REVESTIMENTOS MULTIFUNCIONAIS A BASE DE CARBONO APLICADOS EM COMPRESSORES HERMÉTICOS SEM ÓLEO. José Daniel Biasoli de Mello Laboratório de Tribologia e Materiais – Faculdade de Engenharia Mecânica Universidade Federal de Uberlândia, Brazil Laboratório de Materiais – Faculdade de Engenharia Mecânica Universidade Federal de Santa Catarina, Brazil COLLABORATORS: Aloísio Nelmo Klein - LabMat - UFSC Andreas Polycarpou - UIUC - TAMU. Cristiano Binder - LabMat - UFSC Diego Salvaro - UFSC Gisele Hannes - LabMat - UFSC Henara Lilian Costa - L. T. M. - U.F.U Luciano Castro Lara - UFU-UFES Marcelo Braga dos Santos U.F.U. Marcio Silverio - EMBRACO S A Milena Barbosa Vellanga - UFSC Nicholaos G. Demas - ANL Pedro Shioga - UFSC Roberto Binder - EMBRACO S A Acknowledgements : The author acknowledge the following agencies for funding this research: Fulbright; CNPq, BNDES, FINEP, FAPEMIG and CAPESProex (Brazil) as well as Whirlpool/Embraco. Hermetic compressor?? Refrigeration: Home energy consumption 17.3% United States Environmental Protection Agency, Partnerships for Home Energy Efficiency Report 47% Programa Nacional de Conservação de Energia Elétrica, Pesquisa de Posse de Equipamentos e Hábitos de Uso – Ano Base 2005, Classe Residencial, Relatório Brasil Refrigeration: Commercial energy consumption USA Commercial energy consumption = 0.719 Quad = 208.24 GWh Navigant Consulting Inc, Energy savings potential and R&D opportunities for commercial refrigeration – Final Report, September 2009, 211 pages. Any improvement in the efficiency of the hermetic compressor may have a substantial impact on the global energy balance and, as a consequence, on the environment. The refrigeration industry has moved on from CFC based refrigerants such as R-12 to environmentally friendly HFC based refrigerants like R134a and more recently to the harmless isobutene R600a. Refrigerant CFC R12 HCFC R22 HFCR 134a Propane R230 Butane R600 Isobutane R600a Life Time ODP HGWP (years) 120 15 16 Months Weeks < 1 Week 1 <1 0 0 0 0 Toxicity Air Flammability 7100 TLV= 1000ppm 1500 3200 AEL= 1000 ppm <5 Low < 5 Slightly anaesthetic - TLV= 800ppm <0.01 Slightly anaesthetic - TLV= ND LEL UEL Volume % Not flammable Not flammable 2.1 9.5 1.8 8.5 1.8 8.5 ODP = Ozone Depletion Potential - HGWP = Halocarbon Global Warming Potential - TLV= Threshold limit value AEL = Acceptable exposure limit - LEL = Lower explosive limit - UEL = Upper explosive limit Moreover, due to miscibility issues with HFC refrigerants, the compressor lubricants have also changed from mineral type lubricant to synthetic polyolester (POE) and polyalkylene glycol (PAG) lubricants. ARLTERNATIVE REFRIGERANT & ARLTERNATIVE LUBRICANTS ⇓ Increase in severity of tribological contacts + Smaller clearances and increased speeds + Miscibility oil – refrigerant / insulation + Limited lubrication: boundary and mixed lubrication regimes ⇓ TOWARDS OIL-LESS COMPRESSORS SOLID LUBRICATION AND SOLID LUBRICANTS Whirlpool-Embraco:Brazilian Compressor Company Factories in 5 countries 38,000,00 compressors/year 1+ compressor/second 23% global market share 1/4 refrigerators worldwide uses Embraco compressors 80 countries 12000 direct employees 500 people R&D Strong cooperation with Universities High complexity Life > 10 years (warranty) Tidy tolerances Oil viscosity: 5-10 Iso On -off Circular Motion Single speed Many tribological contacts Oil for lubrication Incremental 1998 1974 Fullmotion Circular Motion Variable speed Many tribological contacts Oil for lubrication On -off Circular Motion Single speed Many tribological contacts Oil for lubrication ? Paradigm shift ⇓ Oil Less However …. Mechanical Systems 30% Lubrication and lubricants 20% Others 10% Materials 40% Jost, H.P.; Tribology-Origin and Future; Wear, 136, (1990) 1-17. WiseMotion the world’s first oil-free compressor for home appliances WISEMOTION 80+ patents Linear Motion Variable displacement Single tribological contact NO oil for lubrication WISEMOTION the world’s first oil-free compressor for home appliances free up to 20 liters of cabinet space. new designs and architectures for refrigerators top efficiency compressor complies with some of today's strictest efficiency regulations less temperature variation healthier food. WISEMOTION the world’s first oil-free compressor for home appliances Screening commercially available coatings: SUBSTRATE COATING •Aluminun •Anodyzed Al •Al12%Si •Al 6351-T6 •Al 6351-T6 Anodized •1020 Steel •Gray cast iron • Sintered iron Family A DLC B DLC C Layered solid D Composite (metal) E Polymer (composite) F Polymer (composite) G Ceramic H Polymer I DLC J Composite (polymer) H Composite (polymer) Material MeC:DLC A:CH Me:MoS2 NiP + PTFE PTFE + Polyamide Polyamide imide + graphite + PTFE Anodyzed Al PTFE A:CH MoS2 Organic Matrix MoS2 Inorganic Matrix B- AÇO 7 15 74 C-SINTER C-FoFo C-AlSi C-Al_T6 C-AÇO D-SINTER D-FoFo D-AlSi D-Al_T6 D-AÇO F A-SINTER A-FoFo A-AÇO E-SINTER E-FoFo E-Al-Ano E-Al_T6 E-AlSi E-AÇO B-FoFo 00 50 Coeficiente de atrito 0.5 B-Al_T6 0 1 76 50 0.1 E-Al_T6 E-AlSi E-AÇO B-FoFo B-Al_T6 B- AÇO E-FoFo E-Al-Ano A-AÇO E-SINTER Durabilidade ( N.m ) 68 0.8 0.09 0.08 00 36 0.2 0.2 10 30 10 0.09 100 A-FoFo 0.8 0.08 0.08 0.5 74 77 157 0.04 0.06 1 2 0.09 0.04 C-SINTER 0.08 C-FoFo 1000 C-AlSi C-Al_T6 C-AÇO D-SINTER D-FoFo D-AlSi D-Al_T6 D-AÇO F A-SINTER 0 11 0.06 50 0.10 7 66 0.9 77 0.08 10 20 50 30 40 50 Po t Ca enci al r de Co ga Co efi nta ci e to nte de atr i to 60 10 10 0 15 0 Te mp o( mi n) 20 0 25 0 30 0 35 0 D mm 10A - 1 (Al + 6m m Al 2O -1 0m 3+M in o pa S2 v tam er ar ni z) -7 N( 5N ) Coeficiente de atrito Friction Coefficient 0 0 0.15 73 33 0.10 0.08 0.13 0.06 00 10 0.15 0.51 0.06 0.13 47 38 0.50 761 0.1 0.55 0.08 0.9 667 65 28 De Mello et al, Unpublished 0.13 0 10 110 Durabilidade 2 248 0.12 1 31 0.10 0.59 0 00 10 en c Po t 0.14 8 24 ia l do Ca co r ga ntat (N o (m ) V) / 10000 1 29 0.60 1 0.13 0.13 0.13 Coeficiente de atrito 0 0.4 68 0 0.1 0.2 0.3 0.4 fic 0.08 5000 0.09 ) 0.12 0.13 Co e 1030 Load Cell .m 0.14 3847 3600 0.50 10 0.55 (N 0.10 0.3 O Ç -A T6 B l_ -A Fo B o -F O B Ç i -A E lS -A E T6 l_ -A no E l-A o -A oF E -F R E TE O IN Ç -S E -A o A oF -F R A TE F IN -S A 0.1 0.5 O Ç -A D T6 l_ i -A S l D -A o D oF -F R D TE IN O Ç -S D -A C T6 l_ i -A lS C -A o C oF -F R C TE IN 0.13 0.60 de da ili ab ur 0.2 311 0.6 D 0.3 -S C 0.0 291 0.5 0.6 to 0.5 2865 tr i 0.6 ranking of the available coatings; 0.1 development of methodology to characterize coatings; proprietary knowhow . 0.0 0.2 de a 3373 0.4 ie n te 0.7 0.7 0.59 Abrasive 0.51 Sample 0.7 Screening commercially available coatings: In spite of considerable research developments, through more than 2000 published papers from the past 25 years, there exists no single solid lubricant that can provide both low friction and wear over broad use conditions, temperatures and environments. ⇓ Multi purpose Multi layer DLC Donnet, C. and Erdemir, A. , Historical developments and new trends in tribological and solid lubricant coatings, Surface and Coatings Technology 180 – 181 (2004) 76–84 Counter body Low friction Load Bearing Wear resistant Substrate Sphere, cylinder, real component DLC CrN ε, γ’, diffusion 1020, 1045 Thickness Environment Air CO2 R600a R134a Effect of the environment: 25000 20000 Counts 50 µm 15000 10000 G Sp2 D 3 Sp 5000 0 700 900 1100 1300 1500 1700 1900 2100 -1 Raman shift ( cm ) 30 Hardness ( GPa ) 25 1020 20 19 15 13.5 12 10 5 0 0 20 40 60 80 100 120 140 160 Depth ( nm ) Proprietary magnetron sputtered diode multi functional CrN - Si rich DLC on finely ground (Sq= 0.23±0.025 µm) AISI 1020 steel. De Mello, JDB, et al., Wear. v.267, p.907 - 915, 2009 Effect of the environment: High Pressure Tribometer (HTP) - simulating typical operating conditions found in air conditioning and refrigeration compressors. Actual environment ( hermetic compressors), Unlubricated , CO2 and R600a at 100 KPa environmental pressure, Reference: unpressurized tests conducted in air. , 4.5 Hz DLC-CrN coated 1020 disk 445N De Mello, JDB, Binder, R., Demas, N.G., Polycarpou, A.A., Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating. Wear. v.267, p.907 - 915, 2009 Effect of the environment: 0.35 0.30 AIR R600a CO2 0.20 0.15 0.19 0.13 0.10 0.35 0.05 0.30 0.00 R600a 0.25 CO2 AIR Environment 0.20 4.00 0.10 3.50 -18 0.15 0.05 -1 3.18 3.00 0.00 -1 -1 Wear Rate ( m . mm .s .N ).10 2.50 0 5 10 15 20 Test Time ( min ) 25 30 35 2.78 2.08 2.00 3 Friction Coefficient 0.40 0.30 0.25 Friction Coefficient 0.45 Steady-state values 1.50 1.00 0.50 0.00 R600 CO2 Air R600a CO2 20000 18000 16000 Air Virgin R600_Wear Scar CO2_Wear Scar Air_Wear Scar Counts 14000 12000 10000 8000 6000 D G 1337±1 1580±3 4000 2000 ID/IG=0.85±0.02 0 Chemically, remarkable differences between the tribo 700 no 900 1100 1300 1500 1700 1900 shift (cm ) layers formed in differentRaman atmospheres. -1 Results and discussion: R600a 1 mm 1 mm 1 mm CO2 Air Results and discussion: R600a 50 µm Air 50 µm Results and discussion: Air CO2 R600a Effect of the environment: R600a CO2 Air 0.25 Sq Spk 0.21 0.20 0.20 0.20 Sq, Spk ( µm ) 0.18 0.15 0.14 0.13 0.10 0.09 0.08 0.05 0.00 original R600a CO2 Air De Mello, JDB, Binder, R., Demas, N.G., Polycarpou, A.A., Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating. Wear. v.267, p.907 - 915, 2009 Results and discussion: Effect of the environment: R600a CO2 Air 0.5 mm 0.5 mm 0.5 mm Wear Rate ( m3.mm-1.s-1.N-1 ). 10-18 18.00 16.00 14.00 12.91 12.00 10.00 8.50 8.00 6.00 4.85 4.00 2.00 0.00 R600a CO2 Air De Mello, JDB, Binder, R., Demas, N.G., Polycarpou, A.A., Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating. Wear. v.267, p.907 - 915, 2009 Effect of the environment: 4000 α-Fe2O3 Fe3O4 3500 CO2 air R600a 3000 Counts 2500 2000 1500 1000 500 0 100 300 500 700 900 1100 1300 1500 1700 1900 2100 Raman Shift ( cm-1 ) De Mello, JDB, Binder, R., Demas, N.G., Polycarpou, A.A., Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating. Wear. v.267, p.907 - 915, 2009 Effect of the environment: 0,40 4,0 0,35 3,5 WC-Co 1 0,8 0,25 3,0 2,5 0,20 2,0 0,15 1,5 0,10 0,6 0,4 Resistência de Contato - R1 [ KOhm ] R134a Carga Normal - Fz [ Kgf ] Coeficiente de Atrito - COF [ u ] 0,30 1,0 0,2 COF 0,05 0,5 Fz R1 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0,0 20000 0 400 Tempo [ segundos ] Carga Normal 0.09 Cobertura Flexível (Latex) Deslocador Entrada de gás Durability (N.m) Amostra Porta Amostra 0.10 0.09 300 Esfera Saída de gás 0.1 350 Sensor Porta Esfera 0.12 250 0.08 Surface durability Friction Coefficient 200 371 150 0.06 0.04 216 100 Friction Coefficient 0,00 0.02 50 40 0 0.00 AIR R 600a R134a Environment Silverio, M., de Mello, J.D.B., Binder, R., Effect of refrigerant gases on the tribological behavior of a CrN-SiDLC multifunctional coating applied to soft substrate. First International Brazilian Conference on Tribology – TriboBr-2010, 2010, Rio de Janeiro – RJ, p.616 - 624 Effect of the environment: Silverio, M., de Mello, J.D.B., Binder, R., Effect of refrigerant gases on the tribological behavior of a CrN-SiDLC multifunctional coating applied to soft substrate. First International Brazilian Conference on Tribology – TriboBr-2010, 2010, Rio de Janeiro – RJ, p.616 - 624 Effect of the environment: 150 N R134a DLC AISI 304 3 Hz R134a Barbosa, M.V.; Hammes, G.; Binder, C.; Klein, A. N.; De Mello J. D. B.; Physicochemical characterization of tribolayers by Micro-Raman and GDOES analyses , Tribology International, v 81, p223-230, 2015. Effect of the environment: 150 N R134a DLC AISI 304 3 Hz Barbosa, M.V.; Hammes, G.; Binder, C.; Klein, A. N.; De Mello J. D. B.; Physicochemical characterization of tribolayers by Micro-Raman and GDOES analyses , Tribology International, v 81, p223-230, 2015. Effect of layers thickness: Proprietary magnetron sputtered diode multi functional CrN - Si rich DLC on finely ground (Sq= 0.23±0.025 µm) AISI 1020 steel. Sample Family 1 Family 2 1_A 1_B 1_C 2_A 2_B DLC Thickness (µm) 1.36±0.05 1.78±0.07 1.53±0.05 1.14±0.06 1.23±0.05 Thin CrN Thickness (µm) 2.72±0.07 3.19±0.05 3.49±0.09 1.44±0.08 1.38±0.05 E (GPa) 111 105 81 220 203 Substrate 10000 14 A1 300 9000 70 2 families Substrate CrN Thick A4 A5 A4 A4 A5 10 50 7000 200 60008 40 A4 150 5000 A5 6 30 4000 100 30004 A2 A2 A1 20 A1 50 A3 A3 20002 10 0 10002 DLC A3 8000 60 Hardness (GPa) 1µm A3 250 Critical load (N) DLC A2 Critical load LC2 12 Young'sCounts modulus (GPa) CrN Critical load LC1 E (GPa) 86 84 75 307 235 0 0 0 0 0 0 2,5 1 5 3 10 3,5 15 4 (µm) 2 Layer thickness 3 4 Load (mN) Sample 1000 2000 4,5 20 5 3000 5 25 5,5 6 4000 Raman shift (cm -1) 1µm L.O.C. Lara, J.D.B. De Mello, Influence of layer thickness on hardness and scratch resistance of Si-DLC/CrN coatings, Tribology - Materials, Surfaces & Interfaces v.6, p 168, 2012 . Effect of layers thickness: • Modified PLINT & PARTNERS TE 67 - High frequency acquisition system; LVDT; LabVIEW® - Matlab ® 3D Triboscopy Fn Load Cell Ft + - LVDT • 2D proposed by Belin-1993; • Locate microscopic tribological events and study their evolution during the test; • Information with local details as well as a global evolution of the tribological phenomena. • High spatial and temporal resolution; • 3D triboscopic map where z is the variable being measured (friction coefficient), x is the position of the counter body within each cycle (measured by an additional LVDT sensor) of test and y is the total sliding distance M. B. dos Santos, H.L. Costa, J.D.B. de Mello, Potentiality of 3D triboscopy to monitor friction and wear, Wear (2014), p.1134 - 1144. Effect of layers thickness: Thin Thick L. O. C. Lara, H. L. Costa, J. D. B. De Mello, Influence of Layer Thickness on Sliding Wear of Multifunctional Tribological Coatings, Industrial Lubrication and Tribology, (2015), v.460, p.460 - 467, Effect of layers thickness: Constant normal load L. O. C. Lara, H. L. Costa, J. D. B. De Mello, Influence of Layer Thickness on Sliding Wear of Multifunctional Tribological Coatings, Industrial Lubrication and Tribology, (2015), v.460, p.460 - 467, Effect of layers thickness: Constant normal load (a) (b) L. O. C. Lara, H. L. Costa, J. D. B. De Mello, Influence of Layer Thickness on Sliding Wear of Multifunctional Tribological Coatings, Industrial Lubrication and Tribology, (2015), v.460, p.460 - 467, Effect of layers thickness: 10.00 Shear stress (GPa) Interface shear stress Interface critical stress FilmDoctor 1.00 Thin = 50 – 100 N Indentation 0.10 0 100 200 300 400 500 Load (N) FilmDoctor Thick = 10 N Indentation L. O. C. Lara,, J. D. B. De Mello, Quantitative measurement of the interface adhesion of a multifunctional coating, Nanobioletters, (2015), in press Evolution and stability of tribolayers: Home made emulator Testing the real components Special atmosphere 350 Hz Test time: 180, 500, 1000 and 2500 h Salvaro, D et al , Genesis and stability of tribolayers in solid lubrication: case of pair DLC-STAINLESS steel, Proceedings of TriboBR2014- Second International Brazilian Conference on Tribology, November 2014, Brazil also Journal of Materials Research Technology, (2015), In press. Evolution and stability of tribolayers: Piston DLC DLC AISI 304 R134a Test time (h) Cylinder AISI 304 Test time (h) Salvaro, D et al , Genesis and stability of tribolayers in solid lubrication: case of pair DLC-STAINLESS steel, Proceedings of TriboBR2014- Second International Brazilian Conference on Tribology, November 2014, Brazil also Journal of Materials Research Technology, (2015), In press. Tribolayer thickness (µm) Evolution and stability of tribolayers: Cylinder Piston Test time (h) Salvaro, D et al , Genesis and stability of tribolayers in solid lubrication: case of pair DLC-STAINLESS steel, Proceedings of TriboBR2014- Second International Brazilian Conference on Tribology, November 2014, Brazil also Journal of Materials Research Technology, (2015), In press. Evolution and stability of tribolayers: GDOES 15 min 45 min DLC AISI 304 30 min 120 min Barbosa, M.V.; Hammes, G.; Binder, C.; Klein, A. N.; De Mello J. D. B.; Physicochemical characterization of tribolayers by Micro-Raman and GDOES analyses , Tribology International, (2015), v 81, p 223-230. Evolution and stability of tribolayers: GDOES Barbosa, M.V.; Hammes, G.; Binder, C.; Klein, A. N.; De Mello J. D. B.; Physicochemical characterization of tribolayers by Micro-Raman and GDOES analyses , Tribology International, v 81, p 223-230, 2015. γ' ε Nitride Layers: dif. CHИ® *Patent pending T (°C) P (Torr) T (h) Gas (%) Phases 550 2 1.5 90N2-9H2-1CH4 ε 570 2 4.0 20N2-80H2 γ’ 480 2 1.5 5N2-95H2 Diffusion Shioga, P., Binder, C., Klein, A.N., De Mello, J.D.B., Effect of Different Plasma Nitride Layers on the Tribological Performance of DLC Coatings, Proceedings of the Technical Conference Society of Vacuum Coaters, 2014. Chicago., 2014. Sponsored student. dif. Nitride Layers: Adhesion γ' ε 0.60 VDI 3198 + Image analysis Spalled area (mm2) 0.50 0.40 0.30 0.20 0.10 0.00 Epsilon Gamma Diffusion Shioga, P., Binder, C., Klein, A.N., De Mello, J.D.B., Effect of Different Plasma Nitride Layers on the Tribological Performance of DLC Coatings, Proceedings of the Technical Conference Society of Vacuum Coaters, 2014. Chicago., 2014. Sponsored student. Nitride Layers: Si3N4 10 Hz Durability (N.m) µ Diffusion 13,000 0.05 6000 0.12-0.1 ε 600 0.2 γ’ Nitride Layers: 14 4.00 Durability Adhesion 3.00 Durability (N.m). 103 10 2.50 8 2.00 6 1.50 4 1.00 2 0.50 0 0.00 Epsilon Gamma Delamination area-1 (1/mm2) 3.50 12 Diffusion Shioga, P., Binder, C., Klein, A.N., De Mello, J.D.B., Effect of Different Plasma Nitride Layers on the Tribological Performance of DLC Coatings, Proceedings of the Technical Conference Society of Vacuum Coaters, 2014. Chicago., 2014. Sponsored student. 8000 pistons in a unique thermal cycle EP.2294598 : "Plasma process and reactor for treating metallic pieces" Concluding Remarks: Plant in operation in Monterrey, Mexico; 600,000 compressores in 2015; 1,500,000 compressors in two years time (2017). Thank you ! [email protected] [email protected]