Superorder Peracarida Calman, 1904 Order Isopoda Latreille, 1817 Family Leptanthuridae Poore, 2001 Genus Accalathura Barnard, 1925 Species Accalathura crenulata (Richardson, 1901) (Fig. 65) Geographic and bathymetric distributions: Western Atlantic - Bahamas (type locality), Caribbean Sea, USA (North Carolina to Florida), Bay of Caledonia, Panama and Brazil (from Pará to Espírito Santo; Rio de Janeiro, new record) (Pires-Vanin, 1998; King, 2008). This species was found between 1-131 m depth (Pires-Vanin, 1998). Remarks: Habitat, calcareous bottoms, less frequently on sand and seldom on muddy sediments (Pires-Vanin, 1998). Recently, King (2008) redescribed this species (only females) based on type material from the Bahamas and observed other specimens from Martinica and Caledonia Bay, Panama. Figure 65. Accalathura crenulata 68 Order Decapoda Latreille, 1902 SubOrder Dendrobranchiata Bate, 1888 Family Solenoceridae Wood Mason, 1891 Genus Mesopenaeus Pérez Farfante, 1977 Species Mesopenaeus tropicalis (Bouvier, 1905) (Fig. 66) Geographic and bathymetric distributions: Western Atlantic - Florida, Gulf of Mexico, Bahamas, Caribbean Sea, South American coast and Brazil (Rio Grande do Sul State) from 30 to 915 m depth (Farfante, 1977). Figure 66. Mesopenaeus tropicalis Suborder Plocyemata Burkenroad, 1963 Infraorder Caridea Dana, 1852 Family Alpheidae Rafinesque, 1815 Genus Alpheus Fabricius, 1798 Species Alpheus pouang Christoffersen, 1979 (Figs. 67) Geographic and bathymetric distributions: Western Atlantic - from Brazil (São Paulo State) to Uruguay from 100 to 268 m depth (Christoffersen, 1979). Remarks: This species has been sampled in fine sand, mud, gravels, shell and rhodoliths (Christoffersen, 1979). 69 Figure 67. Alpheus pouang Genus Synalpheus Spence Bate, 1888 Species Synalpheus brooksi Coutiére, 1909 (Fig. 68) Geographic and bathymetric distributions: Western Atlantic - Florida, Gulf of Mexico, Bahamas, Yucatan Peninsula, Porto Rico, Suriname and Brazil (Amapá, Rio Grande do Norte, south of Bahia and Rio de Janeiro States new record) from 2 to 82 m depth (Christoffersen, 1979). Remarks: This species has been sampled in sand, mud, gravels, eroded corals and rhodoliths (Christoffersen, 1979). Figure 68. Synalpheus brooksi Family Processidae Ortmann, 1890 Genus Processa Leach, 1815 Species Processa guyanae Holthuis, 1959 (Fig. 69) Geographic and bathymetric distributions: Western Atlantic - North Carolina, Florida, North of Cuba, Suriname and Brazil (Ceará, Rio de Janeiro to Rio Grande do Sul States) and Uruguay from 30 to 331 m depth (Christoffersen, 1979). Remarks: This species has been sampled in sand, calcareous algae, corals and rocky bottoms (Christoffersen, 1979). Figure 69. Processa guyanae 70 Infraorder Anomura MacLeay, 1838 Superfamily Paguroidea Latreille, 1802 Family Diogenidae Ortmann, 1892 Genus Dardanus Paul´son, 1875 Species Dardanus insignis (de Saussure, 1858) (Fig. 70) Geographic and bathymetric distributions: Western Atlantic - USA Coast, Gulf of Mexico, Antilles and Brazil (Rio de Janeiro to Rio Grande do Sul States), Uruguay and Argentina from shallow to deep waters, at 500 m depth (Melo, 1999). Remarks: This species has been sampled in sand, mud, shells and rocky bottoms (Melo, 1999). Figure 70. Dardanus insignis (A), cephalothorax (B), right and left chelipod (C) Genus Pseudopaguristes McLaughlin, 2002 Species Pseudopaguristes calliopsis (Forest & Saint Laurent, 1968) (Fig. 71) Geographic and bathymetric distributions: Western Atlantic – Guianas and Brazil (from Ceará to São Paulo States) at 60 m depth (Melo, 1999). Remarks: This species has been sampled in sand, mud and rocky bottoms with macroalgae (Melo, 1999). 71 Figure 71. Pseudopaguristes calliopsis Family Paguridae Latreille, 1802 Genus Pylopagurus A. Milne-Edwards & Bouvier, 1893 Species Pylopagurus discoidalis (A. Milne Edwards, 1880) (Fig. 72) Geographic and bathymetric distributions: Western Atlantic - North Carolina, Florida, Gulf of Mexico, Antilles and Brazil (Amapá, Ceará and Rio de Janeiro States - new record) from 60 to 930 m depth (Melo, 1999). Remarks: This species lives in Dentalium shells or annelid tubes (Melo, 1999). New record for Rio de Janeiro State. Superfamily Galatheoidea Samouelle, 1819 Family Munididae Ahyong et al. 2010 Genus Munida Leach, 1820 Species Munida irrasa A. Milne Edwards, 1880 (Figs. 73) Figure 72. Pylopagurus discoidalis (A), chelipod operculiforme in lateral view (B) Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Bermuda, Gulf of Mexico, Antilles, Colombia, Venezuela, Brazil (Amapá, Pará, Maranhão, Espírito Santo, Rio de Janeiro, São Paulo and Rio Grande do Sul States) and Uruguay from 15 to 475 m depth (Melo, 1999). Remarks Munida species usually occupy shelf waters and live aggregated in high-density populations. The latest Galatheoidea review added a new family to Munida (Munididae), which also includes other genera previously Figure 73. Munida irrasa 72 classified as Galatheidae (Ahyong et al. 2010). Infraorder Brachyura Latreille, 1802 Family Dromiidae De Haan, 1833 Genus Moreiradromia Guinot & Tavares, 2003 Species Moreiradromia antillensis (Stimpson, 1858) (Figs. 74) Geographic and bathymetric distributions: Western Atlantic - North Carolina, Florida, Bermuda, Gulf of Mexico, West Indies, Guianas and Brazil (from Amapá to Rio Grande do Sul States) from 1 to 330 m depth (Melo, 1996). Remarks: Species of this family usually bear sponges, ascidians or bivalve shells to protect the carapace. Guinot & Tavares (2003) described the Figure 74. Moreiradromia antillensis, dorsal view (A), ventral view (B) genus Moreiradromia, including two species, M. sarraburei and M. antillensis. Occurs on hard bottoms on rocks, shells or coral (Melo, 1996). Family Majidae Samouelle, 1819 Genus Stenocionops Desmarest, 1823 Species Stenocionops spinosissimus (de Sassure, 1857) (Figs. 75) Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Gulf of Mexico, West Indies and Brazil (from Rio Grande do Norte to Rio Grande do Sul States) from 50 to 480 m depth (Melo, 1996). Remarks: This species occurs on organogenic bottoms (Melo, 1996). 73 Figure 75. Stenocionops spinosissimus, dorsal view (A), ventral view (B) Family Inachoididae Dana, 1851 Genus Euprognatha Stimpson, 1871 Species Euprognatha rastellifera Stimpson, 1871 (Figs. 76) Geographic and bathymetric distributions: Western Atlantic - Massachusetts to Florida, Gulf of Mexico, West Indies, Guiana, Brazil (from Amapá to Rio Grande do Sul States) and Uruguay (Santana & Tavares, 2008) from 15 to 710 m depth (Melo, 1996). Remarks: This species occurs on sand, coral and shell bottoms (Melo, 1996). Figure 76. Euprognatha rastellifera, dorsal view (A), ventral view (B) Family Palicidae Bouvier 1897 Genus Palicus Philippi, 1838 Species Palicus faxoni Rathbun, 1897 (Fig. 77) Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Gulf of Mexico, Yucatan Peninsula and Brazil (from Rio Grande do Norte to Rio de Janeiro States) from 35 to 95 m depth (Melo, 1996). Figure 77. Palicus faxoni 74 Species Palicus sicus (A. Milne Edwards, 1880) (Fig. 78) Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Gulf of Mexico, Yucatan Peninsula and Brazil (from Amapá to Rio Grande do Sul States) from shallow waters to 190 m depth (Melo, 1996). Remarks: This species occurs on sand, mud, broken shell and corals bottoms (Melo, 1996). Figure 78. Palicus sicus Family Parthenopidae MacLeay, 1838 Genus Spinolambrus S.H. Tan & Ng, 2007 Species Spinolambrus pourtalesii (Stimpson, 1871) (Figs. 79) Geographic and bathymetric distributions: Western Atlantic - New Jersey to Florida, Gulf of Mexico, West Indies and Brazil (from Amapá to Rio Grande do Sul States) from 20 to 350 m depth (Melo, 1996). Remarks: This species occurs on sand, mud, shell and gravel bottoms (Melo, 1996). Figure 79. Spinolambrus pourtalesii 75 Family Xanthidae Mac Leay, 1838 Genus Allactaea Williams, 1974 Species Allactaea lithostrota Williams, 1974 (Fig. 80) Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Gulf of Mexico, West Indies and Brazil (from Rio de Janeiro to Rio Grande do Sul States) from 50 to 640 m depth (Melo, 1996). Remarks: This species presents orange tubercles covering the entire carapace and lives on sand and coral bottoms (Melo, 1996). Genus Garthiope Guinot, 1990 Species Garthiope spinipes (A. Milne Edwards, 1880) (Fig. 81) Figure 80. Allactaea lithostrota Geographic and bathymetric distributions: Western Atlantic - Bermuda, Florida, Gulf of Mexico, Venezuela and Brazil (from Amapá to São Paulo States) from intertidal to 60 m depth (Melo, 1996). Remarks: This species presents a carapace with small tubercles, 3-4 anterolateral spines and well-developed orbital spine. The cheliped palm is smooth. Lives on sandy bottoms on coral reefs and sponges (Melo, 1996). Figure 81. Garthiope spinipes 76 Phylum Bryozoa Ehrenberg, 1813 78 Phylum Bryozoa Introduction Paula Spotorno de Oliveira Phylum Bryozoa is a significant aquatic invertebrate group due to its diversity, abundance and wide distribution; most are marine sessile species, comprising approximately 5,500 recent and 15,000 fossil species worldwide (Rocha & d’Hondt, 1999). Over 300 species of bryozoans have been recorded to date on the Brazilian coast (Amaral & Jablonski, 2005; Vieira et al., 2008). Bryozoans are present in all oceans, occupying a wide bathymetric range, and colonize almost any type of substratum. This animal group is one of the most important fouling components in coastal waters, and is considered opportunistic and pioneering in the colonization of newly available substrates, including fixed, mobile and ephemeral. Marine bryozoans became successful in the exploration of hard substrates, such as shells, rocks, wood and coral, and also in the use of very restricted spaces (Eggleston, 1972). The majority of bryozoans inhabit rocky substrata, but some species are more tolerant of sedimentation and may live on soft bottoms (Kvitek, 1989). Bryozoans often constitute a major proportion of marine bottom biocenoses. Because of the high species diversity and wide habitat 79 distribution, bryozoans are potential indicators of environmental factors and changes. According to Rao (1998), bryozoans may also be used in the exploration of oil and gas. Most of the bryozoan studies in Brazil are restricted to the southeastern coast (Vieira, 2008). Recently, Vieira et al. (2008) published a complete list of 346 species of Brazilian marine bryozoans, the taxonomic studies of the South Atlantic revealed several new species in shallow waters (Vieira et al., 2007; 2010a;b) and on the continental shelf of Brazil (Ramalho et al., 2009; Santana et al., 2009; Vieira et al., 2010c). However, many species still need to be reviewed and redescribed (Vieira, 2008). Results A total of 20 Bryozoan taxa from the Peregrino oil field were recorded (Table 7). Systematics Class Gymnolaemata Allman, 1856 Order Cheilostomata Busk, 1852A SubOrder Neocheilostomina D’Hondt, 1985 Family Calloporoidae Norman, 1903 Species Calloporidae sp. (Fig. 82) Remarks: Two fragments of colonies were collected from two sampling stations (Table 7). Family Beaniidae Canu & Bassler, 1927 Figure 82. Calloporidae sp. Genus Beania Johnston, 1840 Species Beania sp. (Fig. 83) Remarks: One fragment of a colony was collected from the sampling stations (Table 7). Ten shallow-waters species have been reported on the Brazilian coast (Vieira et al., 2010b). Figure 83. Beania sp. 80 Family Candidae d´Orbigny, 1851 Genus Amastigia Busk, 1852 Species Amastigia aviculifera Vieira, Gordon, Souza & Haddad 2010 (Fig. 84) Geographic and bathymetric distributions: In São Paulo State (Brazil), at a depth of 500 m (Vieira et al., 2010b). Remarks: The first record of this genus in Brazilian waters occurred in 2010, with specimens collected during the REVIZEE program in 1998, using three sampler types (van Veen, box-corer and rectangular dredge) (Vieira et al., 2010c) Figure 84. Amastigia aviculifera Genus Scrupocellaria nan Beneden, 1845 Species Scrupocellaria sp. (Fig. 85) Remarks: Ten species are registered in Brazil (Vieira, 2008). Scrupocellaria colonies are common in artificial (e.g., pillars of submarine outfalls) and natural substrates, such as rocks, algae, hydrozoans and other bryozoans. Many forms are morphologically similar, raising doubts as to whether such forms correspond to varieties, subspecies or distinct species (Fransen, 1986). 81 Figure 85. Scrupocellaria sp. Family Microporidae Gray, 1848 Genus Mollia Lamouroux, 1821 Species Mollia elongata Canu & Bassler, 1928 (Fig. 86) Geographic and bathymetric distributions: In Bahia, Espírito Santo and Rio de Janeiro States (Brazil), at 89 m depth (Braga, 1968; Vieira et. al., 2008). Remarks: Braga (1968) registered M. elongata colonies on the surface, inside and between the calcareous algae layers of the rhodolith nodules collected by dredging from Cabo Frio (RJ). Family Steginoporellidae Hincks, 1884 Genus Steginoporella Smitt, 1873 Figure 86. Mollia elongata Species Steginoporella connexa Harmer, 1900 (Fig. 87) Geographic and bathymetric distributions: In Espírito Santo and Rio de Janeiro States (Brazil), at 89 m depth (Braga, 1968; Vieira et al., 2008). Remarks: Habitat epibenthic encrusting (Winston & Maturo, 2009). Braga (1968) recorded small colonies of S. connexa on the surface of rhodoliths nodules, collected by dredging at Cabo Frio (RJ). The species is considered a paleoecological indicator. Species of Steginoporella are found in tropical marine environments, often associated with coral reefs (Pouyet & David, 1979; Winston & Woollacott, 2009). Figure 87. Steginoporella connexa 82 Family Cellariidae Fleming, 1828 Genus Cellaria Ellis & Solander, 1786 Species Cellaria subtropicalis Vieira, Gordon, Souza & Haddad 2010 (Fig. 88) Geographic and bathymetric distributions: In Rio de Janeiro, São Paulo and Santa Catarina States (Brazil) from 43 to 151 m depth (Vieira et al., 2010c). Remarks: The first record of this genus in Brazilian waters occurred in 2010 with specimens collected during the REVIZEE program in 1998 in silt sediment bottoms, using two samplers types (van Veen and box-corer) (Vieira et al., 2010c). Figure 88. Cellaria subtropicalis InfraOrder Ascophora Levinsen, 1909 Family Typhloplanidae, Graff, 1905 Genus Ascophora Levinsen, 1909 Species Ascophora sp. (Fig. 89) Remarks: One fragment of a colony was collected from one sampling station (Table 7). Ascophorans are exclusively marine, but very widespread geographically and ecologically; they grow on various substrates and in a variety of colony shapes (Gordon, 2000). 83 Figure 89. Ascophora sp. “Grade” Acanthostega Levinsen, 1909 Family Cribrilinidae Hincks, 1879 Genus Puellina Jullien, 1886 Species Puellina sp. (Fig. 90) Remarks: This taxon is similar to P. radiata (Moll, 1803) and is registered in Rocas Atoll, Pernambuco, Bahia, Espírito Santo, Rio de Janeiro and São Paulo States (Brazil) (Vieira et al., 2008). According to Vieira et al. (2008), P. (Cribrilaria) radiata is a complex of species, and it is likely that more than one species is involved in these records. Studies emphasize that genus needs to be reviewed (Vieira, 2008; Vieira et. al., 2008), particularly those species from the Western Atlantic, P. radiata has been indiscriminately for all occurrences in this area (Winston, 2005). used Figure 90. Puellina sp. Grade Umbolunomorpha Gordon, 1989 Family Arachnopusiidae Jullien, 1888 Genus Arachnopusia Jullien, 1888 Species Arachnopusia haywardi Vieira, Gordon, Souza & Haddad 2010 (Fig. 91) Geographic distribution and bathymetric: Off São Paulo State (Brazil), from 99 to 157m depth (Vieira et al., 2010c). Remarks: The description of this species occurred in 2010, with specimens collected during the REVIZEE program in 1998, in sand bottoms, using Figure 91. Arachnopusia haywardi 84 three types of samplers (van Veen, box-corer and rectangular dredge) (Vieira et al., 2010c). Family Adeonidae Busk, 1884 Genus Reptadeonella Busk, 1884 Species Reptadeonella sp. (Fig. 92) Remarks: This taxon is similar to R. violacea (Johnston, 1847) and is registered in Fernando de Noronha Archipelago, Rocas Atoll, Bahia, Rio de Janeiro, São Paulo and other localities off Brazil (Vieira et al., 2008). According to Vieira et al. (2008), several species of Reptadeonella occur in the Western Atlantic, and the Brazilian records likely represent a species complex. Figure 92. Reptadeonella sp. Family Lepraliellidae Vigneaux, 1949 Genus Celleporaria Lamouroux, 1821 Species Celleporaria albirostris (Smitt, 1873) (Fig. 93) Geographic and bathymetric distributions: In the Brazilian State of Rio de Janeiro (Ramalho, 2006) from 0 to 238 m depth (Winston & Maturo, 2009). Remarks: Habitat, incrusting epibenthic. Considered a benthic bioconstructor species in the Bahamas (Lat. 23°N), associated with the following diversity: other bryozoans, corals, serpulids, calcareous algae, sponges, bivalves and 85 foraminiferans (Cocito, 2004). Figure 93. Celleporaria albirostris Grade Lepraliomorpha Gordon, 1989 Family Smittinidae Levinsen, 1909 Species Smittinidae sp.1 (Fig. 94) Remarks: Two fragments of colonies were collected from one sampling station (Table 7). Species Smittinidae sp.2 (Fig. 95) Figure 94. Smittinidae sp.1 Remarks: One single fragment of a colony was collected from one sampling station (Table 7). Figure 95. Smittinidae sp.2 86 Family Schizoporellidae Jullien, 1883 Genus Stylopoma Levinsen, 1909 Species Stylopoma sp. (Figs. 96) Remarks: This taxon is similar to S. spongites (Pallas, 1766) and is registered in Bahia, Espírito Santo, Rio de Janeiro and São Paulo States (Brazil) (Vieira et al., 2008). According to Vieira et al. (2008), this is a tropical-warm temperate species complex, with at least 8 species known from the Caribbean alone. Some Brazilian records may represents S. aurantiacum which occurs in Pernambuco State (Brazil). Figure 96. Stylopoma sp. Family insertae sedis Genus Marcusadorea Vieira, Migotto & Winston, 2010 Species Marcusadorea corderoi (Marcus, 1949) (Fig. 97) Geographic and bathymetric distributions: Western Atlantic – Brazil: Rio de Janeiro (Vieira et al., 2010a) and Espírito Santo States (Vieira et al., 2008). Jamaica and Venezuela at 20 m depth (Winston, 1986). Remarks: Habitat, coral undersurfaces (Winston, 1986). 87 Figure 97. Marcusadorea corderoi Family Lacernidae Jullien, 1888 Genus Rogicka Uttley & Bullivant, 1972 Species Rogicka joannae Vieira, Gordon, Souza & Haddad, 2010 (Fig. 98) Geographic and bathymetric distributions: In São Paulo State (Brazil), from 99 to 168 m depth (Vieira et al., 2010c). Remarks: The description of this species occurred in 2010, with specimens collected during the REVIZEE program in 1998, using two types of samplers (box-corer and rectangular dredge) (Vieira et al., 2010c). Family Calwelliidae MacGillivray, 1887 Figure 98. Rogicka joannae Genus Malakosaria Goldstein, 1882 Species Malakosaria atlantica Vieira, Gordon, Souza & Haddad, 2010 (Fig. 99) Geographic and bathymetric distributions: Off São Paulo and Paraná States (Brazil), from 147 to 380 m depth (Vieira et al., 2010c). Remarks: The first record of this genus in the Atlantic Ocean occurred in 2010, with specimens collected during the REVIZEE program in 1998, using three samplers types (van Veen, box-corer and rectangular dredge) (Vieira et al., 2010c). Figure 99. Malakosaria atlantica 88 Family Phidoloporidae Gabb & Horn, 1862 Genus Rhynchozoon Hincks, 1895 Species Rhynchozoon sp. (Fig. 100) Remarks: This taxon was moderately frequent at almost all the sampling stations (Table 7). Class Stenolaemata Borg, 1926 Order Cyclostomata Busk, 1852 SubOrder Articulina Busk, 1852 Figure 100. Rhynchozoon sp. Family Crisiidae Johnston, 1838 Genus Crisia Lamouroux, 1812 Species Crisia sp. (Fig. 101) Remarks: Two fragments of colonies were collected from one sampling station (Table 7). Figure 101. Crisia sp. 89 Phylum Brachiopoda Duméril, 1806 90 Phylum Brachiopoda Paula Spotorno de Oliveira Introduction Brachiopods or 'lamp shells' are sessile filter-feeding invertebrates that superficially resemble bivalve mollusks (Rudwick, 1970). The Phylum Brachiopoda is divided into three Subphyla: Linguliformea, Craniformea and Rhynchonelliformea (Amaral et al., 2006). Although they were abundant in earlier geological times, the fauna are currently represented by relatively few species. Approximately 30,000 fossil species and 120 genera of brachiopods have been described worldwide (Rudwick, 1970). Presently, approximately 325 species are recognized (Barnes et al., 1995). Brachiopod diversity is generally low, with most locales having only one or two taxa. Extant representatives are found from littoral waters (generally submersed) through the abyssal zone, and are usually epifaunal on hard substrata (Emig et al., 2011). Although they appear to be rare, these invertebrates are distributed in all oceans, from polar to equatorial regions, and are quite common. In general, these invertebrates preferentially colonize regions of deep and cold waters (Amaral et al, 2006). The brachiopods of the Class Rhynchonellata exhibit several forms of life, including epifaunal forms fixed to the bottom (e.g., the roof of 91 underwater caves, shells of other invertebrates) through pedicles, cemented forms on rocky substrates, encrusting forms and free-living forms (Amaral et al., 2006). The articulated brachiopods (Rhynchonellata) from Brazilian waters include endemic (Bouchardia rosea) and cosmopolitan forms (Argyrotheca cf. cuneata, Platidia anomioides and Terebratulina sp.), which are common in the Cenozoic fossil record and occur today in Mediterranean, Caribbean, southern African and circum-Antarctic waters (Simões et al., 2004). Results Only one Brachiopoda taxon was recorded from the Peregrino oil field (Table 8). Systematics SubPhylum Rhynchonelliformea Williams et al., 1997 Class Rhynchonellata Williams et al., 1997 Order Terebratulida Waagen, 1883 Family Megathyrididae Dall, 1870 Genus Argyrotheca Dall, 1900 Species Argyrotheca cf. cuneata (Risso, 1826) (Fig. 102) Geographic and bathymetric distributions: Cosmopolitan species (Simões et al., 2004). Continental shelf of São Paulo State (Brazil) (Simões & Mello, 2006), from 100 to 200 m depth, with a few occurrences deeper than 250 m (Kowalewski et al., 2002; Simões et al., 2004). The most widespread species in the Brazilian continental margin (latitudinal range of 32°14'S to 00°30'S) (Simões & Leme, 2010). Remarks: This taxon is similar to A. cf. cuneata (Risso, 1826) described and illustrated by Simões et al. (2004). A. cf. cuneata (Risso, 1826) is restricted to carbonate substrates and is often attached to sedimentary grains or the shells of other invertebrates (e.g., bivalve mollusks) when recovered alive (Simões et al., 2004). The specimens examined may differ in shape from flattened to globose forms. As observed by Simões et al. (2004), these variations appear to be independent of the size of specimen. In fact, according to Thayer (1977), globose individuals grow faster in length than in width, whereas flattened individuals grow faster in width than in length. In the material analyzed, different morphotypes were observed in the specimens collected from the same sampling sites, as also noted by Simões et al. (2004). Figure 102. Argyrotheca cf. cunetata, external surface of dorsal and ventral valve (A), inner of dorsal and ventral valve (B), specimen attached in crustose coralline (C), specimen attached in bryozoa (D) 92 Phylum Echinodermata Klein, 1734 94 Phylum Echinodermata Carlos Renato Rezende Ventura Introduction Species of Phylum Echinodermata are popularly recognized by the peculiar form of the adult body, arranged in five axes of symmetry; in pentaradial symmetry. The Phylum consists of approximately 7,000 current species. The most diverse class is Ophiuroidea (sea-snakes or ofiuroids), with approximately 2,000 extant species; of these, 153 have been recorded on the Brazilian coast. The next most diverse classes are Asteroidea (starfish or sea star, with approximately 1,800 total species and 77 species reported in Brazilian waters), Holothuroidea (sea cucumbers or holoturoids, with approximately 1,400 total species and 49 species in Brazil), Echinoidea (sea urchins and sand-dollars or echinoids, with approximately 900 total species and 52 reported on the Brazilian coast). Less diverse taxa include Class Crinoidea (sea-lilies or crinoids, with approximately 700 total species and 16 species recorded in Brazilian waters) (Hendler et al., 1995; Rowe & Gates, 1995; Brusca & Brusca, 2003). All species live in marine environments and are widely and omnivores. In addition, several species of commercial and ecological importance (such as fish and benthic crabs) feed on echinoderms or are preyed upon by them as juveniles (Lawrence, 1987). Echinoderms are environmental biomarkers and show a high sensitivity to physical and chemical changes occurring in the environment. Because they are sedentary and bio-accumulators, the echinoderms are subject to local contamination, rendering them suitable for environmental monitoring with regard to contamination by heavy metals, phosphate or petroleum hydrocarbons (Auemheimer & Chinchon, 1997; Temara et al., 1999; Guillou et al., 2000; Böttger & McClintock, 2002). Several species are among the most frequent and abundant in the marine oil regions of Brazil, including the Campos Basin (RJ), Potiguar Basin (RN) and Ceará Basin (CE). Therefore, to perform environmental monitoring and characterization in these regions, it is essential to increase the knowledge of such species, both in terms of correct identification and the analysis of population descriptors (such as size structure, density and reproductive features). distributed in all oceans at all latitudes and depths, from the intertidal Results communities, particularly in relation to food chains: they occupy recorded (Table 9). zone to deeper regions. Echinoderms play important ecological roles in marine different trophic levels and may be herbivores, carnivores, detritivores 95 A total of 21 Echinodermata taxa from the Peregrino oil field were Systematics Class Crinoidea Miller, 1821 Order Comatulida Family Comasteridae A. H. Clark, 1908 Species Comasteridae sp. (Fig. 103) Geographic and bathymetric distributions: The Comasteridae is a family of unstalked crinoids that typically account for at least half the crinoid species found in shallow water (< 50 m) and are found in the tropical western Pacific Ocean (Messing, 2003) and the Atlantic Ocean (Caribbean and Brazil) (Hendler et al., 1995). Remarks: The richness of comasterids is reduced with increasing depth compared to other families (Messing, 2003). The following seven species occur in Brazilian waters: Comactinia echinoptera, Comactinia meridionales, Comatonia cristata, Nemaster grandis, Nemaster rubiginosa, Nemaster discoideus and Neocomatella alata. Figure 103. Comasteridae sp. 96 Class Asteroidea de Blainville, 1830 Order Forcipulatida Perrier, 1884 Family Asteriidae Gray, 1840 Genus Allostichaster Verrill, 1914 Species Allostichaster capensis (Perrier, 1875) (Fig. 104) Geographic distribution: Falkland Islands, False Bay, Magellan Strait, South Africa, southern Angola, southern Chile, sub-Antarctic Islands, Tierra Del Fuego, Tristan da Cunha and Uruguay (Mah, 2013). Genus Marthasterias Jullien, 1878 Figure 104. Allostichaster capensis aboral view (A), oral view (B) Species Marthasterias glacialis (Linnaeus, 1758) (Figs. 105) Geographic and bathymetric distributions: Mediterranean Sea, eastern and western Atlantic Ocean and northern Pacific, at 180 m depth (Mah, 2013). Figure 105. Marthasterias glacialis aboral view (A), oral view (B) 97 Order Paxillosida Perrier, 1884 Family Luidiidae Sladen, 1889 Genus Luidia Fisher, 1906 Species Luidia ludwigi scotti Bell, 1917 (Figs. 106) Geographic and bathymetric distributions: Florida (USA) to southern Brazil, in shallow waters (33 m) to deep waters (126 m) (Mah, 2013). Order Spinulosida Perrier, 1884 Family Echinasteridae Verril, 1870 Figure 106. Luidia ludwigi scotti aboral view (A), oral view (B) Genus/Subgenus Echinaster (Othilia), Gray 1840 Species Echinaster (Othilia) brasiliensis Müller & Troschel, 1842 (Fig. 107) Geographic distribution: Southeastern Brazil to Argentina (Mah, 2013). Figure 107. Echinaster (Othilia) brasiliensis aboral view 98 Order Valvatida Perrier, 1884 Family Goniasteridae Forbes, 1841 Genus Pawsonaster Mah, 2007 Species Pawsonaster parvus (Perrier, 1881) (Figs. 108) Geographic and bathymetric distributions: Florida (USA) to southern Brazil, in shallow waters (30 m) to deep waters (600 m) (Mah, 2013). Class Ophiuroidea Gray, 1840 Figure 108. Pawsonaster parvus aboral view (A), oral view (B) Order Ophiurida Müller & Troschel, 1840 Family Amphiuridae Ljungman, 1867 Genus Amphioplus Verrill, 1899 Species Amphioplus albidus (Ljungman, 1867) (Figs. 109) Geographic distribution: Atlantic Ocean, Brazil (from Rio de Janeiro to Rio Grande do Sul States), Uruguay and Argentina (Mah, 2013). Figure 109. Amphioplus albidus aboral view (A), oral view (B) 99 Genus Amphipholis Ljungman, 1866 Species Amphipholis squamata (Delle Chiaje, 1828) (Figs. 110) Geographic and bathymetric distributions: Cosmopolitan species. A. squamata can be found intertidally and in shallow water (Stohr & O’Hara, 2013). Remarks:, Habitat, under stones, amongst rockpool weeds and occasionally on sandy bottoms; it is also found among algal and bryozoan turfs (Stohr & O’Hara, 2013). Figure 110. Amphipholis squamata aboral view (A), oral view (B) Genus Amphiura Forbes, 1843 Species Amphiura flexuosa Ljungman, 1867 (Figs. 111) Geographic distribution: Atlantic Ocean from Florida to northern Argentina (Mah, 2013). Figure 111. Amphiura flexuosa aboral view (A), oral view (B) 100 Species Amphiura kinbergi Ljungman, 1872 (Figs. 112) Geographic distribution: Atlantic Ocean from Florida to Brazil (Pará, Maranhão, Ceará, São Paulo and Santa Catarina States) (Stohr & O’Hara, 2013). Species Amphiura muelleri Marktanner-Turneretscher, 1887 Figure 112. Amphiura kinbergi aboral view (A), oral view (B) (Figs. 113) Geographic distribution: Atlantic Ocean, Brazil (São Pedro and São Paulo Archipelago and Santa Catarina State) (Stohr & O’Hara, 2013). Figure 113. Amphiura muelleri aboral view (A), oral view (B) 101 Family Ophiochitonidae Matsumoto, 1915 Genus Ophioplax Lyman, 1875 Species Ophioplax clarimundae Tommasi, 1970 (Figs. 114) Geographic distribution: Atlantic Ocean, Brazil (from Rio de Janeiro to Santa Catarina States) (Stohr & O’Hara, 2013). Family Ophiodermatidae Ljungman, 1867 Figure 114. Ophioplax clarimundae aboral view (A), oral view (B) Genus Ophioderma Müller & Troschel, 1840 Species Ophioderma divae Tommasi, 1971 (Figs. 115) Geographic distribution: Southeast Brazil (Stohr & O’Hara, 2013). Figure 115. Ophioderma divae aboral view (A), oral view (B) 102 Family Ophiomyxidae Ljungman, 1867 Genus Ophiomyxa Müller & Troschel, 1840 Species Ophiomyxa flaccida (Say, 1825) (Figs. 116) Geographic distribution: Gulf of Mexico, Caribbean Sea to southeastern Brazil (Stohr & O’Hara, 2013). Family Ophiotrichidae Ljungman, 1867 Genus/Subgenus Ophiothrix (Ophiothrix) Müller & Troschel, 1840 Figure 116. Ophiomyxa flaccida aboral view (A), oral view (B) Species Ophiothrix angulata (Say, 1825) (Figs. 117) Geographic distribution: North Carolina (USA) to Uruguay (Stohr & O’Hara, 2013). Figure 117. Ophiothrix angulata aboral view (A), oral view (B) 103 Class Echinoidea Leske, 1778 Order Cidaroida Claus, 1880 Family Cidaridae Gray, 1825 Genus Cidaris Leske, 1778 Species Cidaris abyssicola (A. Agassiz, 1869) (Figs. 118) Geographic distribution: East coast of the USA, West Indies and Brazil (Kroh & Mooi, 2013). Figure 118. Cidaris abyssicola aboral view (A), oral view (B) Genus Eucidaris Pomel, 1883 Species Eucidaris tribuloides (Lamarck, 1816) (Figs. 119) Geographic and bathymetric distributions: Tropical western Atlantic, North Carolina to Brazil, including the Caribbean Sea. Inhabits somewhat shallow coastal environments, usually no deeper than approximately 50 m (Mah, 2013). Remarks: Habitat, seagrass beds, under rocks, coral crevices and where algaeencrusted rubble exists (Kroh & Mooi, 2013). Figure 119. Eucidaris tribuloides aboral view (A), oral view (B) 104 Genus Stylocidaris Mortensen, 1909 Species Stylocidaris lineata Mortensen, 1910 (Fig. 120) Geographic distribution: Gulf of Mexico, Caribbean Sea to southeastern Brazil (Kroh & Mooi, 2013). Genus Tretocidaris Mortensen, 1903 Species Tretocidaris bartletti (A, Agassiz, 1880) (Fig. 121) Figure 120. Stylocidaris lineata aboral view (A), oral view (B) Geographic distribution: Bahamas, Caribbean Sea to Gulf of Mexico and Brazil (Kroh & Mooi, 2013). Figure 121. Tretocidaris bartletti aboral view (A), oral view (B) 105 Order Clypeasteroida A. Agassiz, 1872 Family Clypeasteridae L. Agassiz, 1835 Genus Clypeaster Lamarck, 1801 Species Clypeaster subdepressus (Gray, 1825) (Fig. 122) Geographic distribution: Gulf of Mexico, Caribbean Sea, Venezuela, Colombia and Brazil (Kroh & Mooi, 2013). Class Holothuroidea de Blainville, 1834 Order Aspidochirotida Grube, 1840 Family Holothuriidae Ludwig, 1894 Genus Holothuria Linnaeus, 1767 Figure 122. Clypeaster subdepressus aboral view (A), oral view (B) SubGenus Holothuria (Vaneyothuria) Species Holothuria (Vaneyothuria) lentiginosa Marenzeller Von, 1892 (Fig. 123) Geographic distribution: Azores, Europe, Gulf of Mexico and Brazil (Paulay & Hansson, 2013). Figure 123. Holothuria (Vaneyothuria) lentiginosa 106 Phylum Chordata Bateson, 1885 Subphylum Tunicata (Urochordata) Lamarck, 1816 Class Ascidiacea Nielsen, 1995 108 Phylum Chordata - Subphylum Tunicata (Urochordata) - Class Ascidiacea Introduction Luciana Vieira Granthom Costa & Frederico Tapajós de Souza Tâmega Ascidians (or sea squirts) comprise approximately 3,000 described species. This group is organized into three orders, of which Aplousobranchia is the most important with regards to number of species (1,480 valid species). Currently, there are 26 families, of which 13 belong to Aplosoubranchia, though the Didemnidae family is more representative (578 species) (Skenkar & Swalla, 2011). In the Atlantic Ocean, 17 families have been described, of which 15 were recorded in Brazilian waters, for a total of approximately 115 species (Rocha et al., 2011). The solitary and colonial ascidian species are frequently observed covering large portions of rocky shores but can also be found in coral reef (Monniot & Monniot, 2001), soft-bottom (Monniot et al., 1991) and artificial substrates (Jackson, 1977), with a wide bathymetric distribution (Lambert, 2005). Their recruitment may be limited primarily by temperature and salinity (Goodbody, 2004; Auker & Oviatt, 2008), which are important environmental variables controlling their reproduction (Shenkar & Loya, 2008). However, the spatial distribution in the water column can be influenced by light intensity (Svane & Dolmer, 1995), sedimentation (Goodbody, 2004) and type of substrate 109 (Lambert, 2005) in addition to competition and predation (Millar, 1971). Studies with this group are scarce on the Brazilian coast. The first records were made by Gould (1852) and Herdman (1880), when these organisms were still classified as Mollusca. Many studies have been published there after and the number of species has increased significantly (Bjornberg, 1956; Millar, 1958; 1971; Rodrigues, 1962; 1964; 1966; Monniot, 1970). Recently, studies have described new species and extended the distribution of others, mainly in the states of São Paulo, Paraná and Santa Catarina (Rocha & Nasser, 1998; Rocha et al., 2005; Dias et al., 2012). However, there are still many lack of knowledge in the Brazilian coast, mainly in the northeast (Cascon & Lotufo, 2005). Information regarding deep-water species is almost nonexistent. Indeed, there is only one published paper that describes four species, two of which are new (Rodrigues, 1966). Despite of many efforts, there are only a small number of specialists, and consequently the knowledge of ascidian species from both shallow and deep waters is lacking. Results A total of two taxa from the Peregrino oil field were recorded (Table 10). Systematics Family Styelidae Sluiter, 1895 Genus Polycarpa Heller, 1877 Species Polycarpa sp. (Fig. 124) Geographic and bathymetric distributions: Western Pacific (Monniot & Monniot, 2001) and Indian Ocean from 2 to 65 m depth. Bermuda and the North American coast from 1,330 to 2,496 m depth (Monniot & Monniot, 1968). Remarks: Thirty species of the Polycarpa genus were described for Atlantic waters but only six on the Brazilian coast (Rocha et al. 2011). Thirteen individuals were collected in the Peregrino oil field. The body size ranged between 1.6 and 2.2 cm. The tunic is leathery, brownish and covered mainly by hydrozoans and bryozoans. Short stalks were found attached on small shells or rhodoliths. Figure 124. Polycarpa sp. 110 Family Pyuridae Hartmeyer, 1908 Genus Pyura Molina, 1782 Species Pyura sp. (Fig.125) Geographic and bathymetric distributions: Japan, tropical Atlantic and New Caledonia from 2 to 35 m depth. Pyura is widely distributed around the world. In Brazilian waters, only Rodrigues (1966) and Monniot (1970) described occurrences at 140 m and 34 m depth, respectively. Remarks: Only three species were described on the Brazilian coast (Rocha et al., 2011). Two individuals were found in the samples. The tunic is leathery with hard protuberances and a yellowish color without epibionts. Figure 125. Pyura sp. 111 Conclusion 112 Conclusion Rhodolith beds from the Peregrino oil field support a particularly high diversity of fauna, combining species of hard and soft bottoms. Our results show that the rhodolith beds from the Peregrino oil field could also be considered highly diverse in terms of the epifaunal species. The present study contributes to the knowledge of the structural, taxonomical and functional characteristics of deep-water rhodolith beds present within the Campos Basin on the Brazilian continental shelf, which is necessary for setting a realistic baseline for the effective management and monitoring of oil production, considering the potential impacts of the discharge of drill cuttings. 114 References 116 References Abbott, R.T., 1974. American Seashells. 2nd edition. Van Nostrand Reinhold Company, New York, 663 pp. Absalão, R.S. & Pimenta, A.D., 2003. A new subgenus and three new species of Brazilian deep waters Olivella (Mollusca, Gastropoda, Olivellidae) collected by the RV Marion Dufresne in 1987. Zoosystema, 25: 177-185. Absalão, R.S., Cetano, C.H.S. & Pimenta, A.D., 2003a. Novas ocorrências de gastrópodes e bivalves marinhos no Brasil (Mollusca). Revista Brasileira de Zoologia, 20: 323-328. Absalão, R.S., Santos, F.N., Tenório, D.O., 2003b. Five new species of Turbonilla Risso, 1826 (Gastropoda, Heterobranchia, Pyramidellidae) found off the northeast coast of Brazil (02°-13°S). Zootaxa, 235: 1-11. Adams, C.L. & Hooper, J.N.A., 2001. A revision of Australian Erylus (Porifera: Demospongiae: Astrophorida: Geodiidae) with a tabular review of worldwide species. Invertebrate Taxonomy, 15: 319-340. Ahyong, S.T., Baba, K., Macpherson, E. & Poore, G.C.B., 2010. A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura). Zootaxa, 2676: 57-68. Alvarez, B. & Hooper, J.N.A., 2002. Family Axinellidae Carter, 1875. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema porifera, a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp. 724-747. Amado Filho, G.M., Maneveldt, G., Manso, R.C.C., Marins-Rosa, B.V., Pacheco, M.R. & Guimarães, S.M.P.B., 2007. Estrutura de los mantos de rodolitos de 4 a 55 metros de profundidad em la costa sur del estado de Espírito Santo, Brasil. Ciências Marinas, 33(4): 399-410. Amado-Filho, G.M., Maneveldt, G.W., Pereira-Filho, G.H., Manso, R.C.C., Bahia, R.G., Barros-Barreto, M.B. & Guimarães, S.M.P.B., 2010. Seaweed diversity associated with a brazilian tropical rhodolith bed. Ciências Marinas, 36(4): 371-391. Amado-Filho, G.M., Moura, R.L., Bastos, A.C., Salgado, L.T., Sumida, P.Y., Guth, A.Z., Francini-Filho, R.B., Pereira-Filho, G.H., Abrantes, D.P., Brasileiro, P.S., Bahia, R.G., Leal, R.N., Kaufman, L., Kleypas, J.A., Farina, M. & Thompson, F.L., 2012. Rhodolith beds are major CaCO3 bio-factories in the tropical south west Atlantic. PLoS ONE, 7(4):e35171. doi:10.1371/journal.pone.0035171. Amaral, A.C.Z. & Nonato, E.F., 1984. Anelideos poliquetos da costa brasileira. 4. Polydontidae, Pholoidae, Sigalionidae e Eulepethidae. CNPq. Coordenação Editorial, Brasília, 54 pp. Amaral, A.C. & Jablonski, S., 2005. Conservation of marine and coastal biodiversity in Brazil. Conservation Biology,19(3): 625-631. Amaral, A.C.Z., Lana, P.C., Fernades, F.C. & Coimbra, J.C., 2003. Biodiversidade bêntica da região sul-sudeste da costa brasileira. REVIZEE Score Sul - Bentos. Editora São Paulo, São Paulo, 156 pp. Amaral, A.C.Z., Rizzo, A.E. & Arruda, E.P., 2006. Manual de identificação dos invertebrados marinhos da região sudeste-sul do Brasil. Editora da Universidade de São Paulo, São Paulo, 288 pp. Amaral, A.C.Z., Nallin, S.A.H. & Steiner, T., 2010. Catálogo das espécies de Anellida Polychaeta do Brasil. Available online at <http://www.Ib.Unicamp.Br/Projbiota/ Bentos_Marinho/Prod_Cien/ Texto_Poli.pdf>. Consulted in 2012-02-20. Auemheimer, C. & Chinchon, S., 1997. Calcareous skeletons of sea urchins as indicators of heavy metals pollution. Portman Bay, Spain. Environmental Geology, New York, 29(1-2): 78-83. Auker, L.A. & Oviatt, C.A., 2008. Factors influencing the recruitment and abundance of Didemnum in Narragansett Bay, RhodeIsland. ICES Journal of Marine Science, 65: 765-769. Barnard, J.L. & Karaman G.S., 1991. The families and genera of marine gammaridean Amphipoda (except marine gammaroids). Records of the Australian Museum, Supplement, 13(1-2): 1-866. Barnes, R.S.K., Calow, P. & Olive, P.J.W., 1995. Os invertebrados. Uma nova síntese. Atheneu Editora, São Paulo, 526 pp. Bassi, D., Nebelsick, J.H., Checconi, A., Hohenegger, J. & Iryu, Y., 2009. Present-day and fossil rhodolith pavements compared: their potential for analysing shallow-water carbonate deposits. Sedimentary Geology, 214: 74-84. Bassi, D., Iryu, Y. & Nebelsick, J.H., 2012. To be or not be a fossil rhodolith? Analytical methods for studying fossil rhodolith deposits. Journal of Coastal Research, 28: 288-295. Bayer, F.M., 1981. Status of knowledge of Octocorals of world seas. Seminários de Biologia Marinha, Academia Brasileira de Ciências, Rio de Janeiro, pp. 3-102. Berlandi, R.M., Carrera-Parra, L. & Paiva, P.C., 2010a. Lumbrineridae (Annelida: Polychaeta) associated to three banks of calcareous algae (rhodoliths) in Eastern Brazilian coast with description of a new species In: 10th International Polychaete Conference, Lecce, Italy. Berlandi, R.M., Figueiredo, M.A.O. & Paiva, P.C., 2010b. Biodiversity of Polychaetes in two banks of calcareous algae (rhodoliths) in Eastern Brazilian coast. In: 10th International Polychaete Conference, Lecce, Italy. Bieler, R., 1996. Mörch’s worm-snail taxa (Caenogastropoda: Vermetidae, Siliquariidae, Turritellidae). American Malacological Bulletin, 13(1-2): 23-25. 117 Birkett, D.A., Maggs, C. & Dring, M.J., 1998. Maerl: an overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association Marine Science (SAMS), 5: 1-90. Bjornberg, T.K.S., 1956. Ascídias da costa sul do Brasil (nota prévia). Ciência e Cultura, 8: 164-165. Bordehore, C., Ramos-Esplá, A.A., Riosmena-Rodríguez, R., 2003. Comparative study of two maerl beds with different otter trawling history, southeast Iberian Peninsula. Aquatic Conservation: Marine and Freshwater Ecosystems, 13: S43-S54. Böttger, S.A. & Mcclintock, J.B., 2002. Effects of inorganic and organic phosphate exposure on aspects of reproduction in the common sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Journal of Experimental Zoology, New Haven, 292: 660-671. Boury-Esnault, N., 1973. Résultats scientifiques des campagnes de la "Calypso". Campagne de la Calypso au large des côtes atlantiques de l'Amérique du Sud (1961-1962). I.29. Spongiaires. Annales de l’Institut Océanographique, 49(Supplement 10): 263-295. Braga, L.M., 1967. Notas sobre alguns briozoários marinhos brasileiros coletados pelo Navio Oceanográfico Almirante Saldanha. Instituto de Pesquisa da Marinha, Notas Técnicas, 2: 1-12. Braga, L.M., 1968. Notas sobre alguns briozoários incrustantes da região de Cabo Frio. Publicação do Instituto de Pesquisa da Marinha, 25: 1-28. Bruno, J.F. & Bertness, M.D., 2001. Habitat modifications and facilitation in benthic marine communities. In: Bertness, M.D., Gaines, S.D. & Hay, M.E. (Eds.), Marine Community Ecology. Sinauer Sunderland, Massachusetts, pp. 201-218. Brusca, R.C. & Brusca, G.J., 2003. Invertebrates. Sinauer Associates Inc., Sunderland, 936 pp. Caetano, C.H.S., 2007. Sistemática da Classe Scaphopoda (Mollusca) no Brasil. Tese (Doutorado), Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Biologia, Biociências Nucleares. 199 pp. Cairns, S.D., 1979. The deep-water Scleractinia of the caribbean sea and adjacent waters. Studies on the Fauna of Curacao, 57: 1-341. Cairns, S.D., 2000. A revision of the shallow-water azooxanthellate Scleractinia of the Western Atlantic. Studies on the Fauna of Curacao, 75: 1-240. Cairns, S.D., Hoeksema, B.W. & Van der Land, J., 1999. List of extant stony corals. Atoll Research Bulletin, Washington, 459: 13-46. Calado, L., da Silveira, I.C.A., Gangopadhyay, A. & Castro, B.M., 2010. Eddy-induced upwelling off Cape São Tomé (22o S, Brazil). Continental Shelf Research, 30: 1181-1188. Cascon, H.M. & Lotufo, T.M.C., 2005. Ascidiacea do litoral Cearense. In: Lotufo, T.M.C. & Bezerra-Silva, A.M. (Orgs.), Biota marinha da costa oeste do Ceará. Relatório TécnicoCientífico, 268 pp. Castro, C.B., Pires, D.O., Medeiros, M.S., Loiola, L.L., Arantes, R.C.M., Thiago, C.M. & Berman, E., 2006. Cnidaria: Corais. In: Lavrado, H.P. & Ignácio, B.L. (Eds.) Biodiversidade Bêntica da Costa Central Brasileira. Museu Nacional, Série Livros 18, Rio de Janeiro, pp. 147-192. Chamberlain, Y.M. & Keats, D.W., 1995. The melobesioid alga Mesophylum engelhartii (Rhodophyta, Corallinaceae) in South Africa. South African Journal of Botany, 61: 134-146. Chapman, V.J. & Parkinson, P.G., 1974. Issue 3: Cryptonemiales. In: Chapman, V.J. (Ed.), The marine algae of New Zealand. Part III. Rhodophyceae. Lehre J. Cramer, New York, pp. 155-278. Christoffersen, M.L., 1979. Decapod Crustacea: Alpheoidea. Resultats scientifiques des campagnes de la Calypso, Fascicule 11. Campagne de la Calypso au large des Côtes Atlantiques de l’Ámerique du Sud (1961-1962). I. Number 36. Annales de l´Institut Oceanográfique, New Series 55, Fascicule Supplement: 297-377. Cocito, S., 2004. Bioconstruction and biodiversity: their mutual influence Scientia Marina (Barc.), 68(Suppl. 1): 137-144. Conquiliologistas do Brasil, 2013. Espécies brasileiras. Available online at <http://www.conchasbrasil.org.br/conquiliologia/>. Consulted in 2012-06-02. Dias, G.M., Rocha, R.M., Lotufo, T.M.C., Kremer, L. 2012. Fifty years of ascidian biodiversity research in São Sebastião, Brazil. Journal of the Marine Biological Association of the United Kingdom, 1-10. Díaz, J.M. & Puyana, M., 1994. Moluscos del Caribe Colombiano. 1º ed. Colciencia y Fundación Natura Colombia, Colombia, 291 pp. Eggleston, D., 1972. Factors influencing the distribution of sub-littoral ectoprocts off the south of the Isle Man (Irish Sea). Journal of Natural History, 6: 247-260. Emig, C.C., Alvarez, F. & Bitner, M.A. 2011. Brachiopoda World Database. Available online at <http://www.marinespecies.org/brachiopoda>. Consulted in 2012-08-10. Erpenbeck, D. & Soest, R.W.M.V., 2002. Family Halichondriidae Gray, 1867. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York: 787-816. Farfante, I.P., 1977. American Solenocerid shrimps of the genera Hymenopenaeus, Haliporoides, Pleoticus, Hadropenaeus new genus, and Mesopenaeus new genus. Fishery Bulletin, 75(2): 261-346. Farias, J.N., Riosmena-Rodriguez. R., Bouzon, Z., Oliveira, E.C. & Horta, P.A., 2010. Lithothamnion superpositum (Corallinales; Rhodophyta): First description for the Western Atlantic or rediscovery of a species? Phycological Research, 58: 210-216. 118 Fauchauld, K. & Jumars, P.A., 1979. The diet of worms: A study of polychaete feeding guilds. Oceanography and Marine Biology Annual Review, 17: 193-284. Fazakerley, H. & Guiry, M.D., 1998. The distributions of maerl beds around Ireland and their potential for sustainable extraction: Phycology section. Report to the Marine Institute, NUI, Galway, Dublin, 34 pp. Feldstein T., 2003. Marine mollusc in environmental monitoring. III. Trace metals and organic pollutants in animal tissue and sediments. Helgoland Marine Research, 57: 212-219. Fernandes, A.C.S. & Young, P.S. 1986. Corais coletados durante a “Operação Geomar X” em junho de 1978 (Coelenterata, Anthozoa, Scleractinia). Publicações Avulsas do Museu Nacional, 66: 23-31. Figueiredo, M.A.O., Menezes, K.S., Costa-Paiva, E.M., Paiva, P.C. & Ventura, C.R.R., 2007. Experimental evaluation of rhodoliths as living substrata for infauna at the Abrolhos Bank, Brazil. Ciencias Marinas, 33(4): 427-440. Figueiredo, M.A.O., Coutinho, R., Villas-Boas, A.B., Tâmega, F.T.S. & Mariath, R., 2012. Deep-water rhodolith productivity and growth in the southwestern Atlantic. Journal of Applied Phycology. 24: 487-493. Foster, M.S., 2001. Rhodoliths: between rocks and soft places. Journal of Phycology, 37: 659-667. Fransen, C.H.J.M., 1986. Caribbean Bryozoa: Anasca and Ascophora imperfecta of the inner bays of Curacao and Bonaire. Studies on the Fauna of Curacao and other Caribbean Islands, 68: 1-19. Gherardi, D.F.M., 2004. Community structure and carbonate production of a temperate rhodolith bank from Arvoredo Island, southern Brazil. Brazilian Journal of Oceanography, 52(3/4): 207-224. Gonzalez-Rodriguez, E., Valentin, J.L., André, D.L. & Jacob, A.S., 1992. Upwelling and downwelling at Cabo Frio (Brazil): comparison of biomass and primary production responses. Journal of Plankton Research, 14(2): 289-306. Goodbody, I., 2004. Diversity and distribution of ascidians (Tunicata) at Twin Cays, Belize. Atoll Research Bulletin, 524: 1-20. Gordon, D.P., 2000. Towards a phylogeny of cheilostomes-morphological models of frontal wall/shield evolution. In: Herrera-Cubilla, A. & Jackson J.B.C. (Eds.), Proccedings of the 11th International Bryozoology Association Conference. Smithsonian Tropical Research Institute, Balboa, Panama, pp. 17-37. Gould, A.A. 1852. Mollusca and Shells. In: United States exploration expedition during the years 1838-1942 under the command of Charles Wilkes. Boston, 12, 510 pp. Guillou, M., Quiniou, F., Huart, B. & Pagano, G., 2000. Comparison of embryonic development and metal contamination in several populations of the sea urchin Sphaerechinus granularis (Lamarck) exposed to anthrpogenic pollution. Archives of Contamination and Toxicology, New York, 39: 337-344. Guinot, D. & Tavares, M., 2003. A new subfamilial arrangement for the Dromiidae de Haan, 1833, with diagnoses and descriptions of new genera and species (Crustacea, Decapoda, Brachyura). Zoosystema, 25: 43-129. Guiry, M.D. & Guiry, G.M., 2013. Algae Base. World-wide electronic publication, National University of Ireland, Galway. Available online at <http://www.algaebase.org>. Consulted in 2012-04-09. Hajdu, E. & Soest, R.W.M.V., 2002. Family Desmacellidae Ridley & Dendy, 1886. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York: 642-650. Hajdu, E. & Lopes, D., 2007. A checklist of Brazilian deep-sea sponges. In: Custódio, M.R., Lobo-Hajdu, G., Hajdu, E. & Muricy, G. (Eds.), Porifera Research-Biodiversity, Innovation and Sustainability. Museu Nacional, Série Livros 28, Rio de Janeiro, pp. 353-359. Hajdu, E, Peixinho, S. & Fernandez, J.C.C., 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Museu Nacional, Série Livros 45, Rio de Janeiro, 276 pp. Harvey, A.S. & Bird, F.L., 2008. Community structure of a rhodolith bed from cold-temperate waters (southern Australia). Australian Journal of Botany, 56: 437-450. Harvey, A.S., Woelkerling, W.J., Farr, T., Neill, K. & Nelson, W., 2005. Coralline algae of central New Zealand an identification guide to common crustose species. NIWA Press, Wellington, New Zealand, 145 pp. Hendler, G., Miller, J.E., Pawson, D.L. & Kier, P.M., 1995. Sea stars, sea urchins and allies: Echinoderms of Florida and the Caribbean. Smithsonian Institution Press, Washington, 390 pp. Henriques, M.C.M.O., Villas-Boas, A., Riosmena-Rodriguez. R. & Figueiredo, M.A.O., 2012. New records of rhodolith-forming species (Corallinales, Rhodophyta) from deep water in Espírito Santo state, Brazil. Helgoland Marine Research, 66(2): 219-231. Herdman,W.A., 1880. Preliminary report on the Tunicata of challenger expedition. Part 2. Proceedings of Royal Society of Edinburgh, 10: 714-726. Hily, C., Potin, P. & Floc’h, J.Y., 1992. Structure of subtidal algal assemblages on soft bottom sediments: fauna/flora interactions and role of disturbances in the bay of Brest, France. Marine Ecology Progress Series, 85: 115-130. 119 Hinojosa-Arango, G. & Riosmena-Rodrıguez, R., 2004. Influence of rhodolith-forming species and growth-form on associated fauna of rhodolith beds in the central-west Gulf of California, Mexico. Marine Ecology, 25(2): 109-127. Hooper, J.N.A., 2002a. Family Microcionidae Carter, 1875. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York, 432-468. Hooper, J.N.A., 2002b. Family Raspailiidae Hentschel, 1923. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York, 469-510. Hooper, J.N.A. & Van Soest, R.W.M., 2002. Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York, 1101 pp. Jackson, J.B.C., 1977. Habitat area, colonization, and development of epibenthic community structure. In: Keegan. B.F., Ceidigh, P.O. & Boaden, P.J.S. (Eds.), Biology of benthic organisms. Pergamon Press, London, 349-358. John, D.M., Prud'homme van Reine, W.F., Lawson, G.W., Kostermans, T.B. & Price, J.H., 2004. A taxonomic and geographical catalogue of the seaweeds of the western coast of Africa and adjacent islands. Beihefte Zur Nova Hedwigia, 127: 1-339. Kaas, P. & Van Belle, R.A., 1987. Monography of living chitons: Suborder Ischnochitonina, Ischnochitonidae: Chaetopleurinal, Ischnochitoninae (pars) Additions to vols. 1-2. Vol. 3. Brill, Leiden, 302 pp. Kamenos, N.A., Moore, P.G. & Hall-Spencer, J.M., 2004. Maerl grounds provide both refuge and high growth potential for juvenile queen scallops (Aequipecten opercularis L.). Journal of Experimental Marine Biology and Ecology, 313(2): 241-254. Keen, A.M., 1960. Vermetid Gastropods and Marine Intertidal Zonation. The Veliger, 3: 1-2. Kempf, M., 1970. Notes on the benthic bionomy of the N-NE Brazilian shelf. Marine Biology, 5: 213-224. King, R.A., 2008. A re-description of Accalathura crenulata (Richardson, 1901) from type material and the description of two new Accalathura species (Crustacea: Isopoda: Cymothoida). Zootaxa, 1761: 17-29. Kott, P., 1952. Ascidians of Australia, Stolidobranchia and Phelobranchiata. Australian Journal of Marine and Freshwater Research, 3: 206-333. Kowalewski, M., Simões, M.G., Carroll, M. & Rodland, D.L., 2002. Abundant brachiopods on a tropical, upwelling influences shelf (Southeast Brazilian Bight, South Atlantic). Palaios, 17: 277-286. Kroh, A. & Mooi, R., 2013. World Echinoidea Database. Accessed through: World Register of Marine Species. Available online at <http://www.marinespecies.org/aphia.php?p=taxdetails&id=422478>. Consulted in 2013-05-28. Kvitek, R.G., 1989. Hydrodynamic morphology and behavior of free-living sediment dwelling bryozoan, Alcyonidum disciforme (Smitt). Journal of Experimental Marine Biology and Ecology, 125: 13-32 Laborel, J. & Kempf, M., 1965. Formações de vermetos e algas calcárias nas costas do Brasil. Trabalhos do Instituto de Oceanografia da Universidade Federal de Pernambuco, 7/8: 33-50. Laborel, J., 1969. Madreporaires et hydrocoralliaires récifaux des côtes Brasiliennes. Systématic, écologie, répartition verticale et geographique. Annales de l’Institute Océanographique, Paris, 47: 171-229. Laborel, J., 1970. Les peuplements de madréporaires des cotes tropicales du Brésil. Annales de l’Université d’Abidjan (E) 2(3): 1-260. Lambert, G., 2005. Ecology and natural history of the protochordates. Canadian Journal of Zoology, 83: 34-50. Lana, P.C., Camargo, M.G., Brogim, R. & Isaac, V., 1996. O bentos da costa brasileira: avaliação crítica e levantamento bibliográfico (1858-1996). Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva-REVIZEE. Femar, 432 pp. Lawrence, J.M., 1987. Functional biology of echinoderms. Croom Helm, London, 340 pp. Leal, J.H., 1991. Marine prosobranch gastropods from oceanic Islands off Brazil. Oegstgeest: Universal Book Services, Mahal, Nagpur, 418 pp. Leão, Z.M.A.N., Kikuchi, R.K.P. & Testa V., 2003. Corals and coral reefs of Brazil. In: Cortés, J. (Ed.), Latin America Coral Reefs. The Netherlands: Elsevier Publisher, Amsterdam, pp. 952. Lehnert, H. & Heimler, W., 2001. Description of the North Jamaican Timea micraster n. sp. (Porifera: Demospongiae: Hadromerida: Timeidae). Beaufortia, 51(12): 213-220. Leite, C.F. & Tommasi, L.R., 1976. Distribuição de Cladocora debilis Meth, 1849 (Faviidae, Anthozoa, Cnidaria), ao sul de Cabo Frio (23°S). Boletim do Instituto Oceanográfico, 25: 101-112. Leite, T.S., Haimovici, M., Molina, W. & Warnke, K., 2008. Morphological and genetic description of Octopus insularis new species (Cephalopoda: Octopodidae), a cryptic species in the Octopus vulgaris complex from the tropical Southwestern Atlantic. Journal of Molluscan Studies, 74: 63-74. 120 Lerner, C., Carraro, J.L. & Soest, R.W.M.V., 2006. Raspailia (Raspaxilla) bouryesnaultae, a new name for brazilian Raspaxilla elegans Boury-Esnault, 1973 (Demospongiae, Poecilosclerida, Raspailiidae) with a redescription and a new record. Zootaxa, 1129: 37-45. Littler, M.M., Littler, D.S. & Hanisak, M.D., 1991. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology, 150: 163-182. Lopes, D.A., Hajdu, E. & Reiswig, H.M., 2011. Taxonomy of Farrea (Porifera, Hexactinellida, Hexactinosida) from the southwestern Atlantic, with description of a new species and a discussion on the recognition of subspecies in Porifera. Canadian Journal of Zoology, 89: 169-189. Mah, C.L., 2013. World Asteroidea database. Accessed through: World Register of Marine Species. Available online at <http://www.marinespecies.org/aphia.php?p=taxdetails&id=178784>. Consulted in 2013-05-28. Marcus, E., 1937. Bryozoários marinhos Brasileiros, 1. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 1: 5-224. Marcus, E., 1938. Bryozoários marinhos Brasileiros, 2. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 2: 1-196. Marcus, E., 1939. Bryozoários marinhos Brasileiros, 3. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 3: 111-353. Marcus, E. ,1941. Sobre os bryozoa do Brasil, 1. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 5: 2-208. Marcus, E., 1955. Notas sobre briozoos marinhos Brasileiros. Arquivos do Museu Nacional do Rio de Janeiro, 42(1): 273-341. Melo, G.A.S., 1996. Manual de identificação dos brachyura (caranguejos e siris) do litoral Brasileiro. Plêiade editora, São Paulo, 603 pp. Melo, G.A.S., 1999. Manual de identificação dos crustáceos decapoda do litoral brasileiro: Amomura, Thalassinidea, Palinuridea, Astacidea. Plêiade editora, São Paulo, 429 pp. Messing, C.G., 2003. Three new species of Comasteridae (Echinodermata, Crinoidea) from the Tropical Western Pacific. Zoosystema, 25(1): 49-162. Millar, R.H., 1958. Some ascidians from Brazil. Annals and Magazine of Natural History, 13: 497-514. Millar, R.H., 1969. British ascidians. Tunicata: Ascidiacea: keys and notes for the identification of the species. Linnean Society of London by Academic Press, London, 92 pp. Millar, R.H., 1971. The biology of ascidians. Advances in Marine Biology, 9: 1-100. Miyaji, C., 2001. Gastrópodes prosobrânquios da plataforma continental externa e talude superior da costa Sudeste Brasileira. Tese de doutorado. Departamento de Oceanografia Biológica, Instituto Oceanográfico da USP, São Paulo, 128 pp. Monniot, C., 1970. Ascidies phlebobranches et stolidobranches. In: Campagne de la Calypso au large des cotes de l’Amerique du Sud. Annales de L’Institut Océanographique, 47:3359. Monniot, C. & Monniot, F., 1968. Les ascidies grandes profondeurs récoltées par le navire océanographique américain Atlantis II. Bulletin de L’Institut Océanographique, 67: 1-48. Monniot, F. & Monniot, C., 2001. Ascidians from the Tropical Western Pacific. Zoosystema, 23: 201-383. Monniot, C., Monniot, F. & Laboute, P., 1991. Coral reef Ascidians of New Caledonia. Collection Fauna Tropicale 30. ORSTOM, Paris. Monteiro, L.C. & Muricy, G., 2004. Patterns of sponge distribution in Cagarras Archipelago, Rio de Janeiro, Brazil. Journal of the Marine Biological Association of the United Kingdom, 84: 681-687. Moraes, F., 2011. Esponjas das Ilhas Oceânicas Brasileiras. Museu Nacional, Série Livros 44, Rio de Janeiro, 252 pp. Moraes, F. & Muricy, G., 2007. A new species of Erylus (Geodiidae, Demospongiae) from Brazilian oceanic Islands. In: Custódio, M.R., Lobo-Hajdu, G., Hajdu, E. & Muricy, G., (Eds.), Porifera Research - Biodiversity, Innovation and Sustainability. Museu Nacional, Série Livros 28, Rio de Janeiro, pp. 467-475. Moraes, F.C., Ventura, M., Klautau, M., Hajdu, E. & Muricy, G., 2006. Biodiversidade de esponjas das ilhas oceânicas brasileiras. In: Alves, R.J.V. & Castro, J.W.A. (Orgs.), Ilhas Oceânicas Brasileiras - da pesquisa ao manejo. Ministério do Meio Ambiente, Secretaria de Biodiversidade e Floresta, Brasília, 147-178. Mortensen, T., 1928. A monograph of the Echinoidea. 1 Cidaroidea. Reitzel, C.A., Copenhagen, 1-155. Mothes, B. & Lerner, C., 2001. A new species of Erylus Gray, 1867 (Porifera, Geodiidae) from the Southeastern coast of Brazil. Beaufortia, 51(4): 83-89. Muricy, G. & Moraes, F.C., 1998. Marine sponges of Pernambuco State, NE Brazil. Revista Brasileira de Oceanografia, 46(2): 213-217. Muricy, G. & Hajdu, E., 2006. Porifera Brasilis: guia de identificação das esponjas marinhas mais comuns do sudeste do Brasil. Museu Nacional, Série Livros 17, Rio de Janeiro, 104 pp. Muricy, G., Hajdu, E., Minervino, J.V., Madeira, A.V. & Peixinho, S., 2001. Systematic revision of the genus Petromica Topsent (Demospongiae: Halichondrida), with a new species from southwestern Atlantic. Hydrobiologia, 443: 103-128. Muricy, G., Santos, C.P., Batista, D. , Lopes, D.A., Pagnoncelli, D., Monteiro, L.C., Oliveira, M.V., Moreira, M.C.F., Carvalho, M.S., Melão, M., Klautau, M., Rodriguez, P.R.D., Costa, R.N., Silvano, R.G., Schwientek, S., Ribeiro, S.M., Pinheiro, U. & Hajdu, E., 2006. Capítulo 3. Porifera. In: Lavrado, H.P. & Ignácio, B.L. (Eds.), Biodiversidade bentônica da região central da zona econômica exclusiva brasileira. Museu Nacional, Série Livros 18, Rio de Janeiro, pp. 109-145. 121 Muricy, G., Hajdu, E., Oliveira, M.V., Heim, A.S., Costa, R.N., Lopes, D.A., Melão, M., Rodriguez, P.R.D., Silvano, R., Monteiro, L.C. & Santos, C., 2007. Phylum Porifera. In: Lavrado, H.P. & Viana, M.S. (Eds.), Atlas de invertebrados marinhos da região central da zona econômica exclusiva brasileira, parte 1. Museu Nacional, Série Livros 25, Rio de Janeiro, pp. 25-57. Muricy, G., Esteves, E.L., Moraes, F., Santos, J.P., Silva, S.M., Klautau, M. & Lanna, E., 2008. Biodiversidade marinha da bacia Potiguar: Porifera. Museu Nacional, Série Livros 29, Rio de Janeiro, 156 pp. Muricy, G., Lopes, D.A., Hajdu, E., Carvalho, M.S., Moraes, F., Klautau, M., Menegola, C. & Pinheiro, U., 2011. Catalogue of Brazilian Porifera. Museu Nacional, Série Livros 46, Rio de Janeiro, 300 pp. Nogueira, J.M.M., 2005. Family Syllidae. In: Amaral, A.C.Z., Rizzo, A.E. & Arruda, E.P. (Orgs.), Manual de identificação dos invertebrados marinhos da região Sudeste-Sul do Brasil. EDUSP, São Paulo, pp. 134-164. Nogueira, J.M.M. & San Martín, G., 2002. Species of Syllis Savigny in Lamarck, 1818 (Polychaeta: Syllidae) living in corals in the state of São Paulo, southeastern Brazil. Bulletin Zoological Museum University of Amsterdam, 52(7): 57-93. Nogueira, J.M.M. & Abbud, A., 2009. Three new serpulids (Polychaeta: Serpulidae) from the Brazilian Exclusive Economic Zone. Zoosymposia, 2: 201-227. Nogueira, J.M.M., San Martín, G. & Amaral, A.C.Z., 2001. Description of five new species of Exogoninae Rioja, 1925 (Polychaeta: Syllidae) associated with the stony coral Mussismilia hispida (Verril, 1868) in São Paulo State, Brazil. Journal of Natural History, 35(12): 1773-1794. Nonato, E.F. & Luna, J.A.C., 1970a. Anelídeos poliquetas do nordeste do Brasil. 1: poliquetas bentônicos da costa de Alagoas e Sergipe. Boletim do Instituto Oceanográfico, Universidade de São Paulo, 19: 57-130. Nonato, E.F. & Luna, J.A.C., 1970b. Sobre alguns poliquetas de escama do nordeste do Brasil. 1: poliquetas bentônicos da costa de Alagoas e Sergipe. Boletim do Instituto Oceanográfico, Universidade de São Paulo, 18(1): 63-91. Paiva, P.C., 2006a. Phylum Annelida. Classe Polychaeta. In: Lavrado, H.P., Ignacio, B.L. (Eds.), Biodiversidade bentônica da região central da Zona Econômica Exclusiva Brasileira. Museu Nacional, Série Livros, Rio de Janeiro, pp. 261-298. Paiva, P.C., 2006b. Chapter 7 - Soft-bottom polychaetes of the Abrolhos bank. In: Dutra, G.F., Allen, G.R., Werner, T. & McKenna S.A. (Eds.), A Rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. R.A.P. Bulletin of Biological Assessment 38. Conservation International, Washington, DC, pp. 87-90. Paiva, P.C. & Costa-Paiva, E.M., 2007. Filo Annelida. Classe Polychaeta. In: Lavrado, H.P. & Viana, M.S. (Eds.), Atlas de invertebrados marinhos da região central da Zona Econômica Exclusiva Brasileira, Parte 1, Museu Nacional, Série Livros, Rio de Janeiro, pp. 135-162. Paulay, G. & Hansson, H., 2013. Holothuria (Vaneyothuria) lentiginosa Marenzeller von, 1892. Accessed through: World Register of Marine Species. Available online at <http://www.marinespecies.org/aphia.php?p=taxdetails&id=125186>. Consulted in 2013-05-28. Penna, L., 1972. Moluscos da baía da Ilha Grande, Rio de Janeiro, Brasil. I. Scaphopoda (Dentaliidae). Papéis Avulsos de Zoologia, 25(22): 229-236. Phelan, T., 1970. A field guide to the cidaroid echinoids of the northwestern atlantic ocean, gulf of Mexico, and the Caribbean sea. Smithsonian Contribution to Zoology, 40: 1-67. Pimenta, A.D. & Absalão, R.S., 2004. Fifteen new species and ten new records of Turbonilla Risso, 1826 (Gastropoda, Heterobranchia, Pyramidellidae) from Brazil. Bolletino Malacologico, 39: 113-140. Pires, D.O., 2007. The azooxanthellate coral fauna of Brazil. In: George, R.Y. & Cairns, S.D. (Eds.), Conservation and adaptative management of seamount and deep-sea coral ecosystems. Rosentiel School of Marine and Atmospheric Science, University of Miami, Miami, pp. 265-272. Pires, D.O. & Castro, C.B., 2010. Cnidaria. In: Lavrado, H.P. & Brasil, A.C.S. (Orgs.), Biodiversidade da região oceânica profunda da bacia de Campos: megafauna e ictiofauna demersal. SAG Serv., Rio de Janeiro, pp. 81-85. Pires-Vanin, A.M.S., 1998. Malacostraca - Peracarida. Marine Isopoda. Anthuridea, Asellota (pars), Flabellifera (pars), and Valvifera. In: Young, P.S. (Ed.), Catalogue of Crustacea of Brazil. Museu Nacional Série Livros 6, Rio de Janeiro, pp. 605-624. Pires-Vanin, A.M.S., 2001. Isopod assemglages on the continental shelf and upper slope from the southwestern Atlantic. In: Kensley, B. & Brusca, R.C. (Eds.), Isopod systematics and evolution. Crustacean Issues, Balkema, Rotterdam, pp.289-300. Pires-Vanin, A.M.S., 2008. Parte IV - Sistema bêntico 1. Megafauna e macrofauna. In: Pires-Vanin, A.M.S. (Org.), Oceanografia de um ecossistema subtropical - plataforma de São Sebastião, SP. EDUSP, São Paulo, pp. 311-349. Poore, G.C.B., 2001. Families and genera of isopoda anthuridea. Crustacean Issues, 13: 63-173. Pourtalès, L.F., 1874. Deep sea corals. In: Agassiz, A. Zoological results of the “Hassler” expedition. Memoirs of the Museum of Comparative Zoölogy at Harvad College, 4: 27-50. Pouyet, S. & David, L., 1979. Révision systematique du genre Steginoporella Smitt, 1873 (Bryozoa Cheilostomata). Géobios, 12: 763-817. 122 Ramalho, L.V., 2006. Taxonomia, distribuição e introdução de espécies de briozoários marinhos (Ordens Cheilosttomatida e Cyclostomata) do Estado do Rio do Janeiro. Tese de Doutorado, Universidade Federal do Rio de Janeiro, 450 pp. Ramalho, L.V., Muricy, G. & Taylor, P.D., 2009. Cyclostomata (Bryozoa, Stenolaemata) from Rio de Janeiro State, Brazil. Zootaxa, 2057: 32-52. Rao, C.P., 1998. Modern and Tertiary temperate carbonates from Australia and New Zealand. Their significance in the exploration for oil and gas. In: AAPG International Conference & Exhibition, Extended Abstracts Volume, Rio de Janeiro, pp. 58-59. Ridley, S.O. & Dendy, A., 1887. Report on the Monaxonida collected by H.M.S. "Challenger" during the years 1873-1876. Report of the Scientific Results of the Voyage of H.M.S. "Challenger", 1873-1876, 20(59): 1-275. Rios, E.C., 1994. Seashells of Brazil. Fundação Universidade do Rio Grande, Museu Oceanográfico, Rio Grande, 368 pp. Rios, E.C., 2009. Compendium os brazilian sea shells. Universidade Federal do Rio Grande, Museu Oceanográfico "Prof. E. C. Rios", Evangraf, Rio Grande, 668 pp. Riosmena-Rodriguez, R. & Vásquez-Elizondo, R.M., 2012. Range extension of Mesophylum engelhartii (Foslie) W.H. Adey (Corallinales; Rhodophyta) to the Gulf of California: Morphology, anatomy and reproduction. Botanica Marina, 55(2): 143-148. Rocha, R.M. & Nasser, C.M., 1998. Some ascidians (Tunicata, Ascidiacea) from Paraná State, Southern Brazil. Revista Brasileira de Zoologia, 15(3): 633-642. Rocha, R.M. & D’hondt, J.L., 1999. Phylum Ectoprocta ou Bryozoa. In: Migotto, A.E. & Tiago, C.G. (Eds.), Biodiversidade do Estado de São Paulo, Brasil. Síntese do conhecimento ao final do século XX: 3 - Invertebrados marinhos. FAPESP, São Paulo, pp. 241-249. Rocha, R.M., Moreno, T.R. & Metri, R., 2005. Ascídias da reserva biológica marinha do Arvoredo, SC. Revista Brasileira de Zoologia 22: 461-476. Rocha, R.M., Zanata, T.B. & Moreno, T.R., 2011. Keys for the identification of families and genera of Atlantic shallow water ascidians. Biota Neotropica, 12(1): 269-303. Available online at <http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012>. Consulted in 2012-03-10. Rocha, R.M., Bonnet, N.Y.K., Baptista, M.S. & Beltramin, F.S., 2012. Introduced and native Phlebobranch and Stolidobranch solitary ascidians (Tunicata: Ascidiacea) around Salvador, Bahia, Brazil. Zoologia, 29: 39-53. Rodrigues, S.A., 1962. Algumas ascídias do litoral-Sul do Brasil. Boletim da Faculdade de Ciências e Letras da Universidade de São Paulo, Zoologia, 24: 193-216. Rodrigues, S.A., 1964. Ascidiacea. In: Vanzolini, P. (Ed.), História natural dos organismos aquáticos do Brasil, Tunicata. Revista dos Tribunais, São Paulo, pp. 299-304. Rodrigues, S.A., 1966. Notes on Brazilian ascidians. I. Papéis Avulsos do Departamento de Zoologia, 19(8): 95-115. Rowe, F.W.E. & Gates, J., 1995. Echinodermata. In: Wells, A. (Ed.), Zoological catalogue of Australia. Volume 33. Melbourne: CSIRO, Australia, 510 pp. Rouse, G.W. & Pleijel, F., 2001. Polychaetes. New York: Oxford University Press Inc, Oxford, 354 pp. Rudwick, M.J.S., 1970. Living and fossil Brachiopods. Hutchinson University Library, London, 199 pp. San Martín, G., 2003. Annelida, polychaeta II: Syllidae. In: Ramos, M.A. et al., (Eds), Fauna Iberica. Museo Nacional de Ciencias Naturales, Volume 21, CSIC, Madrid, pp 1-554. Santana, W. & Tavares, M., 2008. A new species of Euprognatha Stimpson, 1871 (Crustacea, Brachyura, Inachoididae) from off coast of Northeastern Brazil. Papéis Avulsos de Zoologia, Museu de Zoologia da Universidade de São Paulo, 48(27): 317-328. Santana, F.T., Ramalho, L.V. & Guimarães, C.P., 2009. A new species of Metrarabdotos (Bryozoa, Ascophora) from Brazil. Zootaxa, 2222: 57-65. Santos, C.S.G. & Lana, P.C., 2003. Nereididae (Polychaeta) from Northeastern coast of the Brazil. III. Ceratonereis and Nereis. Iheringia, Série Zoologica, Porto Alegre, 93(1): 5-22. Santos, F.N., Caetano, C.H.S., Absalão, R.S. & Paula, T.S., 2007. Mollusca de substrato não consolidado, In: Creed, J.C., Pires, D.O. & Figueiredo, M.A.O. (Eds.), Biodiversidade marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília, pp. 207-236. Sciberras, M., Rizzo, M., Mifsud, J.J. & Camilleri, K., 2009. Habitat structure and biological characteristics of a maerl bed off the Northeastern coast of the Maltese Islands (central Mediterranean). Marine Biodiversity, 39: 251-264. Serejo, C.S., Young, P.S., Cardoso, I.A., Tavares, C.R. & Rodrigues, C.A.Jr., 2006. Capítulo 8. Filo Arthropoda. Subfilo Crustacea. In: Lavrado, H.P. & Ignacio, B.L. (Eds.), Biodiversidade bentônica da região central da Zona Econômica Exclusiva brasileira. Museu Nacional, Série Livros 18, Rio de Janeiro, pp. 299-337. Serejo, C.S, Young, P.S., Cardoso, I.C., Tavares, C., Rodrigues, C. & Almeida, T.C., 2007. Abundância, diversidade e zonação dos crustáceos no talude da costa Central do Brasil (11º – 22º S) coletado pelo Programa REVIZEE/Score Central: prospecção pesqueira In: Costa, P.A.S., Olavo, G. & Martins, A.S. (Eds.), Biodiversidade da fauna marinha profunda na costa central Brasileira. Museu Nacional, Série Livros 24, Rio de Janeiro, pp. 133-162. Shenkar, N. & Loya, Y. ,2008. The solitary ascidian Herdmania momus: native (Red Sea) vs. non-indigenous (Mediterranean) populations. Biological Invasion, 10: 1431-1439. Shenkar, N. & Swalla, B.J., 2011. Global Diversity of Ascidiacea. PLoS ONE 6(6): e20657. doi:10.1371/journal.pone.0020657. Silva, L., Sobrino, I. & Ramos, F., 2002. Reproductive biology of the common octopus, Octopus vulgaris Cuvier, Cuvier 1797(Cephalopoda: Octopodidae) in the Gulf of Cadiz (SW Spain). Bulletin of Marine Science, 71(2): 837-850. 123 Silva-Karam, H., Teschima, M.M. & Freire, A.S., 2009. Distribuição espacial de crustáceos decápodos e estomatópodos durante o verão no banco de algas calcárias na Ilha do Arvoredo, S.C. Anais do IX Congresso de Ecologia do Brasil, São Lourenço (MG), pp. 1-4. Simões, M.G. & Mello, H.C., 2006. Phylum brachiopoda, In: Amaral, A.C.Z., Rizzo, A.E. & Arruda, E.P. (Orgs.), Manual de identificação dos invertebrados marinhos da região SudesteSul do Brasil. Editora da USP, São Paulo, pp. 221-234. Simões, M. & Leme, J.M., 2010. Recent Rhynchonelliform brachiopods from the Brazilian continental margin, Western South Atlantic. In: 6th International Brachiopod Congress Program & Abstracts, Geological Society of Australia, Melbourne, pp. 104. Simões, M.G., Kowalewski, M., Mello, L.H.C., Rodland, D.L. & Carroll, M., 2004. Recent brachiopods from the southern Brazilian shelf: palaeontological and biogeographical implications. Palaeontology, 47: 515-533. Simone, L.R.L., 1999. Comparative morphology and systematics of Brazilian Terebridae (Mollusca, Gastropoda, Conoidea), with descriptions of three new species. Zoosystema, 21: 199-248. Soares-Gomes, A., Villaça, R.C. & Pezzella, C.A.C., 2001. Atol das Rocas ecossistema único no Atlântico Sul. Ciência Hoje, 29(172): 32-39. Soest, R.W.M.V., 2002. Suborder Myxillina Hajdu, Van Soest & Hooper, 1994. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp. 515-520. Soest, R.W.M.V., Boury-Esnault, N., Hooper, J.N.A., Rützler, K, Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B. & Kelly, M., 2011. World porifera database. Available online at <http://www.marinespecies.org/porifera>. Consulted in 2013-05-22. Soest, R.W.M.V., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B. & Kelly, M., 2013. World Porifera database. Available online at <www.marinespecies.org/porifera>. Consulted in 2013-05-22. Sollas, W.J., 1888. Report on the Tetractinellida collected by H.M.S. “Challenger”, during the years 1873-1876. Reports of the scientific results of the voyage of H.M.S. “Challenger”, 1873-1876. Zoology, 25(63): 1-458. Spotorno-Oliveira, P., 2009. Family Vermetidae Rafinesque, 1815, In: Rios, E.C. (Ed.), Compendium of Brazilian Seashells. Evangraf, Rio Grande, pp. 115-119. Spotorno, P., Tâmega, F.T.S. & Bemvenuti, C.E., 2012. An overview of the recent vermetids (Gastropoda: Vermetidae) from Brazil. Strombus, 19(1): 1-8. Steller, D.L. & & Cárceres-Martinez, C., 2009. Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Marine Ecology Progress Series, 396: 49-60. Steller, D.L., Riosmena-Rodríguez, R., Foster, M.S. & Roberts, C., 2003. Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of anthropogenic disturbances. Aquatic Conservation Marine Freshwater Ecosystem, 13: S5-S20. Steneck, R.S., 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annual Review and Ecological Systematics, 17: 273-303. Steneck, R.S. & Dethier, M.N., 1994. A functional group approach to the structure of algal-dominated communities. Oikos, 69: 476-498. Stöhr, S. & O’Hara, T., 2013. World Ophiuroidea database. Accessed through: World Register of Marine Species. Available online at <http://www.marinespecies.org/aphia.php?p=taxdetails&id=125064>. Consulted in 2013-05-28. Svane, I. & Dolmer, P., 1995. Perception of light at settlement: A comparative study of two invertebrate larvae, a scyphozoan planula and a Simple ascidian tadpole. Journal of Experimental Marine Biology and Ecology, 187: 51-61. Sweeney, M.J., Roper, C.F.E., Mangold, K.M., Clarke, M.R. & Boletzky, S.V., 1992. "Larval" and juvenile Cephalopods: a manual for their identification. Smithsonian Institution Press, Washington D.C., 296 pp. Temara, A., Gulec, I. & Holdway, D.A., 1999. Oil-induced disruption of foraging behaviour of the asteroid keystone predator, Coscinasterias muricata (Echinodermata). Marine Biology, 133: 501-507. Thayer, C.W., 1977. Recruitment, growth and mortality of a living articulate brachiopod, with implications for the interpretation of survivorship curves. Paleobiology, 3: 98-109. Tommasi, L.R., 1966. Lista de equinóides recentes do Brasil. Contribuições do Instituto Oceanográfico da Universidade de São Paulo, Série Oceanografia Biológica, 11: 1-50. Tommasi, L.R., 1970a. Os ofiuróides recentes e fosseis do Brasil e de regiões vizinhas. Contribuições do Instituto Oceanográfico da Universidade de São Paulo, Série Oceanografia Biológica, 20: 1-146. Tommasi, L.R., 1970b. Nota sobre os fundos detríticos do circalitoral inferior da plataforma continental brasileira ao sul do Cabo Frio (RJ). Boletim do Instituto Oceanográfico, São Paulo, 18(1): 55-62. Valentin, J.L., 2001. The Cabo Frio upwelling System, Brazil. Ecological Studies, 144: 97-105. Van Name, W.G. 1945. The north and south american ascidians. Bulletin of American Museum of Natural History, 1: 1-476. 124 Verseveldt, J. & Bayer, F.M., 1988. Revision of the genera Bellonella, Eleutherobia, Nidalia and Nidaliopsis (Octocorallia: Alcyoniidae and Nidaliidae), with descriptions of two new genera. Zoologischeverhandelingen, 245: 1-131. Vieira, L.M., 2008. Sistematic e distribuição dos briozoários marinhos do litoral de Maceió, Alagoas. Dissertação de Mestrado, Universidade de São Paulo, SP, Brasil 195 pp. Available online at <http://www.teses.usp.br/teses/disponiveis/41/41133/tde-12122008-103654/publico/LMVieira_completo.pdf>. Consulted in 2012-06-02. Vieira, L.M., Gordon, D.P. & Correia, M.D., 2007. First record of a living Ditaxiporine catenicellid in the Atlantic, with a description of Vasignyella ovicellata n. sp. (Bryozoa). Zootaxa, 1582: 49-58. Vieira, L.M., Migotto, A.E. & Winston, J.E., 2008. Synopsis and annotated checklist of recent marine bryozoa from Brazil. Zootaxa, 1810: 1-39. Vieira, L.M., Migotto, A.E. & Winston, J.E., 2010a. Marcusadorea, a new genus of lepralioid bryozoan from warm waters. Zootaxa, 2348: 57-68. Vieira, L.M., Migotto, A.E. & Winston, J.E, 2010b. Shallow-water species of Beania Johnston, 1840 (Bryozoa, Cheilostomata) from the tropical and subtropical western atlantic. Zootaxa, 2550: 1-20. Vieira, L.M., Gordon, D.P., Souza, F.B.C. & Haddad, M.A., 2010c. New and little-known cheilostomatous bryozoa from the south and southeastern Brazilian continental shelf and slope. Zootaxa, 2722: 1-53. Vieira, W.F., Cosme, B. & Hajdu, E., 2010d. Three new Erylus (Demospongiae, Astrophorida, Geodiidae) from the Almirante Saldanha Seamount (off SE Brazil), with further data for a tabular review of worldwide species and comments on Brazilian seamount sponges. Marine Biology Research, 6(5): 437-460. Vilanova, E. & Muricy, G., 2001. Taxonomy and distribution of the sponge genus Dysidea Johnston, 1842 (Demospongiae, Dendroceratida) in the extractive reserve of Arraial do Cabo, SE Brazil (SW Atlantic). Boletim do Museu Nacional, Nova Série, Zoologia, 453: 1-16. Villas-Boas, A.B., Riosmena-Rodriguez, R., Amado-Filho, G.M., Maneveldt, G.W. & Figueiredo, M.A.O., 2009. Rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo state, Brazil, including the description of L. depressum sp. nov. Phycologia, 48(4): 237-248. Weerdt, W.H.D., 2002. Family Chalinidae Gray, 1867. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema porifera, a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp. 852-873. Williams, A.B., 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, DC, 550 pp. Winston, J.E., 1986. An annotated check-list of coral-associated bryozoans. American Museum Novitates, 2859: 1-39. Winston, J.E., 2005. Re-description and revision of Smitt's "Floridan Bryozoa" in the collection of the Museum of Comparative Zoology, Harvard University. (with an annotated catalogue of specimens collected by L.F. de Pourtales in Florida and Carolina, housed at the Museum of Comparative Zoology, Harvard University). Virginia Museum of Natural History Memoir, 7: 1-147. Winston, J.E. & Maturo J.R., 2009. Bryozoans (Ectoprocta) of the Gulf of Mexico. In: Felder, D.L. & Camp, D.K. (Eds.), Gulf of Mexico-origins, waters, and biota. Biodiversity. Texas A & M Press, College Station, Texas, pp. 1147-1164. Winston, J.E. & Woollacott, R.M., 2009. Scientific results of the Hassler Expedition. Bryozoa. n°. 1. Barbados. Bulletin of the Museum of Comparative Zoology, 159(5): 239-300. Woelkerling, W.J., 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. Oxford University Press, Oxford, 268 pp. Woelkerling, W.J. & Harvey, A.S., 1993. An account of southern Australian species of Mesophyllum (Corallinaceae, Rhodophyta). Australian Systematic Botany, 6: 571-637. Womersley, H.B.S., 1996. The marine benthic flora of southern Australia - Part IIIB - Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Canberra & Adelaide: Australian Biological Resources Study & the State Herbarium of South Australia, pp. 1-392. Yoneshigue-Valentin, Y., Gestinari, L.M.S. & Fernandes, D.R.P., 2006. Macroalgas. In: Lavrado, H.P. & Ignacio, B.L. (Orgs.), Biodiversidade bentônica da Região Central da Zona Econômica Exclusiva Brasileira. Museu Nacional, Rio de Janeiro, pp. 67-105. Zanol, J., Paiva, P.C. & Atollini, F.S., 2000. Eunice and Palola (Eunicidae: Polychaeta) from the eastern Brazilian coast (13o00'- 22o30's). Bulletin of Marine Science, 67(1): 449-463. Zibrowius, H., 1970. Contribution à l‘etude des serpulidae (Polychaeta Sedentaria) du Brésil. Boletim do Instituto Oceanográfico, Universidade de São Paulo, 19: 1-32. 125 Index of taxa by scientific name 126 Index of taxa by scientific name Taxon Page Taxon Page Accalathura crenulata (Richardson, 1901) 68 Calliostoma carcellesi Clench & Aguayo, 1940 46 Allostichaster capensis (Perrier, 1875) 97 Calloporidae sp. 80 Allactaea lithostrota Williams, 1974 Alpheus pouang Christoffersen, 1979 Amalda josecarlosi Pastorino, 2003 Amastigia aviculifera Vieira, Gordon, Souza & Haddad 2010 Amphioplus albidus (Ljungman, 1867) Amphipholis squamata (Delle Chiaje, 1828) Amphiura flexuosa Ljungman, 1867 Amphiura kinbergi Ljungman, 1872 Amphiura muelleri Marktanner-Turneretscher, 1887 Aphrogenia alba Kinberg, 1856 Arachnopusia haywardi Vieira, Gordon, Souza & Haddad 2010 Arene bairdii (Dall, 1889) Argyrotheca cf. cuneata (Risso, 1826) Ascophora sp. Axinellidae sp. Beania sp. Brachytoma rioensis (E. A. Smith, 1915) Bubaris sp. 127 76 69 52 81 99 100 100 101 101 62 84 47 92 83 32 80 53 33 Calliostoma pulchrum (C.B. Adams, 1850) Cellaria subtropicalis Vieira, Gordon, Souza & Haddad 2010 Celleporaria albirostris (Smitt, 1873) Ceratonereis hircinicola (Eisig, 1870) Chaetopleura asperrima (Gould, 1852) Chlamys tehuelchus (Orbigny, 1846) Cidaris abyssicola (A. Agassiz, 1869) Cladocora debilis Milne Edwards & Haime, 1849 Clathria sp. Clypeaster subdepressus (Gray, 1825) Coenocyathus parvulus (Cairns, 1979) Comasteridae sp. Compsodrillia cf. haliostrephis (Dall, 1889) Conus clerii Reeve, 1844 Crisia sp. Cyphoma intermedium (G.B. Sowerby I., 1828) Dardanus insignis (de Saussure, 1858) Desmacella sp. 46 83 85 63 45 58 104 39 29 106 38 103 54 53 89 49 71 31 Dysidea sp. 35 Lucapina sowerbii (Sowerby I., 1835) 45 Erylus sp. 26 Malakosaria atlantica Vieira, Gordon, Souza & Haddad, 2010 88 104 Marthasterias glacialis (Linnaeus, 1758) Echinaster (Othilia) brasiliensis Müller & Troschel, 1842 Euarche tubifex Ehlers, 1887 Eucidaris tribuloides (Lamarck, 1816) Eunice stigmatura (Verrill, 1900) Euprognatha rastellifera Stimpson, 1871 Eurypon sp. Fenimorea sp. Fusinus frenguellii (Carcelles, 1953) Garthiope spinipes (A. Milne Edwards, 1880) Glycera brevicirris Grube, 1870 Glycymeris pectinata (Gmelin, 1791) Haliclona sp. Holothuria (Vaneyothuria) lentiginosa Marenzeller Von, 1892 Ircinia strobilina (Lamarck, 1816) Ischnochiton marcusi (Righi, 1971) Ischnochiton sp. Javania cailleti (Duchassaing & Michelotti, 1864) Lima lima (Linnaeus, 1758) Limopsis janeiroensis E. A. Smith, 1915 Lithothamnion sp. 98 62 64 74 30 54 51 76 64 56 34 106 34 44 44 40 57 55 23 Luidia ludwigi scotti Bell, 1917 Marcusadorea corderoi (Marcus, 1949) Mesopenaeus tropicalis (Bouvier, 1905) Mesophyllum engelhartii (Foslie) W.H. Adey Metula agassizi Clench & Aguayo, 1941 Mollia elongata Canu & Bassler, 1928 Moreiradromia antillensis (Stimpson, 1858) Munida irrasa A. Milne Edwards, 1880 Myxillina sp. Nidalia sp.1 Nidalia sp.2 Octopus sp. Odontocymbiola macaensis Calvo & Coltro, 1997 Ophioderma divae Tommasi, 1971 Ophiomyxa flaccida (Say, 1825) Ophioplax clarimundae Tommasi, 1970 Ophiothrix angulata (Say, 1825) Palicus faxoni Rathbun, 1897 Palicus sicus (A. Milne Edwards, 1880) 98 87 97 69 22 50 82 73 72 31 41 41 59 50 102 103 102 103 74 75 128 Paradentalium disparile (d´Orbigny, 1847) 59 Rogicka joannae Vieira, Gordon, Souza & Haddad, 2010 88 Pelogenia kinbergi (Hansen, 1882) 63 Siratus formosus (Sowerby II, 1841) 49 Pawsonaster parvus (Perrier, 1881) Petromica sp. Pleurotomella aguayoi (Carcelles, 1953) Plicatula gibbosa Lamarck, 1801 Polycarpa sp. Processa guyanae Holthuis, 1959 Protosuberites sp. Prunum fulminatum (Kiener, 1841) Prunum martini (Petit de la Saussaye, 1853) Pseudopaguristes calliopsis (Forest & Saint Laurent, 1968) Pteria hirundo (Linnaeus, 1758) Puellina sp. Pylopagurus discoidalis (A. Milne Edwards, 1880) Pyura sp. Raspailia (Raspaxilla) bouryesnaultae Lerner, Carraro & van Soest, 2006 Reptadeonella sp. Rhynchozoon sp. 129 99 28 55 57 Scrupocellaria sp. Smittinidae sp.1 Smittinidae sp.2 Sphenotrochus auritus Pourtalès, 1874 110 Spinolambrus pourtalesii (Stimpson, 1871) 27 Steginoporella connexa Harmer, 1900 70 51 52 71 56 84 72 111 30 85 89 Spinosipella agnes Simone & Cunha, 2008 Stenocionops spinosissimus (de Sassure, 1857) Stylocidaris lineata Mortensen, 1910 Stylopoma sp. Synalpheus brooksi Coutiére, 1909 Thylacodes aff. decussatus (Gmelin, 1791) Timea sp. Topsentia sp. Tretocidaris bartletti (A, Agassiz, 1880) Tribrachium schmidtii Weltner, 1882 Turritella hookeri Reeve, 1849 81 86 86 40 75 58 82 73 105 87 70 48 28 33 105 27 47 Author list 130 Author list Introduction to the catalogue General features of rhodolith beds Sampling methods and identified taxa Frederico Tapajós de Souza Tâmega. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793000, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Marcia Abreu de Oliveira Figueiredo. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793- 000, Rio de Janeiro, RJ, Brazil.; Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, CEP 22.460- 030, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Characterization of the Peregrino Oil Field Ricardo Coutinho. Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Oceanografia, Rua Kioto 253, CEP 28.930-000, Arraial do Cabo, RJ, Brazil. E-mail: [email protected] Fernanda Siviero. Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Oceanografia, Rua Kioto 253, CEP 28.930-000, Arraial do Cabo, RJ, Brazil. E-mail: [email protected] Phylum Rhodophyta Frederico Tapajós de Souza Tâmega. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793000, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Alexandre Bigio Villas-Boas. Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, CEP 22.460- 030, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Marcia Abreu de Oliveira Figueiredo. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793- 000, Rio de Janeiro, RJ, Brazil; Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, CEP 22.460131 030, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Phylum Porifera Fernando Coreixas de Moraes. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Laboratório de Poríferos, Quinta da Boa Vista s/n, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Phylum Annelida, Class Polychaeta Paulo Cesar Paiva. Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório de Polychaeta, CCS - Bloco A, Sala A0-108, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Raquel Meihoub Berlandi. Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório de Polychaeta, CCS - Bloco A, Sala A0-108, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Ana Claudia dos Santos Brasil. Universidade Federal Rural do Rio de Janeiro, Instituto de Biologia, Departamento de Biologia Animal, Laboratório de Annelida Polychaeta, BR 465 Km 7, Seropedica, CEP 23.851-970RJ, Brazil. E-mail: [email protected] Phylum Arthropoda, Subphylum Crustacea Cristiana Silveira Serejo. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Quinta da Boa Vista s/n, São Cristóvão, CEP 20.940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Irene Azevedo Cardoso. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Quinta da Boa Vista s/n, São Cristóvão, CEP 20.940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Phylum Mollusca, Bryozoa and Brachiopoda Paula Spotorno de Oliveira. Laboratório de Malacologia, Museu Oceanográfico “Prof. Eliézer de Carvalho Rios” (MORG), Universidade Federal do Rio Grande Rio Grande – FURG, Rua Heitor Perdigão n° 10, Centro, CEP 96.200-580, Rio Grande, RS, Brazil. E-mail: [email protected] 132 Phylum Echinodermata Carlos Renato Rezende Ventura. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Quinta da Boa Vista s/n, São Cristóvão, CEP 20.940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Phylum Chordata, Subphylum Tunicata (Urochordata), Class Ascidiacea Luciana Vieira Granthom Costa. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Laboratório de Poríferos, Quinta da Boa Vista s/n, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Frederico Tapajós de Souza Tâmega. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793- 000, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] 133 Tables 134 Sampling stations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 135 Table 1: Sampling data from study sites of PEMCA Project. Date of sampling Depth 03/06/2010 03/06/2010 02/06/2010 06/11/2010 07/04/2011 03/06/2010 07/04/2011 03/06/2010 03/06/2010 03/06/2010 02/06/2010 03/06/2010 05/04/2011 05/04/2011 101m 103m 95m 97m 100m 98m 103m 100m 100m 101m 94m 102m 100m 105m 06/04/2011 05/04/2011 05/11/2010 06/04/2011 05/11/2010 06/04/2011 05/11/2010 103m 100m 98m 100m 105m 100m 106m 06/04/2011 05/11/2010 6/04/2011 05/11/2010 04/11/2010 05/04/2011 04/11/2010 07/04/2011 04/11/2010 07/04/2011 04/11/2010 07/04/2011 100m 99m 100m 100m 103m 100m 103m 99m 100m 100m 101m 101m Initial Time 13:35 14:43 16:30 11:45 15:15 7:16 16:20 9:00 10:50 15:45 13:00 12:30 8:50 12:27 10:00 10:50 13:26 13:53 13:12 8:34 15:25 16:33 17:20 10:55 14:45 15:17 08:30 18:00 15:30 16:15 11:40 10:05 15:00 12:54 16:30 11:03 Latitude Longitude Duration of trawling Sampler 23º19'647"S 23º20'829"S 41º14'370"W 41º16'005"W 20 minutes 18 minutes Dredge Dredge 23°18,1´S 041°15,9´W 20 minutes 23°18,5´S 041°17,0´W 23º18'039"S 23º17'776"S 23º20'704"S 23º17'767"S 41º15'570"W 41º14'218"W 41º16'556"W 41º17'743"W 23°19,7´S 041°14,4´W 23°19,0´S 041°14,0´W 23°19,45´S 041°15,425´W 23°19,725´S 041°16,125´W 23°19,9´S 23°20,0´S 23°20,175´S 041°15,2´W 041°14,925´W 041°15,9´W 23°20,625´S 041°15,753´W 23°20,425´S 041°16,6´W 23°20´S 041°16,85´W 23°20,9´S 041°16,35´W 23°20,725´S 041°17,3´W 23°20,25´S 23°21,2´S 041°17,55´W 041°17,05´W 20 minutes Dredge and Van Veen 20 minutes 15 minutes 18 minutes 15 minutes Dredge and Van Veen Dredge Dredge Dredge and Van Veen 20 minutes Dredge and Van Veen Dredge 20 minutes Dredge and Van Veen 20 minutes 20 minutes Dredge Dredge 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes Dredge Dredge Dredge Dredge Dredge Dredge Dredge Dredge Dredge Dredge Table 2: List of Porifera taxa recorded at the Peregrino oil field. Taxon/study site #3 Axinellidae sp. 01 Clathria sp. 01 Bubaris sp. Desmacella sp. Dysidea sp. #12 01 #14 #15 #16 01 01 Haliclona sp. Ircinia strobilina Petromica sp. Protosuberites sp. 1 Protosuberites sp. 2 Raspailia (Raspaxilla) bouryesnaultae Timea sp. 1 Timea sp. 2 Topsentia sp. 01 01 01 Tribrachium schmidtii 01 01 01 01 01 01 02 01 01 01 01 01 01 01 #20 01 Eurypon sp. Myxillina sp. #18 01 Erylus sp. Mycale sp. #17 01 01 01 01 01 01 01 01 01 01 01 01 Table 3. List of Cnidaria taxa recorded at the Peregrino oil field. Taxon/study site #1 #2 #3 #5 #6 #8 #9 #14 #15 #16 #17 #18 #19 #20 #21 #22 Cladocora debilis 03 06 26 03 01 06 01 30 46 08 07 17 13 32 30 32 Coenocyathus parvulus Javania cailleti Nidalia sp.1 Nidalia sp.2 Sphenotrochus auritus 13 01 16 07 01 19 04 03 13 11 30 01 01 01 04 27 11 02 14 02 05 136 Taxon/study sites Table 4. List of Molluscan taxa recorded at the Peregrino oil field. #1 #2 Amalda josecarlosi Arene bairdii Calliostoma pulchrum Chlamys tehuelchus #5 #6 01 01 #7 02 02 Cyphoma intermedium 02 12 01 02 01 #11 #12 #13 03 Fusinus frenguellii 04 Glycymeris pectinata 02 Ischnochiton marcusi 01 01 01 09 Limopsis janeiroensis 02 Lucapina sowerbii #14 #15 01 01 01 01 06 06 01 01 03 01 13 02 01 Fenimorea sp. Lima lima #9 01 Conus clerii Ischnochiton sp. #8 01 Chaetopleura asperrima Compsodrillia cf. halliostrephis #4 01 Brachytoma rioensis Calliostoma carcellesi #3 03 01 01 01 02 01 01 01 02 01 01 01 02 02 03 03 02 08 01 03 09 03 Pleurotomella aguayoi Plicatula gibbosa 01 Pteria hirundo Prunum fulminatum 07 05 01 01 02 Spinosipella agnes 03 01 02 Thylacodes aff. decussatus 10 08 16 01 04 06 01 01 06 01 04 01 08 08 03 01 01 06 05 04 14 02 01 01 02 02 01 04 05 02 05 13 01 01 03 02 25 01 01 02 01 02 01 21 #21 #22 01 01 08 01 02 03 #20 01 01 03 #19 01 01 01 01 01 Prunum martini 137 03 07 #18 01 01 03 01 02 02 06 02 Paradentalium disparile Turritella hookeri 09 01 #17 03 Odontocymbiola macaensis Siratus formosus 01 01 Metula agassizi Octopus sp. 01 #16 01 04 01 04 04 01 05 04 03 01 03 03 01 01 01 02 02 01 01 01 01 01 08 03 10 04 16 06 12 03 01 19 01 01 Table 5. List of Polychaeta taxa recorded at the Peregrino oil field. Taxon/study sites #1 #2 #3 #8 #9 #11 #12 #14 #15 #16 #17 #19 #20 Aphrogenia alba Ceratonereis hircinicola Euarche tubifex Eunice stigmatura Glycera brevicirris Pelogenia kinbergi 01 02 01 01 03 01 03 01 01 01 01 01 01 01 01 01 01 01 01 01 Table 6. List of Crustacea taxa recorded at the Peregrino oil field. Taxon/study sites #1 #2 Accalathura crenulata 01 Allactaea lithostrata Alpheus pouang Dardanus insignis Euprognatha rastellifera Garthiope spinipes #3 01 01 05 Mesopenaeus tropicalis Moreiradromia antillensis Munida irrasa Palicus faxoni Palicus sicus Processa guyanae 01 01 17 #7 01 01 01 06 01 #8 02 #9 01 03 01 #10 01 01 #14 #15 01 03 01 01 01 11 01 04 01 12 Pseudopaguristes calliopsis Pylopagurus discoidalis Spinolambrus pourtalesii Stenocionops spinosissimus Synalpheus brooksi 04 01 02 01 03 01 #16 01 03 #17 01 01 01 #18 #19 03 01 49 01 #20 #21 01 01 01 01 01 01 #21 01 04 01 01 01 03 01 01 138 Taxon/study sites #1 Ascophora sp. Table 7. List of Bryozoan taxa recorded at the Peregrino oil field. #2 Amastigia aviculifera #4 #5 #6 #7 #8 01 Arachnopusia haywardi 01 Beania sp. Calloporidae sp. #3 Crisia sp. Malakosaria atlantica 01 05 02 01 Marcusadorea corderoi Puellina sp. Reptadeonella sp. Rhynchozoon sp. Rogicka joannae 01 01 Scrupocellaria sp. Smittinidae sp.1 Smittinidae sp.2 Steginoporella connexa Stylopoma sp. 01 Taxon/study site 02 01 02 02 03 03 01 01 02 13 02 18 01 01 02 02 01 02 02 01 01 01 04 03 01 01 02 02 08 01 06 #14 #15 01 02 03 01 02 01 02 11 06 03 11 07 02 01 #12 01 01 07 05 34 01 01 02 05 18 #16 #17 #18 #19 01 01 02 06 01 02 03 06 #20 #21 01 01 10 01 05 01 01 01 01 05 01 03 04 02 16 Table 8. Brachiopoda taxon recorded at the Peregrino oil field. Argyrotheca cf. cuneata 139 05 04 02 #11 01 01 Mollia elongata #10 01 Cellaria subtropicalis Celleporaria albirostris #9 05 #22 02 02 01 02 02 04 18 01 03 13 #1 #3 #5 #6 #7 #8 #9 #11 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 14 15 17 19 17 22 05 05 01 81 41 06 08 17 27 07 13 29 01 03 Table 9. List of Echinodermata taxa recorded at the Peregrino oil field. Taxon/study sites #1 #2 #3 Allostichaster capensis 01 02 02 Amphioplus albidus Amphipholis squamata #4 #7 #8 05 Amphiura muelleri Cidaris abyssicola Clypeaster subdepressus Comasteridae Echinaster (Othilia) brasiliensis Eucidaris tribuloides 01 Holothuria (Vaneyothuria) lentiginosa Luidia ludwigi scotti Marthasterias glacialis 01 Ophioderma divae Ophiomyxa flaccida 03 02 01 02 01 03 01 01 02 01 Pawsonaster parvus Stylocidaris lineata Tretocidaris bartletti 01 02 2 01 #14 #15 #16 01 01 01 01 01 02 02 02 01 01 02 01 02 02 01 01 02 01 06 08 #11 01 01 Ophioplax clarimundae Ophiothrix angulata #10 03 Amphiura flexuosa Amphiura kinbergi #9 1 02 01 03 02 02 03 03 05 5 05 03 05 01 01 01 #20 01 02 02 2 1 07 #21 #22 01 01 01 01 01 01 01 01 01 01 05 02 04 02 05 03 #19 01 01 02 01 #18 01 03 01 01 #17 03 17 02 2 4 06 04 03 05 03 01 01 02 01 01 Table 10. List of Ascidiacea taxa recorded at the Peregrino oil field. Taxon/study site #3 #4 #14 #15 #19 #20 #21 #22 Polycarpa sp. 03 01 01 01 02 03 03 18 Pyura sp. 01 02 02 140