MINISTÉRIO DA DEFESA
EXÉRCITO BRASILEIRO
DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA
INSTITUTO MILITAR DE ENGENHARIA
CURSO DE MESTRADO EM ENGENHARIA DE TRANSPORTES
CAP FRANCISCO LOPES DE MAGALHÃES JUNIOR
CONCRETO ARMADO REFORÇADO COM FIBRAS SOB CARGAS DE IMPACTO
PARA A SEGURANÇA DE VIAS PÚBLICAS
Rio de Janeiro
2012
INSTITUTO MILITAR DE ENGENHARIA
CAP FRANCISCO LOPES DE MAGALHÃES JUNIOR
CONCRETO ARMADO REFORÇADO COM FIBRAS SOB CARGAS
DE IMPACTO PARA A SEGURANÇA DE VIAS PÚBLICAS
Dissertação de Mestrado apresentada ao Curso de
Mestrado em Engenharia de Transportes do Instituto
Militar de Engenharia, como requisito parcial para a
obtenção do título de Mestre em Ciências em Engenharia
de Transportes.
Orientadores: Prof. Luiz Antonio Vieira Carneiro, D.Sc. e
Prof. Carlos Alexandre Bastos de Vasconcellos, D.Sc.
Rio de Janeiro
2012
1
c2012
INSTITUTO MILITAR DE ENGENHARIA
Praça General Tibúrcio, 80 – Praia Vermelha.
Rio de Janeiro - RJ
CEP: 22290-270
Este exemplar é de propriedade do Instituto Militar de Engenharia, que poderá incluílo em base de dados, armazenar em computador, microfilmar ou adotar qualquer
forma de arquivamento.
É permitida a menção, reprodução parcial ou integral e a transmissão entre
bibliotecas deste trabalho, sem modificação de seu texto, em qualquer meio que
esteja ou venha a ser fixado, para pesquisa acadêmica, comentários e citações,
desde que sem finalidade comercial e que seja feita a referência bibliográfica
completa.
Os conceitos expressos neste trabalho são de responsabilidade do autor e dos
orientadores.
625.7
M188c
Magalhães Junior, Francisco Lopes de
Concreto armado reforçado com fibras sob cargas de impacto para a
segurança de vias públicas / Francisco Lopes de Magalhães Junior;
orientado por Luiz Antonio Vieira Carneiro, Carlos Alexandre Bastos de
Vasconcellos – Rio de Janeiro: Instituto Militar de Engenharia, 2012.
159 f.: il.
Dissertação (mestrado). – Instituto Militar de Engenharia. – Rio de
Janeiro, 2012.
1. Engenharia de Transportes. 2. Concreto armado. 3. Impacto
balístico. 4. Fibras de aço. I. Carneiro, Luiz Antonio Vieira. II.
Vasconcellos, Carlos Alexandre Bastos. III. Título. IV. Instituto Militar de
Engenharia.
CDD 625.7
2
INSTITUTO MILITAR DE ENGENHARIA
CAP FRANCISCO LOPES DE MAGALHÃES JUNIOR
CONCRETO ARMADO REFORÇADO COM FIBRAS SOB CARGAS
DE IMPACTO PARA A SEGURANÇA DE VIAS PÚBLICAS
Dissertação de Mestrado apresentada ao Curso de Mestrado em Engenharia de
Transportes do Instituto Militar de Engenharia, como requisito parcial para a
obtenção do título de Mestre em Ciências em Engenharia de Transportes.
Orientadores: Prof. Luiz Antonio Vieira Carneiro, D.Sc.
Prof. Carlos Alexandre Bastos de Vasconcellos, D.Sc.
Aprovada em 27 de julho de 2012 pela Banca Examinadora:
_____________________________________________________________
Prof. Luiz Antonio Vieira Carneiro, D.Sc. do IME
_____________________________________________________________
Prof. Carlos Alexandre Bastos de Vasconcellos, D.Sc. do IME
_____________________________________________________________
Profª. Maria Elizabeth da Nóbrega, D.Sc. da UERJ
_____________________________________________________________
Prof. Giuseppe Barbosa Guimarães, Ph.D. da PUC/RJ
_____________________________________________________________
Prof. Alaelson Vieira Gomes, D.Sc. do IME
Rio de Janeiro
2012
3
AGRADECIMENTOS
A Deus pela vida e pela oportunidade de estar nesse mundo aprendendo a cada
dia mais.
A minha esposa Lenise pelo companheirismo, apoio e cumplicidade durante
todos os obstáculos da vida e da carreira.
A minha sogra Márcia e ao meu sogro Ferlin pelo carinho e apoio nos momentos
de dificuldades durante o trabalho.
Aos meus orientadores Profº Dsc Carneiro e Profº Dsc Vasconcellos pelas
orientações e conselhos durante todas as fases de desenvolvimento do mestrado.
Aos companheiros do CAEx (TC Gatti, Maj Malizia, ST Cézar, 1º Sgt Lima, 2º
Sgt Marcelo Alves, 3º Sgt Santiago, 3º Sgt Machado e 3º Sgt Paiva) pelo apoio
durante os intermináveis ensaios na linha de tiro.
Aos técnicos do laboratório de concreto do IME (3º Sgt Mauro e Vanderley) pelo
apoio durante a confecção dos corpos de prova e ensaios de caracterização dos
materiais.
Ao Sr. Eng. Rodrigo Menegaz Müller, Supervisor de Assessoria Técnica/RJ da
Holcim Brasil S.A., pela doação do cimento utilizado neste trabalho.
A Sr. Carlos Rafael Vieira Guimarães do Departamento de Soluções Ambientais
da Maccaferri América Latina, pelo fornecimento das fibras de aço utilizadas neste
trabalho.
A FAPERJ pelo apoio financeiro para realização da pesquisa.
A todos os professores do IME pelo ensinamento.
Ao IME e ao Exército Brasileiro por proporcionar todas as condições para a
conclusão do mestrado.
4
SUMÁRIO
LISTA DE ILUSTRAÇÕES............................................................................................9
LISTA DE TABELAS...................................................................................................13
LISTA DE ABREVIATURAS E SÍMBOLOS ................................................................16
LISTA DE SIGLAS......................................................................................................18
1
INTRODUÇÃO ............................................................................................ 21
2
REVISÃO BIBLIOGRÁFICA ....................................................................... 26
2.1
Breve Resumo Sobre Blindagem ................................................................ 26
2.2
Conceitos Balísticos .................................................................................... 29
2.3
Munição ....................................................................................................... 30
2.3.1
Propelente ................................................................................................... 31
2.3.2
Espoleta ....................................................................................................... 32
2.3.3
Estojo ........................................................................................................... 33
2.3.4
Projéteis ....................................................................................................... 33
2.3.5
Calibre ......................................................................................................... 34
2.3.6
Calibres Utilizados ....................................................................................... 34
2.3.6.1 Calibre 9 mm ................................................................................................ 34
2.3.6.2 Calibre 7,62 mm ........................................................................................... 35
2.3.6.3 Calibre 0.50 pol ............................................................................................ 36
2.4
Efeitos de Cargas de Impacto Sobre o Concreto ........................................ 36
2.5
Reforço de Estuturas de Concreto Contra Impactos Balísticos ................... 39
2.5.1
Fibras de Aço ............................................................................................... 40
2.5.2
Fibras de Carbono ....................................................................................... 40
2.5.3
Fibras de Vidro............................................................................................. 40
2.6
Modelos de Previsão do Comprimento de Penetração................................ 41
2.6.1
Método PETRY MODIFICADO .................................................................... 41
2.6.2
Método UKAEA ............................................................................................ 42
2.6.3
Método WHIFFEN........................................................................................ 43
2.6.4
Método ACE ................................................................................................ 43
2.6.5
Método HALDAR ......................................................................................... 44
2.6.6
Método ADELI e AMIN................................................................................. 45
5
2.6.7
Método NDRC MODIFICADO ...................................................................... 45
2.6.8
Método AMMANN e WHITNEY.................................................................... 46
2.6.9
Método BRL MODIFICADA ......................................................................... 46
2.7
Estudos Existentes Sobre Cargas de Impacto em Concreto ....................... 48
2.7.1
FORRESTAL et al. (1996) ........................................................................... 48
2.7.2
FREW et al. (1998) ...................................................................................... 50
2.7.3
LUO et al. (2000) ......................................................................................... 52
2.7.4
SONG et al. (2005) ...................................................................................... 55
2.7.5
ZHANG et al. (2005) .................................................................................... 57
2.7.6
VOSSOUGHI et al. (2007) ........................................................................... 63
2.7.7
DANCYGIER et al. (2007) ........................................................................... 66
2.7.8
MOHAMED et al. (2009) .............................................................................. 69
2.7.9
SOBRAL (2011) ........................................................................................... 72
3
PROGRAMA EXPERIMENTAL .................................................................. 75
3.1
Introdução.................................................................................................... 75
3.2
Ensaios Executados .................................................................................... 76
3.2.1
Nomenclatura Adotada para as Placas........................................................ 76
3.3
Materiais Utilizados...................................................................................... 79
3.3.1
Concreto ...................................................................................................... 79
3.3.2
Barras de Aço .............................................................................................. 82
3.3.3
Fibras de Aço ............................................................................................... 84
3.3.4
Fibras de Carbono ....................................................................................... 85
3.3.5
Fibras de Vidro............................................................................................. 86
3.3.6
Resina de Imprimação ................................................................................. 87
3.3.7
Resina Epóxi ................................................................................................ 88
3.3.8
Compósito de Resina e Fibras de Carbono ................................................. 89
3.3.9
Compósito de Resina e Fibras de Vidro ...................................................... 89
3.4
Execução das Placas .................................................................................. 90
3.5
Aplicação do Reforço de Resina e Fibras.................................................... 95
3.6
Ensaios Balísticos ....................................................................................... 98
3.6.1
Projéteis Empregados................................................................................ 104
3.7
Ensaios de Tração Uniaxial nos Compósitos ............................................ 105
6
3.7.1
Ensaio de Tração CFRP ............................................................................ 105
3.7.2
Ensaio de Tração GFRP ............................................................................ 106
4
RESULTADOS DOS ENSAIOS ................................................................ 109
4.1
Resistência do Concreto à Compressão ................................................... 109
4.2
Módulo de Elasticidade do Concreto ......................................................... 112
4.3
Resultados Ensaios Compósito de Resina e Fibras de Vidro .................... 115
4.4
Resultados Ensaios Compósito de Resina e Fibras de Carbono .............. 115
4.5
Variação de Massa das Placas de Concreto ............................................. 116
4.6
Danos nas Faces Anterior e Posterior ....................................................... 119
4.7
Comprimento de Penetração e Estilhaçamento ........................................ 123
4.8
Descrição das Placas Após o Ensaio ........................................................ 128
5
ANÁLISE DOS RESULTADOS ................................................................ 135
5.1
Introdução.................................................................................................. 135
5.2
Resistência do Concreto à Compressão ................................................... 135
5.3
Módulo de Elasticidade Longitudinal do Concreto ..................................... 135
5.4
Variação de Massa das Placas de Concreto ............................................. 136
5.5
Danos nas Faces Anterior e Posterior ....................................................... 138
5.6
Comprimento de Penetração ..................................................................... 141
5.6.1
PETRY MODIFICADO apud VOSSOUGHI et al. (2007) ........................... 142
5.6.2
UKAEA apud LI et al. (2005) ...................................................................... 143
5.6.3
WHIFFEN apud LI et al. (2005) ................................................................. 144
5.6.4
Método ACE apud VOSSOUGHI et al. (2007) ........................................... 145
5.6.5
HALDAR apud VOSSOUGHI et al. (2007)................................................. 146
5.6.6
ADELI e AMIN apud LI et al. (2005)........................................................... 147
5.6.7
Método NDRC MODIFICADO apud VOSSOUGHI et al. (2007) ................ 147
5.6.8
AMMANN e WHITNEY apud LI et al. (2005) ............................................. 148
5.6.9
Método BRL MODIFICADO apud VOSSOUGHI et al. (2007) ................... 149
5.6.10 Considerações Gerais ............................................................................... 150
5.7
Comprimento de Estilhaçamento ............................................................... 153
6
CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABALHOS .......... 154
7
7
REFERÊNCIA BIBLIOGRÁFICA .............................................................. 157
8
LISTA DE ILUSTRAÇÕES
FIG. 1.1 “Após tiroteio na Linha Vermelha, polícia busca infratores fugitivos”...........22
FIG. 1.2 Barreira acústica da Linha Vermelha é alvo de tiros.................................... 23
FIG. 1.3 “Atirador entra em escola em Realengo, mata alunos e se suicida”. ........... 24
FIG. 2.1 Fuzil AR-15. ................................................................................................. 28
FIG. 2.2 FAL e Parafal. .............................................................................................. 28
FIG. 2.3 Aramas por níveis de proteção. ................................................................... 28
FIG. 2.4 Trajetória do projétil dentro do cano. ........................................................... 29
FIG. 2.5 Projétil após sair da arma com ação dos gases. ......................................... 29
FIG. 2.6 Viagem de projétil ao alvo. .......................................................................... 30
FIG. 2.7 Projétil após interagir com seu alvo. ............................................................ 30
FIG. 2.8 Partes de um cartucho................................................................................. 31
FIG. 2.9 Pólvora. ....................................................................................................... 31
FIG. 2.10 Diversos tipos de espoletas. ...................................................................... 32
FIG. 2.11 Espoletas retiradas do estojo. ................................................................... 32
FIG. 2.12 Estojos diversos......................................................................................... 33
FIG. 2.13 Projétil em deslocamento. ......................................................................... 33
FIG. 2.14 Projéteis..................................................................................................... 34
FIG. 2.15 Projéteis 9 mm. .......................................................................................... 35
FIG. 2.16 Cartuchos 7,62 mm. .................................................................................. 35
FIG. 2.17 Munição comum de 0.50 pol. ..................................................................... 36
FIG. 2.18 Penetração e destacamento no concreto. ................................................. 37
FIG. 2.19 Perfuração, destacamento e estilhaçamento no concreto. ........................ 38
FIG. 2.20 Penetração, destacamento e estilhaçamento no concreto. ....................... 38
FIG. 2.21 Estilhaçamento por punção no concreto. ................................................... 39
FIG. 2.22 Curva fc versus Kp...................................................................................... 42
FIG. 2.23 Velocidade projétil versus Penetração no concreto. .................................. 52
FIG. 2.24 Blocos ensaiados por LUO et al. (2000). ................................................... 54
FIG. 2.25 Distribuição de frequência dos ensaios por SONG et al. (2000). .............. 56
FIG. 2.26 Croqui do ensaio de impacto. .................................................................... 57
FIG. 2.27 Efeito da resistência do concreto à compressão no comprimento de
penetração dos corpos de prova de concreto ensaiados por ZHANG et al. (2005). .. 60
9
FIG. 2.28 Aspecto pós-ensaio balístico dos corpos de prova .................................... 61
FIG. 2.29 Efeito da velocidade de impacto no comprimento de penetração dos
concretos NCF90 ensaiados por ZHANG et al. (2005). ............................................. 62
FIG. 2.30 Corpo de prova após impacto. ................................................................... 63
FIG. 2.31 Armadura interna das placas de concreto. ................................................ 67
FIG. 2.32 Placa de concreto reforçada com a malha de aço. .................................... 70
FIG. 2.33 Seção transversal das placas SC1 e SW1-2. ............................................ 71
FIG. 2.34 Fibras de aço empregadas no experimento. ............................................. 72
FIG. 3.1 Adição e aditivo ao concreto. ....................................................................... 80
FIG. 3.2 Confecção das placas e corpos de prova cilíndricos. .................................. 81
FIG. 3.3 Prensa Amster de 5000 kN de capacidade do IME. .................................... 81
FIG. 3.4 Instrumentação dos corpos de prova cilíndricos. ......................................... 82
FIG. 3.5 Detalhamento das armaduras de aço. ......................................................... 83
FIG. 3.6 Formas com barras de aço para concretagem. ........................................... 84
FIG. 3.7 Geometria da fibra FF1................................................................................ 85
FIG. 3.8 Conjunto de fibras de Aço FF1. ................................................................... 85
FIG. 3.9 Rolo de folha unidirecional de fibras de carbono. ........................................ 86
FIG. 3.10 Rolo de tecido de fibra de vidro ................................................................. 86
FIG. 3.11 Componentes A e B da resina de imprimação. ......................................... 88
FIG. 3.12 Componentes A e B da resina epóxi. ........................................................ 89
FIG. 3.13 Betoneira de 320 l de capacidade. ............................................................ 90
FIG. 3.14 Formas de madeira de 30 cm x 30 cm de diferentes espessuras.............. 91
FIG. 3.15 Material pesado para concretagem. .......................................................... 91
FIG. 3.16 Sequência de execução do concreto do trabalho. ..................................... 92
FIG. 3.17 Sequência de execução do concreto com fibras. ...................................... 93
FIG. 3. 18 Concreto pronto. ....................................................................................... 93
FIG. 3.19 Equipamentos utilizados no adensamento do concreto. ............................ 94
FIG. 3.20 Corpos de prova recém-moldados com plástico na superfície. ................. 94
FIG. 3.21 Placas de concreto após a desforma. ........................................................ 95
FIG. 3.22 Etapas de execução do sistema de reforço estrutural nas placas. ............ 96
FIG. 3.23 Etapas para a execução da 2ª camada do reforço. ................................... 97
FIG. 3.24 Placas reforçadas com compósitos. .......................................................... 97
FIG. 3.25 Túnel aberto e equipamentos para o ensaio balístico. ............................ 100
10
FIG. 3.26 Mira sendo feita no túnel fechado. ........................................................... 101
FIG. 3.27 Canos e culatras. ..................................................................................... 101
FIG. 3.28 Provetes de tiro utilizados. ....................................................................... 102
FIG. 3.29 Barreira ótica. .......................................................................................... 103
FIG. 3.30 Pórtico de aço. ......................................................................................... 103
FIG. 3.31 Grampos tipo "c". ..................................................................................... 103
FIG. 3.32 Técnico do CAEx colocando pólvora no estojo. ...................................... 104
FIG. 3.33 Ensaio de tração uniaxial de corpos de prova de CFRP. ........................ 105
FIG. 3.34 Prensa de 1000 kN de capacidade utilizada no ensaio de tração uniaxial
dos compósitos de reforço....................................................................................... 106
FIG. 3.35 Prensa de 1000 kN de capacidade utilizada no ensaio de tração uniaxial
GFRP. ..................................................................................................................... 107
FIG. 3.36 Ensaio de tração uniaxial de corpos de prova de GFRP. ........................ 108
FIG. 4.1 Determinação dos comprimentos dos semi-eixos da elipse. ..................... 119
FIG. 4.2 Comportamento placas de concreto. ......................................................... 124
FIG. 4.3 Aspecto da placa de concreto CS70-38,1-FA80 após impacto de projétil de
9 mm de calibre. ...................................................................................................... 124
FIG. 4.4 Aspecto da placa de concreto CA70-38,1-FA80-FV2 após impacto balístico
de 7,62 mm de calibre. ............................................................................................ 124
FIG. 4.5 Aspecto da placa de concreto CS70-50,8-FA80-FC2 após impacto balístico
de projétil de 7,62 mm de calibre. ............................................................................ 125
FIG. 4.6 Aspecto da placa de concreto CA70-125,0-FA80 após impacto balístico de
projétil de 0.50 pol de calibre. .................................................................................. 125
FIG. 4.7 Placas de 38,1 mm. ................................................................................... 129
FIG. 4.8 Placas de 50,8 mm. ................................................................................... 130
FIG. 4.9 Placa CA70-50,8-FA80-FC2. ..................................................................... 131
FIG. 4.10 Placas de 70,0 mm. ................................................................................. 131
FIG. 4.11 Placas de 100,0 mm. ............................................................................... 132
FIG. 4.12 Placas de 125,0 mm, tiro 0.50 pol. .......................................................... 133
FIG. 4.13 Placas 150,0 mm. .................................................................................... 134
FIG. 5.1 Danos nas faces anterior e posterior (cm2), calibre de 9 mm. ................... 139
FIG. 5.2 Danos nas faces anterior e posterior (cm2), calibre de 7,62 mm. .............. 140
FIG. 5.3 Danos nas faces anterior e posterior (cm2), calibre de 0.50 pol mm. ........ 141
11
FIG. 5.4 Valores de xp experimental e teórico segundo PETRY MODIFICADO apud
VOSSOUGHI et al. (2007). ...................................................................................... 143
FIG. 5.5 Valores de xp experimental e teórico segundo UKAEA apud LI et al.
(2005)..... ................................................................................................................. 144
FIG. 5.6 Valores de xp experimental e teórico segundo WHIFFEN apud LI et al.
(2005). ..................................................................................................................... 145
FIG. 5.7 Valores de xp experimental e teórico segundo ACE apud VOSSOUGHI et al.
(2007). ..................................................................................................................... 146
FIG. 5.8 Valores de xp experimental e teórico segundo HALDAR apud VOSSOUGHI
et al. (2007). ............................................................................................................ 147
FIG. 5.9 Valores de xp experimental e teórico segundo NDRC MODIFICADO apud
VOSSOUGHI et al. (2007). ...................................................................................... 148
FIG. 5.10 Valores de xp experimental e teórico segundo AMMANN e WHITNEY apud
LI et al. (2005). ........................................................................................................ 149
FIG. 5.11 Valores de xp experimental e teórico segundo BRL MODIFICADO apud
VOSSOUGHI et al. (2007). ...................................................................................... 150
FIG. 5.12 Valores de xp experimental relativo ao calibre do projétil em função da
velocidade de impacto do projétil. ........................................................................... 152
FIG. 5.13 Valores de xp experimental relativo à espessura da placa em função da
velocidade de impacto do projétil. ........................................................................... 152
12
LISTA DE TABELAS
TAB. 2.1 Nível de proteção do sistema de blindagem quanto ao impacto. ............... 27
TAB. 2.2 Formulações existentes para previsão do comprimento de penetração. .... 47
TAB. 2.3 Resultados dos alvos cilíndricos de argamassa 30 cm e 13,5 MPa. .......... 48
TAB. 2.4 Resultados dos alvos cilíndricos de argamassa 48 cm e 19,5 MPa. .......... 49
TAB. 2.5 Resultados dos alvos cilíndricos de argamassa 41 cm e 21,6 MPa. .......... 49
TAB. 2.6 Resultados dos alvos cilíndricos de concreto 51 cm e 62,8 MPa. .............. 50
TAB. 2.7 Resultados dos alvos cilíndricos de concreto 91 cm e 51,0 MPa. .............. 50
TAB. 2.8 Dados de penetração de projéteis com diâmetro de 20,3 mm. .................. 51
TAB. 2.9 Dados de penetração de projéteis com diâmetro de 30,5 mm. .................. 52
TAB. 2.10 Traço das misturas utilizadas. .................................................................. 53
TAB. 2.11 Resultados dos impactos nos blocos de concreto. ................................... 55
TAB. 2.12 Composição dos concretos. ..................................................................... 58
TAB. 2.13 Efeito da resistência à compressão na penetração e no diâmetro da
cratera. ...................................................................................................................... 59
TAB. 2.14 Efeito da fibra de aço na penetração e no diâmetro da cratera. ............... 59
TAB. 2.15 Efeito da temperatura de cura na penetração e no diâmetro da cratera. .. 60
TAB. 2.16 Resultado do experimento. ....................................................................... 65
TAB. 2.17 Resultado do experimento. ....................................................................... 68
TAB. 2.18 Descrição das placas ensaiadas. ............................................................. 70
TAB. 2.19 Resultados de comprimento de penetração nas placas ensaiadas. ......... 71
TAB. 2.20 Concretos grupo de 30 MPa. .................................................................... 73
TAB. 2.21 Concretos grupo de 70 MPa. .................................................................... 74
TAB. 2.22 Concretos grupo de 90 MPa. .................................................................... 74
TAB. 3.1 Resumo dos corpos de prova confeccionados. .......................................... 76
TAB. 3.2 Placas de concreto simples ensaiadas. ...................................................... 77
TAB. 3.3 Placas de concreto armado ensaiadas. ...................................................... 78
TAB. 3.4 Composição do concreto dos corpos de prova (fc = 70 MPa). .................... 79
TAB. 3.5 Distribuição das barras por espessura de placa. ........................................ 82
TAB. 3.6 Especificações nominais das barras de aço. .............................................. 83
TAB. 3.7 - Especificações do fabricante das fibra de aço Wirand FF1. ..................... 84
TAB. 3.8 Especificações da folha unidirecional de fibras de carbono da RheoSet. ... 86
13
TAB. 3.9 Especificações do tecido bidirecional de fibras de vidro. ............................ 87
TAB. 3.10 Especificações da resina de imprimação. ................................................. 87
TAB. 3.11 Especificações da resina epóxi................................................................. 88
TAB. 3.12 Placas impactadas com 9 mm. ................................................................. 98
TAB. 3.13 Placas impactadas com 7,62 mm. ............................................................ 99
TAB. 3.14 Placas impactadas com 0.50 pol. ........................................................... 100
TAB. 3.15 Características do projéteis utilizados. ................................................... 104
TAB. 4.1 Resultados de fc concretos sem fibras de aço. ........................................ 109
TAB. 4.2 Resultados de fc concretos com fibras de aço. ........................................ 110
TAB. 4.3 Resultados do Ec concretos sem fibras de aço. ....................................... 112
TAB. 4.4 Resultados do Ec concretos com fibras de aço. ....................................... 113
TAB. 4.5 Propriedades do compósito de resina e fibras de vidro. ........................... 115
TAB. 4.6 Propriedades do compósito de resina e fibras de carbono. ...................... 116
TAB. 4.7 Variação percentual de massa nas placas de 38,1 mm. .......................... 116
TAB. 4.8 Variação percentual de massa nas placas de 50,8 mm. .......................... 117
TAB. 4.9 Variação percentual de massa nas placas de 70,0 mm. .......................... 117
TAB. 4.10 Variação percentual de massa nas placas de 100,0 mm. ...................... 118
TAB. 4.11 Variação percentual de massa nas placas de 125,0 mm. ...................... 118
TAB. 4.12 Variação percentual de massa nas placas de 150,0 mm. ...................... 119
TAB. 4.13 Danos nas faces anterior e posterior das placas de 38,1 mm. ............... 120
TAB. 4.14 Danos nas faces anterior e posterior das placas de 50,8 mm. ............... 120
TAB. 4.15 Danos nas faces anterior e posterior das placas de 70,0 mm. ............... 121
TAB. 4.16 Danos nas faces anterior e posterior das placas de 100,0 mm. ............. 122
TAB. 4.17 Danos nas faces anterior e posterior das placas de 125,0 mm. ............. 122
TAB. 4.18 Danos nas faces anterior e posterior das placas de 150,0 mm. ............. 123
TAB. 4.19 Comprimentos de penetração e estilhaçamento placas de 38,1 mm. .... 125
TAB. 4.20 Comprimentos de penetração e estilhaçamento placas de 50,8 mm. .... 126
TAB. 4.21 Comprimentos de penetração e estilhaçamento placas de 70,0 mm. .... 127
TAB. 4.22 Comprimentos de penetração e estilhaçamento placas de 100,0 mm. .. 127
TAB. 4.23 Comprimentos de penetração e estilhaçamento placas de 125,0 mm. .. 128
TAB. 4.24 Comprimentos de penetração e estilhaçamento placas de 150,0 mm. .. 128
TAB. 5.1 Comprimento de penetração médio nas placas. ...................................... 142
TAB. 5.2 Valores de razão (xp teórico/xp experimental) média dos modelos. ..................... 151
14
TAB. 5.3 Valores de comprimento de estilhaçamento (xe). ..................................... 153
15
LISTA DE ABREVIATURAS E SÍMBOLOS
ABREVIATURAS
AAR
a/c
ARI
CA
CAR
CFRP
CP
CS
d
Dmax
Ec
Eci
FA
FAL
fc
FC
FV
G
GFRP
he
hs
I
Kp
m
N
t
v
Vi
Vr
xp
xp exp/d
xp exp/t
xp, med
xe
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Argamassa de alta resistência.
Fator água-cimento.
Alta resistência inicial.
Concreto armado.
Concreto de alta resistência.
Carbon Fiber Reinforced Polymer.
Cimento Portland.
Concreto simples.
Diâmetro do projétil.
Dimensão máxima do agregado graúdo.
Módulo de elasticidade do concreto.
Módulo de deformação tangente inicial do concreto.
Fibra de aço.
Fuzil automático leve.
Resistência à compressão do concreto.
Fibra de carbono.
Fibra de vidro.
Parâmetro adimensional.
Glass Fiber Reinforced Polymer.
Espessura para que não ocorra perfuração.
Espessura para que não ocorra estilhaçamento.
Parâmetro adimensional.
Coeficiente dependente da resistência à compressão do concreto.
Massa do projétil.
Fator de ponta do projétil.
Espessura da placa de concreto.
Velocidade do projétil.
Velocidade inicial do projétil.
Velocidade residual do projétil após a perfuração.
Comprimento de penetração.
Comprimento de penetração experimental relativo à bitola do projétil.
Comprimento de penetração experimental relativo à espessura da placa.
Comprimento de penetração médio.
Comprimento de estilhaçamento.
16
SIMBOLOS
ρs
ρ
Δm
ᴓ
–
–
–
–
Taxa geométrica de armadura.
Densidade do material.
Perda percentual de massa.
Bitola da barra de aço.
17
LISTA DE SIGLAS
ABNT
ACE
BRL
CAEx
FAPERJ
IME
NDRC
UKAEA
Associação Brasileira de Normas Técnicas.
Army Corps of Engineers.
Ballistic Research Laboratory.
Centro de Avaliação do Exército.
Fundo de Amparo à Pesquisa do Estado do Rio de Janeiro.
Instituto Militar de Engenharia.
National Defense Research Committee.
United Kingdom Atomic Energy.
18
RESUMO
Este trabalho teve por objetivo estudar o comportamento de concretos simples ou
armado submetidos a cargas de impacto de projéteis e verificar sua viabilidade de
emprego em vias públicas como barreiras de proteção. Para tal, elaborou-se um
programa experimental que contemplou ensaios balísticos em 110 placas quadradas
de 30 cm de dimensão de concretos de resistência média à compressão de 70 MPa
com diferentes composições e espessuras. Os parâmetros que foram variados neste
programa experimental foram a espessura das placas (38,1 mm, 50,8 mm, 70,0 mm,
100,0 mm, 125,0 mm e 150,0 mm), o calibre (7,62 mm, 9 mm e 0.50 pol) e a
velocidade de impacto dos projéteis (v = 419,7 m/s a 906,7 m/s), a taxa de armadura
interna de barras de aço (0% ou cerca de 1,35%), a quantidade das fibras de aço (0
kg/m3 ou 80 kg/m3), o número de camadas (0, 1 ou 2) e o tipo de fibras (vidro ou
carbono) do compósito de reforço. Todas as placas foram submetidas a apenas um
tiro próximo da sua região central, com ângulo de impacto igual a 90o.
Concluiu-se que, sob o impacto a altas velocidades de projéteis com calibres
utilizados neste trabalho, o concreto armado com fibras de aço e reforçado com
compósito de resina e fibras de carbono ou de vidro pode resistir à perfuração ou ao
estilhaçamento, o que o torna uma boa alternativa para o uso em barreiras de
proteção em vias públicas.
19
ABSTRACT
This work aimed to study the behavior of plain or reinforced concrete impacted by
projectiles and verify its viability for using on public roads as protection barriers. To
this end, it was conducted an experimental program which included ballistic tests on
110 (one hundred and ten) 30 cm square concrete plates with average compressive
strength of 70 MPa and with different mix and thicknesses. The variables were the
thickness of the plates (38.1 mm, 50.8 mm, 70.0 mm, 100.0 mm, 125.0 mm to 150.0
mm), the caliber (7,62 mm, 9 mm or 0.50 inch) and the impact velocity of the
projectile (v = 419,7 m/s to 906,7 m/s), the amount of internal reinforcement steel bar
(0% or about 1.35 %), the amount of steel fibers (0 kg/m3 to 80 kg/m3), the number of
layers (0, 1 or 2) and the type of fibers (glass or carbon) of the composite. All plates
were subjected to a single shot near its central region with an 90° angle of impact.
It was concluded that, under the impact of high speed projectiles, the steel fiber
reinforced concrete strengthened with carbon or glass fiber reinforced polymer can
resist perforation or scabbing, which makes it a good alternative to the use in
protective barriers on public roads.
20
1 INTRODUÇÃO
A indústria da construção civil utiliza constantemente o concreto como material
empregado para diversos fins devido à facilidade com que elementos estruturais
podem ser executados, numa variedade de formas e tamanhos, além de possuir um
bom desempenho estrutural e durabilidade.
Na área de infra-estrutura de transporte, o concreto tem uma participação muito
marcante, quer seja como revestimento, obras de arte corrente (meio-fio, sarjetas,
bueiros, caixas de passagem e dispositivos de drenagem em geral), obras de arte
especiais (pontes, passarelas, túneis, viadutos e pontilhões), defensas de concreto,
guaritas de segurança, instalações de apoio ou dispositivos de segurança às vias.
Assim o seu estudo aprofundado justifica-se no que se refere ao seu emprego em
tais obras de infra-estrutura.
Durante a sua vida útil, qualquer estrutura de concreto empregada em infraestrutura de transportes está sujeita a cargas de impacto, que podem ser oriundas
de colisão de veículos, impactos ou quedas de cargas içadas ou impactos balísticos
(tiro de armas de baixo calibre). Esta realidade é bastante verificada nos grandes
centros. Devido a isso, há a necessidade de estudar e avaliar a resistência do
concreto a tais carregamentos.
Dentro da limitação que cada material apresenta, o concreto possui grande
resistência à compressão e baixa resistência à tração, sendo necessária a adição de
outros materiais na sua composição para garantir uma maior resistência e atender,
além da função estrutural, a de segurança e proteção nas vias públicas.
Além da função de segurança, o reforço do concreto contribui para sua
durabilidade, pois o reforço diminui a necessidade de reparos constantes nas
estruturas que são ocasionadas por possíveis carregamentos de impactos que
deterioram as estruturas das vias e diminuem a sua vida útil.
A cidade do Rio de Janeiro possui diversos problemas de segurança pública. A
violência urbana e os constantes tiroteios em vias públicas, escolas e áreas
residenciais tem ocorrido com certa frequência.
21
FIG. 1.1 “Após tiroteio na Linha Vermelha, RJ, polícia busca infratores fugitivos”,
24/05/12.
Disponível em: <http://g1.globo.com/rio-de-janeiro/noticia/2012/05/apos-tiroteio-nalinha-vermelha-rj-policia-busca-infratores-fugitivos.html>
Acessado em: Junho, 2012.
As reportagens retratam uma amostra de acontecimentos localizados na cidade
do Rio de Janeiro, que podem demonstrar o problema da violência urbana:
-“Barreiras acústicas na Linha Vermelha já têm marcas de tiros” (06/05/10 http://g1.globo.com/rio-de-janeiro/noticia/2010/05/barreiras-acusticas-na-linhavermelha-ja-tem-marcas-de-tiros.html);
-“Muro que separa favela das vias no Rio já foi depredado” (07/05/10 http://noticias.limao.com.br/geral/ger158687.shtm);
-“Tiroteio fecha vias no subúrbio do Rio” (07/10/10 - http://g1.globo.com/riode-janeiro/noticia/2010/10/tiroteio-fecha-vias-no-suburbio-do-rio.html);
-“Homens fazem arrastão e trocam tiros com PMs na Avenida Brasil”
(03/12/10
-
http://ultimosegundo.ig.com.br/brasil/rj/homens+fazem+arrastao+e+trocam+tiros+co
m+pms+na+avenida+brasil/n1237847817896.html);
-“Record flagra tiroteio em ruas da zona norte do Rio” (24/01/11 http://videos.r7.com/record-flagra-tiroteio-em-ruas-da-zona-norte-dorio/idmedia/f0442ee7cdf22ea13cead1e05d125264.html);
22
-“Tiroteio assusta motoristas em vias expressas do Rio” (02/06/11 http://videos.r7.com/tiroteio-assusta-motoristas-em-vias-expressas-dorio/idmedia/4de7833792bbb54508258e30.html);
-“Tiroteio causa pânico na Avenida Dom Hélder Câmara” (19/10/11 http://rionews.ws/?p=10220);
-“Carro da PM é alvo de tiros na Avenida Brasil, no RJ, diz polícia” (10/02/12
-
http://g1.globo.com/rio-de-janeiro/noticia/2012/02/carro-da-pm-e-alvo-de-tiros-na-
avenida-brasil-no-rj-diz-policia.html);
-“A difícil arte de andar pelas ruas do Rio de Janeiro” (07/03/12 http://curtacronicas.com/2012/03/07/a-dificil-arte-de-andar-pelas-ruas-do-rio-dejaneiro/);
-“Após tiroteio na Linha Vermelha, RJ, polícia busca infratores fugitivos”
(24/05/12 - http://g1.globo.com/rio-de-janeiro/noticia/2012/05/apos-tiroteio-na-linhavermelha-rj-policia-busca-infratores-fugitivos.html).
FIG. 1.2 Barreira acústica da Linha Vermelha é alvo de tiros.
Disponível em: <http://g1.globo.com/rio-de-janeiro/noticia/2010/05/barreirasacusticas-na-linha-vermelha-ja-tem-marcas-de-tiros.html>
Acessado em: Junho, 2012.
Devido a isso, o governo e a sociedade estão despertando a preocupação com a
segurança e tem buscado soluções para amenizar ou neutralizar os efeitos deste
23
problema, pois as vias públicas são locais utilizados por pessoas, e devem ter sua
segurança garantida.
O governo do estado do Rio de Janeiro, no intuito de buscar soluções para o
problema da violência nas áreas urbanas, através da Fundação de Amparo à
Pesquisa do estado do Rio de Janeiro (FAPERJ) incentiva o estudo e
desenvolvimento de materiais para emprego em blindagem.
No Brasil, as pesquisas relacionadas a esta área são recentes. O Instituto Militar
de Engenharia (IME), por ser uma instituição voltada para o desenvolvimento de
tecnologias bélicas para emprego pelas Forças Armadas, está sendo pioneiro nesta
linha de pesquisa no Brasil.
Além do emprego na segurança de vias urbanas, as placas de concreto
reforçadas poderão ser empregadas em unidades militares, tais como: guaritas,
muros, pára-balas, estande de tiro, paióis de munição, entre outros empregos em
Organizações Militares do Exército Brasileiro.
FIG. 1.3 “Atirador entra em escola em Realengo, mata alunos e se suicida”,
07/04/11.
Disponível em: <http://g1.globo.com/rio-de-janeiro/fotos/2011/04/veja-imagens-docaso-de-tiros-em-escola-na-zona-oeste-do-rio.html>
Acessado em: Junho, 2012.
Dentro desse contexto, o presente trabalho pretende analisar o comportamento
de placas de concreto simples, concreto armado, concreto com fibras de aço e
24
concreto reforçados com materiais compósitos de resina e fibras de vidro e carbono,
sendo solicitados por impactos de armas de fogo.
Para isso, esta dissertação está organizada em seis capítulos. Após este
primeiro capítulo introdutório, será apresentado o segundo capítulo que trará uma
breve revisão bibliográfica sobre conceitos de blindagem balística, concreto
submetido a carregamentos de impacto e reforço do mesmo e estudos existentes
sobre cargas de impacto em concreto.
O desenvolvimento do programa experimental é apresentado no terceiro capítulo,
detalhando-se os procedimentos, os materiais empregados, a descrição e execução
das placas de concreto e os ensaios.
No quarto capítulo são apresentados todos os resultados obtidos durante o
trabalho para análise.
No quinto capítulo é feita a análise dos resultados de resistência média do
concreto à compressão, e dados dos corpos de prova (variação de massa dos
corpos de prova, danos nas faces anterior e posterior e os comprimentos de
penetração e de estilhaçamento).
O sexto capítulo apresenta as principais conclusões do estudo e as propostas
para futuros trabalhos.
25
2 REVISÃO BIBLIOGRÁFICA
2.1 BREVE RESUMO SOBRE BLINDAGEM
A blindagem balística é o anteparo de proteção projetado para oferecer
resistência à penetração de projéteis provenientes de armas de fogo (NBR
15000:2005), podendo ser projetada e incorporada a automóveis, veículos de
transporte de valores, veículos de emprego militar, edificações, fachadas, unidades
militares (SAFE, 2010) e locais onde exijam tal proteção. A blindagem balística é
empregada tanto no meio militar como no meio civil.
Devido às ocorrências de violência no meio urbano, conforme se verificou no
capítulo 1, a tecnologia de blindagem torna-se necessária, não só no cenário de
guerra, mas também nos cenários urbanos dos grandes centros. Os avanços
constantes das tecnologias levam a produção de armas com poderes destrutivos
maiores, que impulsionam o estudo e o desenvolvimento de tecnologias na área de
blindagem balística para assegurar às Forças Armadas e toda a área de segurança
a proteção necessária.
A blindagem desenvolvida para pessoas e/ou veículos deve respeitar os fatores
de baixo peso e baixo volume para se tornarem competitivos no mercado e
proporcionarem a mobilidade necessária. Para instalações e vias esses fatores são
considerados secundários, passando a ser mais importante a durabilidade, a
facilidade de execução e manutenção.
A blindagem arquitetônica vem sendo utilizada como meio de proteção para
garantir a segurança dos bens materiais e principalmente as pessoas. Essa
blindagem engloba portas, portões, janelas, paredes, passa documentos ou malotes
e guaritas.
Nesse contexto, o uso de concreto, simples ou armado, reforçado com fibras de
aço, barras de aço e materiais compósitos de resina e fibras de vidro ou carbono
pode ser uma boa opção para execução de tais serviços de proteção contra
projéteis.
Devido à inexistência de norma brasileira que aborde e oriente a blindagem
balística utilizando concreto, para os testes experimentais balísticos foi utilizada a
norma NBR 15000:2005 - Blindagens para impactos balísticos - Classificação e
26
critérios de avaliação, que classifica as blindagens para impactos balísticos e fixa
seus critérios de avaliação.
De acordo com o poder destruidor do armamento e com a proteção necessária, a
blindagem balística é dividida em diferentes níveis de blindagem de acordo com a
NBR 15000:2005, v. FIG. 2.3 e TAB. 2.1.
TAB. 2.1 Nível de proteção do sistema de blindagem quanto ao impacto.
Massa do
v
Número de
Nível
Munição
projétil (g)
(m/s)
impactos
.22 LRHV Chumbo
2,6 ± 0,1
320 ± 10
5
I
.38 Especial RN
10,2 ± 0,1
254 ± 15
5
Chumbo
9 FMJ
8,0 ± 0,1
332 ± 12
5
II-A
.357 Magnum JSP
10,2 ± 0,1
381 ± 12
5
9FMJ
8,0 ± 0,1
358 ± 15
5
II
.357 Magnum JSP
10,2 ± 0,1
425 ± 15
5
9FMJ
8,0 ± 0,1
426 ± 15
5
III-A
.44 Magnum SWC GC
15,6 ± 0,1
426 ± 15
5
7,62 x 51 FMJ
III
9,7 ± 0,1
838 ± 15
5
(.308 Winchester)
IV
.30 – 06 AP
10,8 ± 0,1
868 ± 15
1
LRHV – Long Rifle High Velocity- Rifle de alta velocidade.
RN – Round Nose – Munição para .38 especial de ponta redonda.
FMJ – Full Metal Jacketed – Munição com núcleo mole (chumbo),
envolto em uma concha de metal mais duro, totalmente jaquetada.
JSP – Jacketed Soft Point – Munição de.357 com ponta macia.
Jaquetada com ponta macia.
SWC GC – Semi WadCutter Gas Check – Munição de .44 que tem uma
ponta arredondada em um cilindro ligeiramente maior que a ponta,
tornando o projétil mais aerodinâmico. Ponta semicanto-vivo.
AP – Armor Piercing- suporta o choque de perfuração de blindagem.
Perfurante.
(NBR 15000:2005).
Os níveis de blindagem mais baixos protegem contra disparos de armas de mão,
enquanto que os mais altos protegem contra disparo de fuzil AR-15 (v. FIG. 2.1) e do
fuzil automático leve – FAL e Parafal (FIG. 2.2).
27
FIG. 2.1 Fuzil AR-15.
Disponível em: < http://pt.wikipedia.org/wiki/Ficheiro:Stag2wi.jpg>
Acessado em: Janeiro, 2012.
FIG. 2.2 FAL e Parafal.
Disponível em: <http://www.forte.jor.br/2010/07/19/o-novo-parafal/fal-parafal/>
Acessado em: Fevereiro, 2012.
FIG. 2.3 Aramas por níveis de proteção.
Disponível em: <http://www.bcatextil.com.br/portugues/TAB./TAB._1.pdf>
Acessado em: Janeiro, 2011.
28
2.2 CONCEITOS BALÍSTICOS
A balística tem a missão de estudar o comportamento de projéteis desde seu
movimento no interior da arma até quando atinge o alvo, levando em consideração
todos os fenômenos que ocorrem durante esse intervalo. É dividida em balística
interna, intermediária, externa e terminal.
A balística interna é responsável por explicar os acontecimentos no interior do
cano da arma durante o disparo. A FIG. 2.4 mostra a trajetória de um projétil dentro
do cano de uma arma após o acionamento do gatilho da arma até o momento em
que o mesmo sai do cano.
FIG. 2.4 Trajetória do projétil dentro do cano.
Disponível em: <http://www.apaginadomonteiro.net/balistica.htm>
Acessado em: Junho, 2012.
A balística intermediária ou de transição é responsável por estudar o movimento
do projétil desde o momento que sai do cano da arma até o momento que deixa de
sofrer influência dos gases gerados pelo propelente, v. FIG. 2.5.
FIG. 2.5 Projétil após sair da arma com ação dos gases.
Disponível em: <http://www.fotocomedia.com/tiro-fotografia-em-alta-velocidade>
Acessado em: Junho, 2012.
29
A balística externa estuda as forças que influenciam o projétil após a ação dos
gases propelentes até ao presumível choque com o alvo. As principais forças que
atuam no projétil são a gravidade, a resistência do ar e a ação do vento. A FIG. 2.6
mostra um projétil seguindo sua trajetória sofrendo ação das forças externas.
FIG. 2.6 Viagem de projétil ao alvo.
Disponível em: <http://mundoryu.blogspot.com.br/2008/10/trajetria-do-tiro.html>
Acessado em: Junho, 2012.
A balística terminal estuda a interação entre o projétil e o alvo (v. FIG. 2.7).
FIG. 2.7 Projétil após interagir com seu alvo.
Disponível em: <http://www.fotocomedia.com/tiro-fotografia-em-alta-velocidade>
Acessado em: Maio, 2012.
2.3 MUNIÇÃO
Um fator de grande importância no estudo de balística é a munição empregada e
suas características.
Munição está ligada diretamente ao cartucho, pois as munições são um conjunto
de cartuchos necessários para a utilização de um armamento. O cartucho é dividido
em quatro partes: propelente, espoleta, estojo e projétil, conforme FIG. 2.8.
30
FIG. 2.8 Partes de um cartucho.
Disponível em: <http://www.ebah.com.br/content/ABAAAALTsAD/ciencia-forensebalistica>
Acessado em: Maio, 2012.
2.3.1 PROPELENTE
Propelente é a parte constituinte do cartucho responsável diretamente pelo
lançamento do projétil ao alvo. Normalmente é constituído por pólvora que ao ser
iniciada sua queima produz uma grande quantidade de energia e gases que geram
uma enorme pressão no interior do estojo que destaca e lança o projétil do cartucho.
A pólvora química utilizada como propelente pode ser de dois tipos: de base
simples (constituída à base de nitrocelulose que gera menos calor durante sua
queima, aumentando assim a durabilidade da arma) e a de base dupla (constituída à
base de nitrocelulose e nitroglicerina, tem maior poder energético).
A FIG. 2.9 mostra a pólvora retirada de um cartucho.
FIG. 2.9 Pólvora.
Disponível em:
<http://quimicaabbd.blogspot.com.br/2011_04_01_archive.html>
Acessado em Maio, 2012.
31
2.3.2 ESPOLETA
A espoleta é a parte do cartucho responsável por iniciar a queima do propelente.
O acionamento da espoleta se dá pelo amassamento desta através de mecanismo
mecânico do armamento, onde é armazenada uma mistura detonante. A FIG. 2.10
mostra alguns tipos de espoletas.
FIG. 2.10 Diversos tipos de espoletas.
Disponível em: <http://www.blindage.com.br/municoes/mun_espoletas.html>;
Acessado em: Junho, 2012.
A FIG. 2.11 mostra espoletas retiradas de seus estojos.
FIG. 2.11 Espoletas retiradas do estojo.
Disponível em: <http://thehunter.com.br/archive/index.php/thread-851.html>
Acessados em: Junho, 2012.
32
2.3.3 ESTOJO
Estojo, cápsula ou invólucro é o componente do cartucho responsável por unir
todos os demais componentes necessários que o constituem. Pode ter sua
constituição de metal, plástico ou papelão, de acordo com o armamento e a
finalidade do seu emprego, conforme FIG. 2.12.
FIG. 2.12 Estojos diversos.
Disponível em: <http://www.jorgemussa.com.br/?pg=municao.php>
Acessado em: Abril, 2012.
2.3.4 PROJÉTEIS
O projétil é a única parte do cartucho que é lançada pelo cano da arma em
direção ao alvo. Podem ser encontrados diversos tipos de projéteis, destinados aos
mais diversos usos, seu material constituinte pode ser de chumbo ou aço. A
FIG.2.13 mostra o deslocamento de um projétil lançado pela sua arma.
FIG. 2.13 Projétil em deslocamento.
Disponível em: <http://abordagempolicial.com/wpcontent/uploads/2010/03/projetil.jpg>
Acessado em: Março, 2012.
33
A FIG. 2.14 mostra alguns projéteis ainda não alojados nas cápsulas.
FIG. 2.14 Projéteis.
Disponível em: <http://pt.wikipedia.org/wiki/Ficheiro:Municao_Projeteis.jpg>
Acessado em: Março, 2012.
2.3.5 CALIBRE
O calibre da munição é padronizado pelo projétil empregado no cartucho, que
representam o diâmetro ou bitola e o diâmetro interno do cano do armamento.
A maioria dos calibres é dada em milímetros (6,35 mm, 7,62 mm, 9mm e etc) e
representa a arma, por exemplo, a pistola 9 mm possui seu calibre 9 mm. Outra
unidade para exprimir o calibre é dada em polegadas, geralmente é utilizada para
calibres maiores (0.50 pol, 0.30 pol e etc) ou para munições de armas ligeiras
(calibre 38, o projétil possui 0,38 pol valor igual a 9,65 mm).
2.3.6 CALIBRES UTILIZADOS
Devido a diversidades de armamentos e seus calibres, foram escolhidos os
calibres mais conhecidos e utilizados pelas Forças Armadas e Auxiliares no Brasil.
Foram utilizados os calibres 9 mm, 7,62 mm e 0.50 pol.
2.3.6.1
CALIBRE 9 MM
O calibre 9 mm Parabellum (FIG. 2.15) foi criado na Alemanha para ser utilizado
na Pistola Parabellum, sendo adotada pela marinha e exército do país. Atualmente é
o calibre de pistola adotado pelas Forças Armadas do Brasil.
34
Devido ao seu uso e bom desempenho durante as guerras, tornou-se famoso e
conhecido no emprego em pistolas e submetralhadoras.
FIG. 2.15 Projéteis 9 mm.
A arma com calibre 9 mm não é recomendada para defesa pessoal, pois é
extremamente letal e possui enorme poder de penetração, que no perímetro urbano
pode vir a atingir um inocente num tiro perdido, além do que o agressor poderia ser
perfurado e não ser derrubado, podendo revidar e tomar a arma de quem está com a
pistola em ato de legítima defesa. Entretanto, o poder de penetração do calibre 9
mm pode ser alterado pelo uso de cartuchos com projéteis de ponta oca que
diminuem a penetração e aumentam o poder de impacto e parada.
2.3.6.2
CALIBRE 7,62 MM
O calibre 7,62 foi desenvolvido durante a Segunda Guerra Mundial para uso em
carabinas. Atualmente tem seu uso em fuzil, sendo os mais conhecidos: AR-15
(v.FIG. 2.1), FAL e Parafal (v. FIG. 2.2), AK-47 e outros.
A FIG. 2.16 mostra cartuchos de calibre 7,62 mm.
FIG. 2.16 Cartuchos 7,62 mm.
35
2.3.6.3
CALIBRE 0.50 POL
O cartucho de calibre 0.50 pol (v. FIG. 2.17) foi concebido para emprego na arma
0.50 Bowing Machine Gun.
A munição se assemelha bastante com os cartuchos de fuzil 7,62 mm, porem
com dimensões maiores e maior quantidade de propelente para lançar um projétil
mais pesado.
Atualmente esse calibre é comercializado com as seguintes versões: de ponta
arredondada, traçante (para observação), perfurante (para penetração em
blindagem), incendiária (para alvos inflamáveis) e comum.
FIG. 2.17 Munição comum de 0.50 pol.
2.4 EFEITOS DE CARGAS DE IMPACTO SOBRE O CONCRETO
Devido às guerras e aos conflitos, quer sejam urbanos ou não, tem-se buscado
estudar a resistência de diversos materiais ao impacto balístico objetivando melhorar
sua resistência e suas características. Um desses materiais é o concreto, que é um
material muito usado na construção civil.
A solicitação decorrente de um impacto balístico, por ser um carregamento
dinâmico e instantâneo, atua solicitando o concreto a esforços de tração, levando a
danos globais e locais. Os danos globais que consistem em deformação por flexão,
cisalhamento e rachaduras macroscópicas que dependem da capacidade do alvo
36
em absorver energia, os danos locais podem levar a fragmentação do concreto na
parte anterior ou posterior do impacto, penetração, podendo até perfurar o alvo.
A extensão dos danos depende de uma variedade de fatores como velocidade de
impacto,
rigidez
do
alvo
e
propriedades
do
projétil
(massa,
geometria,
deformabilidade e etc).
Segundo BANGASH (2009), os danos gerados podem ser de penetração,
perfuração, destacamento, estilhaçamento e estilhaçamento por punção.
A penetração ocorre quando o projétil adentra a espessura da estrutura de
concreto sem atravessá-la por completo (v. FIG. 2.18). O comprimento de
penetração é dado pela profundidade da cratera formada no alvo no local do
impacto.
FIG. 2.18 Penetração e destacamento no concreto.
(BANGASH, 2009).
A perfuração ocorre quando o projétil atinge, penetra e atravessa toda a
espessura da estrutura e sai pelo lado oposto ao impacto, ou seja, é uma
penetração completa conforme mostrado na FIG. 2.19. Da mesma forma que a
penetração, pode vir acompanhada do destacamento e estilhaçamento.
O destacamento se caracteriza pela liberação de fragmento da estrutura na
direção de onde veio o impacto. O estilhaçamento ocorre quando há a liberação de
fragmento da estrutura para o lado oposto onde ocorreu o impacto (v. FIG. 2.20).
37
FIG. 2.19 Perfuração, destacamento e estilhaçamento no concreto.
(BANGASH, 2009).
A penetração pode acontecer com o destacamento e/ou estilhaçamento
(v. FIG. 2.20).
FIG. 2.20 Penetração, destacamento e estilhaçamento no concreto.
(BANGASH, 2009).
O estilhaçamento por punção ocorre quando acontece do estilhaçamento não
sair em fragmentos pequenos, mas como um corpo quase que inteiro em forma de
tronco de cone (FIG. 2.21).
Devido aos diversos parâmetros que envolvem o impacto balístico, seus efeitos
na estrutura de concreto são complexos e dificultam as previsões matemáticas dos
danos na estrutura. Um desses parâmetros é a falta de homogeneidade do concreto,
outro, é a deformabilidade dos projéteis.
38
FIG. 2.21 Estilhaçamento por punção no concreto.
(BANGASH, 2009).
2.5 REFORÇO
DE
ESTUTURAS
DE
CONCRETO
CONTRA
IMPACTOS
BALÍSTICOS
Na pesquisa é estudada uma possível solução para a segurança de vias
públicas, que é o emprego de barreiras de concreto que possibilitem a contenção de
projéteis oriundo de tiroteios para evitar que adentrem as vias urbanas.
O concreto para se tornar uma estrutura resistente à flexão é necessária a adição
de barras de aço, tornando-o um estrutura de concreto armado. No intuito de
empregar o concreto em barreiras é imprescindível o uso de tais barras.
No estudo buscou-se estudar a adição de materiais ao concreto no intuito de
aumentar a resistência à tração da estrutura de concreto para garantir a segurança
contra impactos balísticos. Para isso foi utilizado um concreto de alta resistência,
com a finalidade de melhorar e aumentar sua resistência, também foram
adicionados materiais de reforço interno e externo ao concreto. Como reforços
internos foram adicionados barras e fibras de aço e como reforços externos foram
colados, na superfície da estrutura de concreto, materiais compósitos de resina e
fibras de carbono e vidro.
O objetivo do reforço é aumentar as propriedades mecânicas da estrutura de
concreto, diminuir o estilhaçamento e destacamento e evitar a perfuração da
mesma.
39
2.5.1 FIBRAS DE AÇO
SOBRAL (2011) concluiu no seu estudo que o concreto reforçado com fibras
pode apresentar-se como uma alternativa para a proteção balística e como camada
de absorção de impactos para proteção estrutural.
LUO et al (2000) verificou em seu trabalho que a adição de fibras de aço minorou
a propagação de fissuras no concreto.
2.5.2 FIBRAS DE CARBONO
A indústria da construção civil utiliza cada vez mais materiais compósitos na
forma de folhas ou tecidos para executar serviços de reforço e/ou reparo de
estruturas. Isso é devido à sua versatilidade, rápida e fácil aplicação, elevada
resistência à fadiga e à corrosão e o seu excelente desempenho.
As fibras de carbono são caracterizadas pelo baixo peso próprio, alta resistência,
alta rigidez, grande durabilidade e por poder assumir diferentes formas devido a sua
flexibilidade de aplicação. Sua alta resistência e elevado módulo de elasticidade
estão associada ao paralelismo entre os eixos das fibras, o que permite a fabricação
de forma continua, sem limites no comprimento do rolo.
2.5.3 FIBRAS DE VIDRO
As fibras de vidro tem seu uso ascendente na construção civil, devido ao seu
custo-benefício favorável. São feitas com a mistura de diversos elementos químicos
e pelo fato do vidro ser um material fluido, ele permite uma boa adaptação às cargas
dinâmicas, possuindo deformações últimas maiores que as fibras de carbono
(SILVA, 2002).
A fibra de vidro nas estruturas se comporta como a armadura de aço, tornando a
estrutura de concreto resistente a impactos, flexão e tração, tem como vantagens:
baixa densidade, excelentes propriedades mecânicas, grande flexibilidade de
aplicação, capacidade de isolamento térmico, resistência à deterioração química e
umidade, grande durabilidade, resistente ao fogo (500 ºC) e baixo custo de
aquisição.
40
Apesar de suas propriedades mecânicas serem menores às fibras de carbono,
tende-se a serem mais utilizadas pelo baixo custo.
Segundo DOS SANTOS (2003), apesar dos custos das fibras de vidro ser
menores, há casos que este não é o fator determinante do material a ser empregado
no reforço, e pelo fato de nos últimos anos o valor da fibra de carbono vem baixando
consideravelmente, pode-se imaginar, em um futuro próximo, que as fibras de
carbono possam substituir as de vidro na maioria das aplicações.
2.6 MODELOS DE PREVISÃO DO COMPRIMENTO DE PENETRAÇÃO
Alguns estudos, experimentos e simulações numéricas foram realizados no
intuito de estudar o comportamento do concreto quando solicitado ao impacto
balístico, sendo elaboradas formulações empíricas para prever a penetração do
projétil no concreto. Essas fórmulas admitem como parâmetros de entrada a
resistência à compressão do concreto, o fator de forma da ponta do projétil, a
velocidade do projétil e outros fatores que intervêm na penetração do concreto pelos
projéteis.
Para uma melhor compreensão dos métodos foram mostradas as expressões e
os parâmetros que envolvem cada modelo.
2.6.1 MÉTODO PETRY MODIFICADO
O método PETRY MODIFICADO foi referenciado por VOSSOUGHI et al (2007),
a formulação objetiva a avaliação do comprimento de penetração de projéteis em
concreto.
p
,
. p.
m
d
.log 1
v
1
Equação 2.1
Onde: xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
kp – coeficiente tirado do gráfico em função do f c (v. FIG. 2.22).
41
FIG. 2.22 Curva fc versus Kp.
(Fonte: VOSSOUGHI et al, 2007).
2.6.2 MÉTODO UKAEA
O método UKAEA (United Kingdom Atomic Energy) foi citado por LI et al (2005) e
sua elaboração foi uma modificação da proposta pelo NDRC (National Defense
Research Committee) através de estudos sobre proteção de estruturas de usinas
nucleares no Reino Unido. Serve para avaliar o comprimento de penetração em tais
estruturas.
d.
p
,
-
,
d. .G- ,
d. G , 3
,
-G
,
,
,
G
,
I 1,
G 1,
,
Equação 2.2
e
G=
3,8.10-5 .N.m.v1,8


f c .d 2,8
Onde: xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
G – parâmetro adimensional;
42
Equação 2.3
N – fator de forma da ponta do projétil, sendo igual a 0,72 para
projétis de ponta chata; 1,00 para projéteis de ponta esférica; e
1,14 para projéteis pontiagudos;
fc - resistência a compressão do concreto em Pa.
As equações foram desenvolvidas para os seguintes intervalos: 25 m/s < v < 300
m/s e 22 MPa < fc < 44 MPa.
2.6.3 MÉTODO WHIFFEN
O método de WHIFFEN (LI et al, 2005) foi elaborado baseado num grande banco
de dados, obtido de ensaios de penetração de estilhaços de bombas lançadas em
estruturas de concreto formado por diferentes agregados, sendo proposta a
formulação empírica abaixo.
p
, 1
fc
.
m
d
.
d
,1
dma
.
v
33,
, 1
fc ,
Equação 2.4
Onde: xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
fc - resistência à compressão do concreto em Pa;
Dmax – dimensão máxima do agregado graúdo do concreto em m.
Essa formulação é válida para os seguintes intervalos: 5,5 MPa < fc < 69,0 MPa;
0,14 kg < m < 9966,0 kg; 12,7 mm < Dmax < 965,2 mm e v < 533,4 m/s.
2.6.4 MÉTODO ACE
VOSSOUGHI et al (2007) mostrou a fórmula empírica elaborada pelo ACE (Army
Corps of Engineers) que tem sua origem em 1943 resultado de estudos
43
experimentais realizados para a previsão do comprimento de penetração de
projéteis de altas velocidades impactados sobre alvos de concreto.
p
3, .1 fc
.
m
d
.d
, 1
.v1,
, .d
Equação 2.5
Onde: xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
fc - resistência à compressão do concreto em Pa.
2.6.5 MÉTODO HALDAR
A formulação elaborada por HALDAR (VOSSOUGHI et al, 2007) utiliza um
parâmetro adimensional I para o cálculo da penetração do projétil em concreto.
- , 3 .d ,
,
.d ,
1,1
.d ,
Onde:
1.I.d,
.I.d,
.I.d,
I=
,3 I ,
I 1,
1, I
,
,
m.N.v 2
d3 .fc
xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
I – parâmetro adimensional;
N – fator de forma da ponta do projétil;
fc - resistência a compressão do concreto em Pa.
44
Equação 2.6
Equação 2.7
2.6.6 MÉTODO ADELI E AMIN
O método de ADELI e AMIN (LI et al, 2005) foi elaborado baseado na formulação
de HALDAR com o uso do parâmetro adimensional I para avaliar o comprimento de
penetração no concreto.
.
.
,
1
, 1 3
,1
,1
.I- ,
.I- ,
.I ,
.I
,3 I
,
,
1,
3
,
1.I ,
I
Equação 2.8
Onde: xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
I – parâmetro adimensional;
N – fator de forma da ponta do projétil;
fc - resistência a compressão do concreto em Pa.
A formulação é válida para os seguintes intervalos: 0,11 kg < m < 343 kg e d <
0,3 m.
2.6.7 MÉTODO NDRC MODIFICADO
VOSSOUGHI et al (2007) mencionou o método NDRC MODIFICADO. A
formulação empírica foi apresentada pelo Comitê Nacional de Pesquisa de Defesa
dos EUA em 1946, tendo por base a formulação apresentada pelo Corpo de
Engenheiros Americanos (ACE). Sua concepção tinha como objetivo estimar o
comprimento de penetração de projéteis rígidos em concreto maciço.
.d. G, G 1,
d. 1 G , G 1,
p
Onde: xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
45
Equação 2.9
v – é a velocidade do projétil em m/s;
G – parâmetro adimensional (Equação 2.3);
N – fator de forma da ponta do projétil, sendo igual a 0,72 para
projétis de ponta chata; 1,00 para projéteis de ponta esférica; e
1,14 para projéteis pontiagudos;
fc - resistência a compressão do concreto em Pa.
2.6.8 MÉTODO AMMANN E WHITNEY
A formulação de AMMANN e WHITNEY (LI et al, 2005) foi elaborada para prever
o comprimento de penetração de pequenos fragmentos com velocidade maiores que
300 m/s em estruturas de concreto.
p
.1 - .m. .v1,
d1,
fc
Equação 2.10
Onde: xp – é a máxima penetração do projétil em m;
d – é o diâmetro do projétil em m;
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
N – é fator de ponta do projétil;
fc - resistência à compressão do concreto em Pa;
2.6.9 MÉTODO BRL MODIFICADA
VOSSOUGHI et al (2007) mostrou o método BRL MODIFICADA (Ballistic
Research Laboratory) elaborado em 1941 para prever o comprimento de penetração
em alvos de concreto atingidos por projéteis de aço não deformáveis de grandes
velocidades.
p
1,33.1 -3 .m.v1,33
d1,
fc
Onde: xp – é a máxima penetração do projétil em m ;
d – é o diâmetro do projétil em m;
46
Equação 2.11
m – é a massa do projétil em kg;
v – é a velocidade do projétil em m/s;
fc – resistência a compressão do concreto em Pa.
A TAB. 2.2 agrupa de forma resumida as formulações existentes na literatura
para a previsão do comprimento de penetração em alvos de concreto.
TAB. 2.2 Formulações existentes para previsão do comprimento de penetração.
AUTORES
xp (m)
PETRY
MODIFICADA
p
d.
UKAEA
,
p
d.
p
.
fc
d.
1
, 1 3
G
m
d
.d
, 1
.v1,
1.I.d,
.I.d,
.I.d,
.I
,
.m. .v1,
.1
p
d1,
1,33.1
p
d1,
fc
3
.m.v1,33
fc
, 1
fc
,
, .d
,
1,
.d. G, G 1,
d. 1 G , G 1,
p
v
33,
.I ,
.I ,
47
.
ma
.I ,
,1
,1
d
.
.
,1
,
I 1,
G 1,
d
fc
AMMANN e
WHITNEY
BRL
MODIFICADA
,
,
m
, 3 .d ,
,
.d ,
1,1
.d ,
,
,
1
,
3, .1
p
d
v
.log 1
G
,
p
HALDAR
m
,
, 1
ACE
NDRC
MODIFICADA
. p.
d. .G ,
d. G , 3
p
WHIFFEN
ADELI e AMIN
,
3
1.I ,
,3 I ,
I 1,
I
,
,3 I
,
,
1,
I
2.7 ESTUDOS EXISTENTES SOBRE CARGAS DE IMPACTO EM CONCRETO
2.7.1 FORRESTAL ET AL. (1996)
Os autores conduziram experimentos de impactos balísticos em 3 tipos de alvos
cilíndricos de argamassa (fc = 13,5 MPa, 19,5 MPa e 21,6 MPa) e 2 tipos de alvos
cilíndricos de concreto (fc = 51 MPa e 62,8 MPa).
Os alvos cilíndricos de argamassa com fc = 13,5 MPa e 30 cm de diâmetro, foram
alvejados com projéteis de aço de 12,9 mm de diâmetro e massa 64 g, lançados a
velocidades entre 350 m/s e 1200 m/s e obtiveram os seguintes resultados
mostrados na TAB. 2.3.
Os alvos cilíndricos de argamassa com fc = 19,5 MPa e 48 cm de diâmetro foram
alvejados com projéteis de aço de 12,9 mm de diâmetro e massa 64 g, lançados a
velocidades entre 1300 m/s e 1700 m/s e obtiveram os seguintes resultados de
penetração, conforme TAB. 2.4.
TAB. 2.3 Resultados dos alvos cilíndricos de argamassa 30 cm e 13,5 MPa.
Comprimento Velocidade Penetração Perda de massa
Nr Alvo
Cilindro (cm)
(m/s)
(cm)
do Projétil (%)
6-2374
31
371
13
1,1
6-2363
60
590
31
2,7
6-2367
63
670
36
3,4
6-2364
62
722
41
3,9
6-2370
104
945
64
4,6
6-2368
103
1126
85
5,3
6-2373
31
345
11
1,1
6-2362
62
585
31
3,3
6-2365
62
722
44
4,4
6-2371
103
900
66
5,7
6-2369
102
1063
86
6,3
(Fonte: FORRESTAL et al., 1996)
Os alvos cilíndricos de argamassa com fc = 21,6 MPa e 41 cm de diâmetro, foram
alvejados com projéteis de aço de 12,9 mm de diâmetro e massa 64 g, lançados a
velocidades menores que 1200 m/s e obtiveram os resultados de penetração
conforme TAB. 2.5.
48
TAB. 2.4 Resultados dos alvos cilíndricos de argamassa 48 cm e 19,5 MPa.
Comprimento Velocidade
Nr alvo
Penetração (cm)
Cilindro (cm)
(m/s)
Trajetória desviou da linha
central de 0,4 m e foi parar perto
1-0331
182
1356
da borda do alvo com 106
cm profundidade final
A ponta do projétil amassou e
1-0329
182
1408
penetrou 58cm.
1-0330
182
1682
Projétil fraturou.
Projétil saiu pelo lado do alvo a
1-0333
182
1311
uma profundidade de 78 cm.
Projétil saiu pelo lado do alvo a
1-0334
182
1359
uma profundidade de 100 cm.
Projétil saiu pelo lado do alvo a
1-0332
182
1430
uma profundidade de 84 cm.
(Fonte: FORRESTAL et al., 1996)
Os alvos cilíndricos de concreto com fc = 62,8 MPa e 51 cm de diâmetro, foram
alvejados com projéteis de aço de 20,3 mm de diâmetro e massa 480 g, lançados a
velocidades entre 450 m/s e 1224 m/s e obtiveram os resultados de penetração
conforme TAB. 2.6.
TAB. 2.5 Resultados dos alvos cilíndricos de argamassa 41 cm e 21,6 MPa.
Comprimento Velocidade Penetração Perda de massa
Nr Alvo
Cilindro (cm)
(m/s)
(cm)
do Projétil (%)
6-2460
76
492
17
1,8
6-2467
102
618
25
2,0
6-2461
102
788
45
5,3
6-2469
127
910
55
6,8
6-2464
127
1029
75
6,9
6-2466
127
1142
85
7,0
6-2459
76
473
17
1,9
6-2468
127
660
27
4,0
6-2462
102
775
41
5,0
6-2470
127
921
57
7,3
6-2463
127
1050
76
7,9
6-2465
127
1190
88
7,5
(Fonte: FORRESTAL et al., 1996)
Os alvos cilíndricos de concreto com fc = 51 MPa e 91 cm de diâmetro, foram
alvejados com projéteis de aço de 30,5 mm de diâmetro e massa 1600 g, lançados a
velocidades entre 405 m/s e 1358 m/s e obtiveram os seguintes resultados de
penetração, conforme TAB. 2.7.
49
TAB. 2.6 Resultados dos alvos cilíndricos de concreto 51 cm e 62,8 MPa.
Comprimento Velocidade Penetração Perda de massa
Nr Alvo
Cilindro (cm)
(m/s)
(cm)
do Projétil (%)
1-0335
91
450
30
1,5
1-0336
91
612
48
2,7
1-0337
122
821
76
4,5
1-0341
152
926
95
5,5
1-0346
152
987
92
6,6
1-0338
152
1024
94
6,2
1-0339
183
1224
(Fonte: FORRESTAL et al., 1996)
Verificou-se que, independentemente da resistência do concreto à compressão, a
profundidade de penetração aumentou conforme o incremento da velocidade, mas
nem sempre ocorreu maior perda de massa.
Constatou-se que a velocidade limite para que não ocorresse perfuração ou
ruptura do alvo de concreto foi de cerca de 1200 m/s.
TAB. 2.7 Resultados dos alvos cilíndricos de concreto 91 cm e 51,0 MPa.
Comprimento Velocidade Penetração Perda de massa
Tipo alvo
Cilindro (cm)
(m/s)
(cm)
do Projétil (%)
LROD-2
183
405
37
1,2
LROD-3
183
446
42
1,5
LROD-6
213
545
56
2,0
LROD-4
213
651
78
3,1
LROD-8
213
804
105
4,7
LROD-5
213
821
123
4,4
LROD-9
244
900
141
5,4
LROD-10
244
1009
175
6,4
LROD-11
274
1069
196
7,0
LROD-12
274
1201
203
6,8
LROD-13
274
1358
(Fonte: FORRESTAL et al., 1996)
2.7.2 FREW ET AL. (1998)
Os autores realizaram experimentos de impactos balísticos em concreto com
projéteis de aço. Foram utilizados dois tipos de projéteis (4340 Rc45 e AerMet Rc
53), tendo sido variado seu diâmetro (20,3 mm com 478 g de massa e 30,5 mm com
1620 g de massa).
50
Os corpos de prova de concreto foram confeccionados em formato cilíndrico com
diâmetros de 51 cm e 91 cm. O concreto tinha fc de
, M a, ρ de
3
g/m3 e foi
feito com agregado graúdo de 9,5 mm de diâmetro. O comprimento dos cilindros de
51 cm de diâmetro (atingidos pelo projétil de 20,3 mm) variou entre 94 cm e 228 cm,
enquanto o de 91 cm de diâmetro (atingidos pelo projétil de 30,5 mm), 107 cm a 305
cm. Os projéteis atingiram velocidades de impacto na faixa de 400 m/s a 1200 m/s.
A TAB. 2.8 mostra os resultados de penetração nos corpos de prova cilíndricos
de 51 cm de diâmetro com o projétil de 20,3 mm. A TAB. 2.9 mostra os resultados
experimentais para os cilindros de 91 cm de diâmetro atingidos pelos projéteis de
30,5 mm.
TAB. 2.8 Dados de penetração de projéteis com diâmetro de 20,3mm.
Comprimento Velocidade Penetração Perda de massa
Tipo Projétil
Concreto (m) Projétil (m/s)
(m)
do Projétil (%)
4340 Rc 45
0,94
442
0,287
0,81
4340 Rc 45
0,94
610
0,491
1,55
4340 Rc 45
1,07
815
0,84
2,69
4340 Rc 45
1,52
1009
1,30
3,52
4340 Rc 45
1,93
1162
1,59
4,12
AerMet Rc 53
2,28
791
0,73
2,58
AerMet Rc 53
1,98
994
1,16
3,76
AerMet Rc 53
2,28
1165
1,46
4,64
4340 Rc 45
1,07
815
0,84
2,69
4340 Rc 45
2,03
797
1,01
2,85
4340 Rc 45
2,26
803
1,226
3,02
(Fonte: FREW et al., 1998)
Com base nos resultados de profundidade de penetração nos alvos de concreto
em função da velocidade de impacto dos projéteis, os autores apresentaram as
curvas situadas na FIG. 2.23.
Como era de se esperar, verificou-se que com o incremento da velocidade de
impacto do projétil, o comprimento de penetração nos alvos de concreto
(v. FIG. 2.23) e a perda de massa dos projéteis aumentaram.
Concluiu-se que a dureza do material do projétil apenas afetou os danos na
ponta do projétil, não tendo grande influência no comprimento de penetração.
51
TAB. 2.9 Dados de penetração de projéteis com diâmetro de 30,5mm.
Comprimento Velocidade Penetração Perda de massa
Tipo Projétil
Concreto (m) Projétil (m/s)
(m)
do Projétil (%)
4340 Rc 45
1,07
445
0,46
0,7
4340 Rc 45
1,07
584
0,79
1,5
4340 Rc 45
1,68
796
1,23
2,5
4340 Rc 45
2,44
980
1,95
3,5
4340 Rc 45
2,44
992
1,96
3,4
4340 Rc 45
3,05
1176
2,67
3,8
AerMet Rc 53
2,74
972
1,96
3,1
AerMet Rc 53
3,05
1225
2,83
3,6
(Fonte: FREW et al., 1998)
FIG. 2.23 Velocidade projétil versus Penetração no concreto.
(Fonte: FREW et al., 1998)
2.7.3 LUO ET AL. (2000)
Os autores realizaram um programa experimental que contemplou o uso de
concreto armado de alta resistência (CAR) e de argamassa fluida de alta resistência
(AAR) com fibras de aço em blocos quadrados submetidos a impactos balísticos.
52
O objetivo desse programa foi estudar o comportamento dos materiais e levantar
dados no intuito de prever o comprimento de penetração nos blocos (v. FIG. 2.24a).
Os blocos de CAR tinham 500 mm x 300 mm de dimensões, enquanto os de
AAR, 400 mm x 300 mm.
A armadura interna dos blocos de CAR foi composta por 8 barras de 6 mm
diâmetro em cada face. Nos blocos de AAR foram empregados dois tipos de fibra
aço: CZ (comprimento 31 mm e fator de forma 60) e YL (comprimento 21 mm e fator
de forma 35). O projétil de aço utilizado tinha 37 mm de diâmetro, 150 mm de
comprimento e cerca de 900 g de massa.
A TAB. 2.10 mostra dados sobre a composição dos blocos e valores de
resistência das misturas.
TAB. 2.10 Traço das misturas utilizadas.
Material
3
Cimento (kg/m )
3
Água (kg/m )
3
Areia (kg/m )
3
Brita (kg/m )
3
Aditivo redutor de água (kg/m )
3
Aditivo retardador (kg/m )
Teor volumétrico de fibras (%)
Barras de aço
Resistência à compressão (MPa)
Resistência à flexão (MPa)
Argamassa com
fibras CZ
1062,0
276,1
1062,0
15,9
2,7
7
116,1
54,6
Argamassa com
fibras YL
1062,0
276,1
1062,0
15,9
2,7
10
107,1
36,5
Concreto
Armado - CA
328,0
85,3
446,1
1600,6
13,1
ᴓ 6 mm c 15 cm
72,4
-
(Fonte: LUO et al., 2000)
Os blocos de concreto armado, alvejados sob velocidade de impacto entre 302
m/s e 334 m/s, sofreram ruptura e não foi possível a coleta de dados, como pode ser
visto na FIG. 2.24b. Os blocos de AAR com fibras de aço, mesmo atingidos com
velocidades de impacto superiores a dos blocos de CAR (de 365 m/s a 378 m/s),
permaneceram intactos, apresentando apenas danos radiais em suas faces, como
ilustra as FIG. 2.24c e d.
Verificou-se que o impacto no bloco gerou ondas de tensão de compressão, que
se refletiram ao longo do volume de concreto produzindo ondas de tensão de tração.
Como o concreto tem resistência à tração baixa, as ondas de tensão de tração
provocam fissuras que se propagaram com facilidade nos blocos de concreto
armado, ocasionando o colapso da estrutura.
53
(a) Blocos de concreto antes do impacto;
(b) Bloco de concreto armado (CA) após o
impacto;
(c) Bloco de argamassa com fibras de aço CZ;
(d) Bloco de argamassa com fibras de aço YL.
FIG. 2.24 Blocos ensaiados por LUO et al. (2000).
A adição de fibras de aço à AAR ocasionou uma diminuição da propagação de
fissuras geradas pelo impacto. Os blocos de argamassa com fibras de aço
permaneceram com a face posterior ao tiro intacta, tendo ocorrido apenas algumas
fissuras nas faces laterais destes.
As faces laterais dos blocos de AAR com fibras YL apresentaram maiores
aberturas de fissuras que as das faces laterais destes blocos com fibras CZ. Além
disto, os comprimentos de penetração do projétil nestes blocos com a fibra YL
(16,1 cm e 17,7 cm, v. TAB. 2.11) foram maiores que os nos blocos com fibras CZ
(13,2 cm a 15,1 cm, v. TAB. 2.11). Estes fatos podem ser explicados pelo fato das
fibras YL terem menor comprimento e fator de forma que os das fibras CZ.
54
TAB. 2.11 Resultados dos impactos nos blocos de concreto.
Massa do
Velocidade
Penetração Situação final
Espécime
projétil (g)
projétil (m/s)
(cm)
do projétil
CZ-1
901,0
368,1
13,2
Ricocheteado
CZ-2
901,5
374,8
14,7
Ricocheteado
CZ-3
905,6
369,1
13,2
Ricocheteado
CZ-4
904,2
378,3
15,1
Ricocheteado
CZ-5
909,0
374,9
15,0
Ricocheteado
YL-1
904,2
368,7
16,1
Embutido
YL-2
906,0
364,9
17,7
Embutido
CA-1
909,5
301,5
CA-2
909,5
326,5
CA-3
909,5
300,4
CA-4
903,0
334,3
CA-5
902,5
321,7
(Fonte: LUO et al., 2000)
Os autores concluíram que os blocos de AAR com fibras de aço tiveram melhor
comportamento ao impacto balístico que os blocos de concreto armado. Os blocos
de CAR sofreram ruptura, enquanto os de AAR permaneceram intactos apenas com
danos radiais nas faces lateral e frontal.
2.7.4 SONG ET AL. (2005)
Os autores estudaram o comportamento de CAR submetidos a impactos, através
de comparação dos resultados entre corpos de prova moldados com concreto
simples e concreto com fibras de aço.
Confeccionaram-se corpos de prova cilíndricos de 150 mm x 300 mm de
dimensões de concreto simples (fc = 66 MPa) e concreto com fibras de aço
(fc = 76 MPa).
Cada corpo de prova moldado foi cortado com um disco diamantado, dividindo-o
em 4 unidades de 150 mm de diâmetro e 64 mm de espessura. Estas unidades
foram submetidas ao impacto de um peso na vertical e monitorados os números de
impactos necessários para ocasionar a primeira fissura visível e a ruptura destas.
Verificou-se que o concreto com fibras de aço tem uma melhor resposta a
solicitações de impacto do que a do concreto simples.
Os autores notaram também que, com o uso de teste estatístico, o concreto de
alta resistência simples teve uma distribuição aproximadamente normal dos dados
55
de resistência ao impacto para a formação da primeira fissura e para a ruptura, o
que não ocorreu com os dados referentes ao concreto com fibras de aço, conforme
FIG. 2.25.
FIG. 2.25 Distribuição de frequência dos ensaios por SONG et al. (2000).
Constatou-se que a resistência ao impacto do concreto de alta resistência com
fibras de aço, expressa pelo número de golpes para ocasionar danos nos corpos de
prova, foi superior à do concreto simples: 3,9 vezes maior no que se refere à
formação da primeira fissura e 4,2 vezes maior em se tratando de ruptura.
De posse dos resultados e com o uso de modelos de regressão, foi possível
gerar intervalos de estimativa para o número de golpes necessário para ocasionar
danos aos concretos de alta resistência.
56
2.7.5 ZHANG ET AL. (2005)
Os autores investigaram a influência da resistência à compressão do concreto,
da presença de agregados graúdos e fibras de aço no concreto e a temperatura de
cura do concreto no comportamento de concretos submetidos a impacto balístico.
O estudo experimental contemplou corpos de prova de concreto de 300 mm x
170 mm de dimensões, todos com 150 mm de espessura. A resistência do concreto
à compressão variou de 45 MPa a 237 MPa. Os projéteis tinham 12,6 mm de
diâmetro e 15 g de massa. Na execução dos testes balísticos, a velocidade de
impacto dos projéteis variou entre 620 m/s e 700 m/s.
A FIG. 2.26 mostra um croqui do ensaio de impacto balístico.
FIG. 2.26 Croqui do ensaio de impacto.
(Fonte: ZHANG et al., 2005)
A dimensão máxima do agregado graúdo utilizado nos concretos NC40 e NC60
foi de 20 mm, enquanto a dos concretos NC90 e NC120, 10 mm. A TAB. 2.12
mostra a composição das misturas de concreto utilizado na confecção dos corpos de
prova.
57
TAB. 2.12 Composição dos concretos.
Identificação
Mistura
Fator
a/c
Cimento
3
(kg/m )
Sílica
Ativa
3
(kg/m )
Água
3
(kg/m )
Agregado
Graúdo
3
(kg/m )
Areia
Natural
3
(kg/m )
NC40
0,55
360
198
1105
737
NC60
0,45
440
198
1090
666
NC90
0,31
475
143
1064
709
NCF90 0,31
468
141
1048
698
NC120 0,27
475
48
133
952
779
NCF120 0,27
468
47
131
938
767
CM
0,23
714
179
188
QFF
0,23
704
176
185
QWF
0,23
704
176
185
QOF-1
0,23
704
176
185
QOF-2
0,18
707
177
145
a
Retardador de pega.
b
Superplastificante.
Fibras de aço: retas com 13 mm de comprimento, 0,2 mm
forma igual a 65.
(Fonte: ZHANG et al., 2005)
Areia
de
Quartz
3
(kg/m )
Fibra
de Aço
3
(kg/m )
Aditivo
3
(kg/m )
1320
1300
1300
1300
1365
118
118
119
119
119
119
10a
10a
15a
15a
18b
18b
18b
18b
18b
de diâmetro e fator de
Para se avaliar os efeitos da temperatura de cura nos corpos de prova de
concreto, foram executados alguns procedimentos. A maioria dos corpos de prova
foi curada em uma câmara úmida a aproximadamente 30 ºC por 7 dias e depois
permaneceu exposta ao ambiente do laboratório (cerca de 30 ºC) até a data do teste
balístico. A mistura QWF foi à cura úmida nas primeiras 24 horas, após o que foi
imersa em banho-maria (em torno dos 90 ºC) por 1 dia e depois exposta ao
ambiente do laboratório por 27 dias. As placas de concreto das misturas QOF-1 e
QOF-2, após a cura úmida, foram curadas à temperatura de cerca de 250 ºC por 1
dia e, então, expostas ao ambiente do laboratório por 7 dias.
A TAB. 2.13 mostra os resultados do efeito da resistência à compressão na
penetração e no diâmetro da cratera nos diversos corpos de prova.
A TAB. 2.14 expõem os resultados de penetração e o diâmetro das crateras
geradas nos diversos corpos de prova devido a presença de fibras de aço.
A TAB. 2.15 apresenta os resultados gerados pelo efeito da temperatura de cura
do concreto na penetração e no diâmetro da cratera dos corpos de prova.
58
TAB. 2.13 Efeito da resistência à compressão na penetração e no diâmetro da
cratera.
Tipo
NC40-1
NC40-2
NC40-3
NC60-1
NC60-2
NC60-3
NC60-4
NC90-1
NC90-2
NC90-3
NC120-1
NC120-2
NC120-3
CM-150-2
CM-150-3
CM-150-4
CM-150-5
a/c
Agregado
Dmáx
0,55
fc
(MPa)
45,5
20
mm
0,45
58,3
granito
0,31
87,8
10
mm
0,27
0,23
112,5
quartzo
1,18
mm
150,9
Velocidade
(m/s)
Diâmetro
de danos
(mm)
Penetração
(mm)
668,5
675,6
667,7
694,4
684,9
657,9
657,9
675,5
670,7
679,3
677,5
670,7
678,2
646,6
634,2
675,7
684,9
157,5
155,0
162,5
149,0
151,0
128,0
115,5
133,0
110,0
145,0
108,0
115,0
115,0
125,0
178,0
105,0
123,0
48,0
48,5
46,5
46,0
45,0
39,0
38,0
41,0
38,5
41,0
31,0
28,5
30,5
31,0
36,5
31,5
33,5
(Fonte: ZHANG et al., 2005)
TAB. 2.14 Efeito da fibra de aço na penetração e no diâmetro da cratera.
Tipo
NC90-1
NC90-2
NC90-3
NCF90-1
NCF90-2
NC120-1
NC120-2
NC120-3
NCF120-1
NCF120-2
CM-150-2
CM-150-3
CM-150-4
CM-150-5
QFF-1
QFF-2
QFF-3
a/c
Fibra
de aço
(%)
Agregado
Dmáx
-
fc (MPa)
Velocidade
(m/s)
Diâmetro
de danos
(mm)
Penetração
(mm)
675,5
670,7
679,3
665,0
640,5
677,5
670,6
678,2
678,0
650,0
646,6
634,2
675,7
684,9
644,3
694,4
704,2
133,0
110,0
145,0
82,5
93,0
108,0
115,0
115,0
70,0
57,0
125,0
178,0
105,0
123,0
85,0
67,5
75,0
41,0
38,5
41,0
38,0
36,5
31,0
28,5
30,5
33,5
28,0
31,0
36,5
31,5
33,5
39,0
30,5
39,5
87,8
0,31
1,5
granito
10
mm
93,5
-
112,5
1,5
115,0
0,27
0,23
150,9
quartzo
1,18
mm
1,5
187,2
(Fonte: ZHANG et al., 2005)
59
TAB. 2.15 Efeito da temperatura de cura na penetração e no diâmetro da cratera.
Tipo
QFF-30-1
QFF-30-2
QFF-30-3
QWF-90-1
QWF-90-2
QWF-90-3
QOF-1-1
QOF-1-2
QOF-1-3
QOF-2-1
QOF-2-2
QOF-2-3
a/c
Temperatura
cura (°C)
fc (MPa)
30
187,2
90
183,6
0,23
203,5
250
0,18
237,0
Velocidade
(m/s)
Diâmetro de
danos (mm)
Penetração
(mm)
644,3
694,4
704,2
637,6
621,3
694,4
653,0
644,5
625,0
620,0
647,5
636,0
85,0
67,5
75,0
85,0
82,0
87,5
87,0
85,1
80,0
81,0
85,0
84,5
39,0
30,5
39,5
35,5
35,5
30,0
35,0
31,0
32,0
28,5
30,5
28,5
(Fonte: ZHANG et al., 2005).
Verificou-se dos ensaios que os danos nos corpos de prova dependem da
velocidade de impacto, da massa, da geometria e do tipo do material do projétil, bem
como das propriedades do concreto e do reforço adicionado à estrutura do corpo de
prova.
Os resultados indicaram que o comprimento de penetração (v. FIG. 2.27) e o
diâmetro da
cratera nos
corpos
de
prova
apresentam uma
redução com
aumento da resistência do concreto à compressão até certo valor.
FIG. 2.27 Efeito da resistência do concreto à compressão no comprimento de
penetração dos corpos de prova de concreto ensaiados por ZHANG et al. (2005).
60
o
A FIG. 2.28 ilustra o aspecto pós-ensaio dos corpos de prova de concreto
impactados com projéteis.
(a) corpo de prova da mistura NC 45;
(b) corpo de prova da mistura NC 60;
(c) corpo de prova da mistura NC 90;
(d) corpo de prova da mistura NC 120;
(e) corpo de prova da mistura CM 150.
FIG. 2.28 Aspecto pós-ensaio balístico dos corpos de prova
(Fonte: ZHANG et al., 2005)
61
Para concreto de fc = 115 MPa, o comprimento de penetração e o diâmetro da
cratera foram, respectivamente, 40% e 60% inferiores aos do concreto de
fc = 45 MPa.
Da FIG. 2.29, averiguou-se que, para maiores valores de velocidade de impacto
do projétil, maior o comprimento de penetração.
FIG. 2.29 Efeito da velocidade de impacto no comprimento de penetração dos
concretos NCF90 ensaiados por ZHANG et al. (2005).
Constatou-se que a presença de agregados graúdos de granito parece ser
benéfica na redução do comprimento de penetração, do diâmetro da cratera e
da propagação de trincas.
Pode-se conseguir um aumento na resistência à compressão do concreto com a
redução do fator água-cimento, isso porem não implica necessariamente na
diminuição do comprimento de penetração ou no diâmetro da cratera.
Ao se incorporar fibras de aço no concreto, notou-se que ocorre redução do
diâmetro da cratera e da propagação de trincas nos corpos de prova, porém não foi
verificada uma diminuição significativa no comprimento de penetração.
O aumento na temperatura de cura de 30 ºC para 250 ºC não alterou de forma
significativa a resistência ao impacto dos corpos de prova de concreto.
Concluiu-se que, baseado nos resultados alcançados e nos custos, o concreto de
alta resistência com fibras de aço com fc de 100 MPa é um material eficiente na
proteção contra impactos balísticos.
62
2.7.6 VOSSOUGHI ET AL. (2007)
Os autores estudaram o comportamento de placas de concreto reforçadas por
tecidos de polipropileno e zylon submetidas a impacto balístico. Foram avaliados o
comprimento de penetração (xp), a espessura de perfuração (he), e a espessura de
estilhaçamento (hs). Através de modelos empíricos disponíveis para a previsão do
comprimento de penetração, foram feitas comparações com o programa
experimental, dentre esses modelos, foi dada ênfase no método modificado do
National Defense Research Comitee (NRDC) e o modelo de expansão de cavidade.
Perfuração
Completa
Área de Fragmentação
Área de
Estilhaçamento
Vi – velocidade inicial do projétil;
t
Vr – velocidade após a perfuração;
d – diâmetro do projétil;
Penetração Parcial
t – espessura da placa;
xp – profundidade de penetração;
kd – profundidade da fragmentação.
FIG. 2.30 Corpo de prova após impacto.
(Fonte: VOSSOUCHI et al., 2007).
As placas de concreto (fc entre 30 MPa e 43 MPa) tinham seção quadrada de
30,5 cm de dimensão e espessuras de 2,54 cm ou 3,81 cm. Confeccionaram-se 30
placas, sendo 9 delas sem tecido. O reforço foi executado colando-se tecidos na
face posterior à face do tiro ou nas duas faces. Para a confecção das placas seguiu-
63
se as proporções de 1 : 2,33 : 1,76 : 0,57, respectivamente, cimento, areia, brita
(Dmax = 6,35 mm) e água.
Para as amostras com tecido, este foi colocado no fundo do molde e o concreto
foi lançado sobre o tecido, a outra folha de tecido foi posicionada na parte superior
do concreto lançado na forma. Não foi usado adesivo no processo. Verificou-se que
o tecido colocado no topo não aderiu bem ao concreto quando comparado ao da
outra face. As placas de espessura nominal de 2,54 cm foram ensaiadas com a
idade de 28 dias e as de 3,81 cm foram ensaiadas com 52 dias.
Os tecidos de reforço tinham resistência máxima ao carregamento linear
1550 N/cm (Zylon) e 180 N/cm (polipropileno).
Para os testes balísticos foi utilizada uma arma de pressão (gás nitrogênio –
pressão máxima 10,3 MPa, calibrada de acordo com a velocidade necessária) com
cano de 1,27 cm de diâmetro e 132 cm de comprimento, para lançar projéteis
cilíndricos de 12,7 mm de diâmetro e 34 g de massa.
Os painéis de concreto foram fixados a uma placa grossa de aço de 1,27 cm de
espessura por 4 braçadeiras, uma em cada extremidade. A placa de aço ficava na
parte frontal do painel e tinha uma abertura circular para passagem do projétil.
A nomenclatura utilizada tinha o seguinte significado: “ ” – indica a geometria de
painel; “C” – espécimes sem tecido; “ ” – reforço de polipropileno; “Z” – reforço de
Zylon; números de “1 a 3” – corresponde a espessura de 3, 1 cm e de “ a ” –
espessura de 2,54 cm. As amostras PP4, PP6, PZ4 e PZ6, tinham tecido apenas em
um lado.
Durante os ensaios verificaram-se as seguintes respostas do projétil no corpo de
prova: perfurado (P) - o projétil passou inteiramente através da placa, perfuração
limitada (PL) - projétil ficou alojado entre a placa e o tecido, perfurado e expulso (PB)
- o projétil atravessou o painel e foi expulso para a retaguarda e não perfurado (UP) painel foi atingido, mas o projétil foi rebatido.
Os resultados dos testes de impacto incluindo as velocidades inicial (Vi) e
residual (Vr) são apresentados na TAB. 2.16.
O valores de he e hs, para prever espessuras mínimas do corpo de prova para
que não ocorra perfuração e estilhaçamento, respectivamente, foram calculadas
baseadas no método do NDRC.
64
Verificou-se da TAB. 2.16 que as placas de 3,81 cm de espessura reforçadas
com tecidos de zylon foram as mais eficientes, pois o concreto por si só foi capaz de
absorver quase toda a energia cinética e o tecido segurou os estilhaços de concreto.
No entanto, para as amostras mais finas o tecido foi capaz de absorver uma parte da
energia do impacto junto com o concreto.
Tipo
PC1
PC2
PC3
PP1
PP2
PP3
PZ1
PZ2
PZ3
PP1
PP2
PP3
PC4
PC5
PC6
PC7
PC8
PC9
PP4
PP5
PP6
PP7
PP8
PP9
PZ4
PZ5
PZ6
PZ7
PZ8
PZ9
TAB. 2.16 Resultado do experimento.
fc (MPa) Vi Vr Resposta x/d hs (cm) he (cm)
235 UP
0,86
4,18
2,81
41
167 P
1,37
5,06
3,83
192 22
P
1,55
5,37
4,11
200 0
PL
1,62
5,49
4,23
40
189 0
PL
1,54
5,35
4,10
188 9
P
1,54
5,35
4,10
187 0
PB
1,50
5,28
4,04
43
184 0
PB
1,48
5,24
4,00
196 0
PL
1,56
5,39
4,14
187 13
P
1,65
5,54
4,27
186 24
P
1,64
5,53
4,26
171 9
P
1,52
5,31
4,07
30
99 21
P
0,87
4,19
2,83
92 11
P
0,82
4,1
2,70
82 0
PB
0,73
3,96
2,48
84 0
PB
0,73
3,95
2,46
35
72 0
PB
0,63
3,77
2,18
90 0
PB
0,77
4,02
2,57
142 72
P
1,29
4,91
3,70
30
103 34
P
0,96
4,35
3,05
89 14
P
0,85
4,16
2,78
106 0
PB
0,93
4,31
2,99
9 12
P
0,85
4,16
2,78
87 0
PL
0,79
4,05
2,63
37
106 0
PB
0,94
4,31
3,00
113 0
PL
0,99
4,40
3,12
123 0
PB
1,07
4,55
3,30
131 0
PL
1,12
4,62
3,39
39
143 0
PL
1,21
4,78
3,56
142 17
P
1,20
4,77
3,55
(Fonte: VOSSOUCHI et al., 2007).
Verificou-se que, nas placas de concreto reforçadas com tecido na face posterior,
houve considerável redução no estilhaçamento do concreto, tendo sido os
fragmentos de concreto contidos pelos tecidos.
65
Os resultados de penetração foram comparados com fórmulas empíricas
disponíveis na literatura. Demonstrou-se que as atuais formulações não predizem
com precisão o comprimento de penetração do projétil no concreto reforçado com
tecido.
Observou-se em todas as placas de concreto simples (sem tecido) ruptura frágil.
A face posterior ao tiro apresentou fissuras que dividiram a placa em quatro partes.
A formulação do NDRC para avaliação do comprimento de penetração levou a
resultados coerentes com os das placas de concreto sem reforço, o que não ocorreu
quando as placas tinham reforço.
Concluiu-se que a espessura dos painéis de concreto tem um significativo efeito
na resistência à penetração
2.7.7 DANCYGIER ET AL. (2007)
Os autores estudaram o desempenho do CAR submetido a impacto balístico,
com o objetivo de investigar a influência dos materiais empregados na confecção do
concreto e de reforço na resistência à penetração de projétil. Foram variados a
dimensão máxima dos agregados graúdos (12 mm, 22 mm e 50 mm), as fibras de
aço (2 tipos: 60 mm de comprimento e fator de forma 67; 30 mm de comprimento e
fator de forma 60 na taxa de 60 kg/m3), barras de aço e adição de microssílica.
Inicialmente foram testadas placas de 400 mm x 400 mm x 50 mm de concreto
alvejadas por projéteis de 25 mm de diâmetro e 165 g de massa.
Observou-se que a resistência à compressão do concreto não é o único
parâmetro que deve ser levado em conta no projeto de estruturas submetidas a
impacto, mas também a necessidade de incluir fibras ou barras de aço e selecionar
os materiais componentes do concreto. Também foi notado que os danos nas faces
foram diminuídos com a adição de fibras e/ou barras de aço. ALMANSA e CANOAS
(1999), ONG et al. (1999) e LI et al. (2005) constataram que a adição de fibras ao
concreto melhora sua resistência ao impacto.
Depois foram confeccionadas 39 placas de concretos (f c entre 30 MPa e
119 MPa) com 800 mm x 800 mm x 200 mm de dimensões para serem submetidas
ao impacto de projéteis de aço com 50 mm de diâmetro e 1500 g, cuja velocidade
máxima de 315 m/s foi controlada por uma arma propulsora.
66
As placas foram armadas com barras de aço com taxas de armadura iguais a
0,14% na face anterior (face do tiro) e a 0,28% na face posterior, respectivamente
ᴓ 8 mm c 20 cm e ᴓ 8 mm c 10 cm, conforme mostra a FIG. 2.31.
Para os corpos de prova de concreto de resistência normal foram utilizados
agregado graúdo com dimensão máxima de 22 mm, teor de cimento de 290 kg/m 3 e
fator água-cimento de 0,65, resultando num concreto com fc aos 28 dias de 30 MPa.
Para o CAR foram utilizados 425 a 495 kg/m 3 de cimento, 1430 kg/m3 a 1595
kg/m3 de agregados graúdos, fator água-cimento entre 0,27 e 0,33 e nas misturas
com adição de microssílica, o fator água-cimento foi 0,25 a 0,29. Adicionou-se
também um super-plastificante em quantidades que variaram de 11 l/m3 a 18 l/m3.
Além disso, todas foram dosadas para fc = 100 MPa, obtendo uma faixa de 93 MPa a
119 MPa.
FIG. 2.31 Armadura interna das placas de concreto.
(Fonte: DANCYGIER et al., 2007)
Como resultados foram medidas a velocidade do projétil, o comprimento de
penetração e as áreas de danos nas faces anterior e posterior, conforme TAB. 2.17.
.
67
TAB. 2.17 Resultado do experimento.
Tipo
Normal
Barras Aço
Micro
Sílica
Fibras
Aço
-
-
40
-
S
108
-
-
S
S
S
-
S
S
Anterior
Posterior
Dmax
(mm)
22
Fck
(MPa)
119
102
ᴓ8mm c
20cm
ᴓ 8mm c
10cm
117
104
50
Concreto
Alta
Resistência
S
S
S
S
22
109
S
S
12
106
-
S
S
S
S
S
S
S
S
S
S
S
S
S
113
101
50
93
94
ᴓ 8mm c
10cm
ᴓ 8mm c
10cm
ᴓ 8mm c
10cm
+
ᴓ 8mm c
10cm
(transversal)
ᴓ 6mm c
10cm
+
ᴓ 6mm c
10cm
(intermediária)
ᴓ 8mm c
10cm
114
ᴓ 8mm c 5cm
102
ᴓ 8mm c
10cm
+
ᴓ 8mm c
10cm
(transversal)
ᴓ 6mm c
10cm
+
ᴓ 6mm c
10cm
(intermediária)
Diâmetro de danos
(mm)
Anterior Posterior
313
482
279
436
249
525
345
545
229
379
235
455
209
456
224
490
363
600
375
546
315
430
224
0
260
550
232
430
242
490
543
700
338
602
290
423
319
600
216
469
259
0
220
525
280
0
250
465
301
300
172
445
290
0
355
530
305
470
274
588
299
497
290
430
283
475
300
440
345
390
Vel
(m/s)
Penetração
(mm)
204
203
250
245
285
273
276
282
270
254
309
243
276
289
281
282
278
291
287
289
262
279
289
291
307
292
286
292
313
313
314
270
286
287
289
127
135
200
200
200
142
200
152
200
200
200
90
152
200
180
200
200
200
180
200
128
150
145
135
200
200
147
168
200
200
163
140
165
170
200
286
200
270
385
284
200
290
420
287
200
268
595
292
175
315
540
110
22
103
(Fonte: DANCYGIER et al., 2007)
Verificou-se que todas as placas com CAR tiveram maior resistência à
penetração que as com concreto de baixa resistência. Quanto maior o tamanho e a
dureza do agregado, maior resistência à penetração.
Constatou-se que os danos na face anterior foram maiores nas placas de CAR
que os nas placas de concreto convencional. Quando se adicionou fibras de aço ao
concreto, menores foram os danos nesta face. A adição de microsílica ao concreto
não influenciou estes danos e pouco contribuiu para a redução do comprimento de
68
penetração do projétil no concreto. O aumento do reforço de barras de aço não
contribuiu para a sua diminuição.
Com relação aos danos na face posterior, verificou-se que a adição de fibras
contribuiu para a diminuição dos danos, resultado semelhante foi obtido e relatado
por ZHANG et al. (2005), pois promovem redução da propagação das fissuras no
concreto. A adição de microsílica causou um ligeiro aumento dos danos.
Foi observado que quanto mais duro é o agregado, maior é a resistência à
penetração e menores são os danos nas faces da placa de concreto após o teste
balístico, porém quanto maior é seu tamanho, maiores são os danos nestas faces,
porque o agregado tende a sair por inteiro.
As barras de aço da armadura interna tiveram efeito insignificante na redução do
comprimento de penetração, porém contribuíram para a redução dos danos na face
posterior ao tiro.
Concluiu-se que as formulações existentes para prever o comprimento de
penetração do projétil em CAR não levam a resultados satisfatórios.
Os autores depreenderam que, para aumentar a resistência de placas de
concreto submetidas a impacto balístico, é necessário melhorar as propriedades da
estrutura, não somente aumentar a resistência do concreto à compressão.
2.7.8 MOHAMED ET AL. (2009)
Os autores estudaram a influência do uso de malhas de aço no reforço de placas
de concretos simples e armado submetidos a impacto balístico. Variou-se o número
de camadas de malhas de aço (1 a 3), foi medido o comprimento de penetração do
projétil e monitoraram-se os danos nas faces anterior e posterior ao tiro.
As placas tinham seção quadrada com 550 mm x 200 mm de dimensões. No
reforço foi utilizada malha de aço quadrada com 500 mm de tamanho, tendo
abertura e espessura de 50 mm e 2 mm, respectivamente, conforme mostra a
FIG. 2.32.
69
FIG. 2.32 Placa de concreto reforçada com a malha de aço.
(Fonte: MOHAMED et al., 2009)
A TAB. 2.18 reúne dados das placas de concreto ensaiadas sem ou com reforço.
TAB. 2.18 Descrição das placas ensaiadas.
Nr
Tipo
1
2
3
4
5
6
7
SC 1
SC 2
SW 1-3
SW 2-3
SW 1-2
SW 1-1
SW 2-1
Espessura
(cm)
Descrição
Camadas de aço
na placa anterior
60
3 placas CS
40
2 placas CS
40
CA3 + CS
3
40
CA3 + CA3
3
40
CA2 + CA2
2
40
CA1 + CA1
1
40
CA2 + CA1
2
CA – concreto armado e CS – concreto simples.
CA1, CA 2 ou CA3 – 1, 2 ou 3 camadas de aço.
(Fonte: MOHAMED et al., 2009)
Camadas de
aço na placa
posterior
3
2
1
1
As placas SC1 e SW1-2 estão detalhadas de acordo com a FIG. 2.33.
O concreto possuía resistência à compressão de 35 MPa, resistência à tração de
3,1 MPa e módulo de elasticidade longitudinal de 29 GPa e massa específica de
2350 kg/m3, dosado com o traço de 1:2:4:0,5; respectivamente cimento, areia, brita
(dimensão máxima do agregado graúdo de 19 mm) e água.
Os projéteis utilizados nos testes balísticos tinham 23 mm de diâmetro e 175 g de
massa. A velocidade média destes atingiu 970 m/s.
Na TAB. 2.19 encontram-se os resultados de comprimento de penetração do
projétil nas placas ensaiadas.
70
FIG. 2.33 Seção transversal das placas SC1 e SW1-2.
(Fonte: MOHAMED et al., 2009)
TAB. 2.19 Resultados de comprimento de penetração nas placas ensaiadas.
Nr
Tipo
Espessura (cm) Velocidade (m/s) Penetração (cm)
1
SC 1
60
974
40,0
2
SC 2
40
976
40,0
3 SW 1-3
40
976
40,0
4 SW 2-3
40
978
28,0
5 SW 1-2
40
996
28,7
6 SW 1-1
40
994
29,0
7 SW 2-1
40
979
28,5
(Fonte: MOHAMED et al., 2009)
Dos testes balísticos constatou-se que o uso da malha de aço reduziu
aproximadamente 30% do comprimento de penetração dos projéteis nas placas de
concreto, conforme pode ser visto na TAB. 2.19.
O uso da malha de aço também levou a diminuição dos danos nas faces anterior
e posterior das placas, sendo que na face anterior esta redução de danos ficou em
torno de 50%.
Verificou-se também que quanto maior o número de camadas de malhas de aço,
menores foram os danos na face posterior das placas de concreto e pouca mudança
no comprimento de penetração do projétil.
Concluiu-se que o número ideal e econômico de camadas de malhas de aço é de
somente 2, podendo ser aplicada uma camada de malha de aço na face anterior e
outra camada na face posterior da placa de concreto.
O processo de penetração/perfuração nas placas de concreto foi visível em três
fases: cratera frontal, túnel na região central e cratera posterior, e essas fases são
válidas para as placas com armação ou sem reforço.
71
2.7.9 SOBRAL (2011)
A autora estudou o comportamento de placas quadradas, de 30 cm de dimensão,
de concreto simples e concreto reforçado com fibras de aço quando submetidas à
carga de impacto balístico.
Os parâmetros variados neste programa experimental foram a resistência do
concreto à compressão (fc = 30 MPa, 70 MPa e 90 MPa), o tipo de fibras de aço
(fibras longas e fibras médias) e a massa volumétrica das fibras de aço (40 kg/m³, 80
kg/m³ e 120 kg/m³), a espessura das placas (t = 25,4 mm, 38,1 mm, 50,8 mm,
70,0 mm, 100,0 mm e 150,0 mm), e o calibre (0.50 pol, 7,62 mm e 9 mm) e a
velocidade de impacto dos projéteis (v = 326,8 m/s a 915,5 m/s).
As fibras de aço empregadas no experimento são vista na FIG. 2.34.
No estudo foi criada uma nomenclatura para cada corpo de prova para melhor
identificá-los (por exemplo: C30-25,4-AL80: corpo de prova de 25,4 mm de
espessura, concreto de 30 MPa, reforçado com fibras longas e massa de fibras igual
a 80 kg/m³ e C70-50,8-S: corpo de prova de 50,8 mm de espessura, concreto de
70 MPa, placa de concreto simples).
(a) Fibra Média - BSF 36;
(b) Fibra Longa - BSF 49.
FIG. 2.34 Fibras de aço empregadas no experimento.
(Fonte: SOBRAL, 2011).
O ensaio balístico consistiu da execução de um tiro por placa na região central
da mesma. Foi utilizada uma arma para a execução do tiro, um túnel para medida da
velocidade e um pórtico de aço para fixação dos corpos de prova.
72
Como resultados dos ensaios balísticos foram obtidos a velocidade do projétil e o
comprimento de perfuração. Nas TAB. 2.20 a TAB. 2.22 serão mostrados apenas os
resultados nas placas em que os projéteis penetraram, pois os corpos de prova onde
aconteceram a perfuração ou a ruptura da placa serão desprezados.
TAB. 2.20 Concretos grupo de 30 MPa.
Velocidade
Penetração
Placa
Calibre
(m/s)
(mm)
C30-38,1-S
426,0
9
19,00
C30-50,8-S
416,0
9
18,50
C30-50,8-S
431,5
9
17,00
C30-38,1-AL-40
432,0
9
22,00
C30-50,8-AL-40
420,0
9
17,50
C30-50,8-AL-40
439,4
9
15,50
C30-38,1-AM-40
435,1
9
19,00
C30-38,1-AM-40
350,0
9
18,50
C30-50,8-AM-40
439,2
9
16,00
C30-50,8-AM-40
337,0
9
14,00
C30-38,1-AL-80
438,4
9
21,50
C30-38,1-AL-80
341,0
9
13,50
C30-50,8-AL-80
442,5
9
17,50
C30-50,8-AL-80
349,0
9
11,00
C30-38,1-AM-80
416,0
9
20,00
C30-38,1-AM-80
326,8
9
11,00
C30-50,8-AM-80
417,0
9
17,50
C30-100-S
845,6
7,62
44,78
C30-150-S
840,4
7,62
41,34
C30-70-AL-80
833,2
7,62
33,49
C30-100-AL-80
832,3
7,62
41,42
C30-150-AL-80
838,0
7,62
41,06
(Fonte: SOBRAL, 2011).
Ao final do experimento, verificou-se que todas as placas com espessura de
25,4 mm de espessura sofreram perfuração após o impacto, independente do calibre
do projétil ou da quantidade de fibras de aço. As placas de concreto com fibras,
espessura de 38,1 mm, resistiram ao impacto de projéteis 9 mm com destacamento
de material na face oposta ao tiro. As placas reforçadas com fibras de 50,8 mm de
espessura resistiram ao impacto de projéteis 9 mm sem haver perda de material na
face oposta ao tiro. As placas reforçadas com fibras de 70 mm e 100 mm de
73
espessura resistiram ao impacto 7,62 mm e as reforçadas com fibras de 150 mm de
espessura resistiram ao impacto do 7,62 mm e 0.50 pol.
Todas as placas sem fibras de aço se romperam com o impacto do projétil
0.50 pol. As placas sem reforço de 100 mm e 150 mm resistiram ao impacto do
7,62 mm.
TAB. 2.21 Concretos grupo de 70 MPa.
Velocidade
Penetração
Placa
Calibre
(m/s)
(mm)
C70-70-AL-80
840,81
7,62
28,48
C70-100-AL-80
837,36
7,62
25,84
C70-150-AL-80
838,15
7,62
29,39
C70-150-AL-80
791,33
0.50
55,86
C70-100-S
832,87
7,62
28,75
C70-150-S
834,93
7,62
28,44
(Fonte: SOBRAL, 2011).
A autora concluiu que o concreto sem fibras não apresentou resultados
satisfatórios para os projéteis de maior calibre, pois não ofereceu qualquer tipo de
segurança ao usuário deste concreto para fins de proteção balística, sendo o
concreto de alta resistência com fibras de aço uma eficiente alternativa para
proteção balística.
TAB. 2.22 Concretos grupo de 90 MPa.
Velocidade
Penetração
Placa
Calibre
(m/s)
(mm)
C90-70-AL-120
837,4
7,62
27,02
C90-100-AL-120
839,58
7,62
31,55
C90-150-AL-120
776,74
0.50
62,36
C90-150-AL-120
835,75
7,62
29,45
C90-100-S
842,72
7,62
28,21
C90-150-S
843,1
7,62
28,44
C90-70-AL-80
839,28
7,62
23,24
C90-100-AL-80
836,56
7,62
31,05
C90-150-AL-80
777,97
0.50
63,51
C90-150-AL-80
842,46
7,62
30,80
(Fonte: SOBRAL, 2011).
74
3 PROGRAMA EXPERIMENTAL
3.1 INTRODUÇÃO
Com o objetivo de ampliar os dados disponíveis sobre impacto balístico em
estruturas de concreto, foi elaborado um programa experimental que englobou o
ensaio balístico em 110 placas de concreto.
Em função dos resultados de SOBRAL (2011), utilizou-se apenas uma
resistência média à compressão para o concreto de todo o estudo (f c = 70 MPa).
Os parâmetros variados no experimento foram a espessura das placas de
concreto, as armaduras e o calibre e a velocidade dos projéteis.
A espessura das placas assumiu seis valores: 38,1 mm, 50,8 mm, 70,0 mm,
100,0 mm, 125,0 mm e 150,0 mm.
A armadura interna com o uso de barras de aço também ficou limitada ao
emprego de uma mesma taxa de armadura para cada espessura de corpo de prova,
sendo cerca de quatro vezes a armadura mínima de acordo com a NBR 6118:2007.
Também foram adicionadas internamente fibras de aço, mas não houve variação na
quantidade, tendo sido empregada apenas uma taxa em massa por metro cúbico de
concreto, sendo 80 kg/m3.
O reforço em folhas unidirecional de resina e fibra de carbono e tecido
bidirecional de resina e fibra de vidro foi variado em função do número de camadas
(uma ou duas camadas) nas placas de concreto.
O diâmetro dos projéteis utilizados foram de 9 mm, 7,62 mm e 12,7 mm (calibre
0.50 pol), tendo suas velocidades variando entre v = 419,7 m/s e 907,7 m/s.
Todas as placas quadradas de concreto, de 30 cm de dimensão, foram
solicitadas por um tiro próximo à região central, com ângulo de impacto de 90o com
relação ao plano da placa (obliqüidade nula).
A descrição dos ensaios, os materiais empregados, a execução e os resultados
são apresentados a seguir.
75
3.2 ENSAIOS EXECUTADOS
Os corpos de prova foram distribuídos em dois grupos: concreto simples (CS) e
concreto armado (CA). Foram adicionados, externamente, às placas, compósitos de
carbono (FC) e de vidro (FV), e internamente, fibras de aço (FA).
Foram confeccionadas 110 placas para a realização dos ensaios balísticos,
distribuídas conforme TAB. 3.1.
TAB. 3.1 Resumo dos corpos de prova confeccionados.
Calibre
Espessura
(mm)
Quantidade
38,1
50,8
70,0
100,0
125,0
150,0
total
27
20
19
19
19
6
110
9 mm
7,62 mm
0.50 pol
25
5
30
2
15
16
11
7
1
52
3
8
12
5
28
Todas as placas foram ensaiadas balisticamente com apenas um tiro na região
central da placa com 9 mm, 7,62 mm ou 0.50 pol em câmara de tiro destinada a esta
finalidade.
No intuito de caracterizar o concreto executado em betoneira, foram realizados
ensaios de compressão de corpos-de-prova cilíndricos, conforme NBR 5739:2007,
para avaliação da resistência do concreto à compressão (f c) e de módulo de
elasticidade longitudinal, de acordo com a NBR 8522:2008.
Nos compósitos de resinas e fibras de carbono e vidro foram executados ensaios
de tração para determinação da sua resistência à tração, do seu módulo de
elasticidade e da sua deformação última.
3.2.1 NOMENCLATURA ADOTADA PARA AS PLACAS
Cada placa possuía sua nomenclatura respeitando o padrão adotado pelo
trabalho. Para isso o experimento foi dividido em dois grandes grupos: concreto
armado (CA) e concreto simples (CS), ou seja, com e sem barras de aço. Como a
resistência média do concreto à compressão era de 70,0 MPa, adotou-se CA70 ou
76
CS70. Para evidenciar a espessura do corpo de prova quadrado, escreveu-se tal
como CA70-38,1 ou CS70-70,0. A adição de fibras de aço na proporção de 80 kg
por m3 ao concreto foi designada FA80. O reforço com uma camada de compósito
de resina e fibras de vidro ou para 2 camadas foi expresso por FV1 ou FV2; para o
compósito de resina e fibras de carbono, FC1 ou FC2.
Assim uma placa com a denominação CA70-125,0-FA80-FV2 foi confeccionada
com concreto fc = 70 MPa, possuía espessura 125,0 mm, sendo armada com barras
de aço e fibras de aço no consumo de 80 kg/m 3 de concreto e reforçada com duas
camadas de compósito de resina e fibras de vidro.
Para a execução do experimento foram confeccionadas as placas de concreto
simples de acordo com a TAB. 3.2 e de concreto armado, conforme a TAB. 3.3.
TAB. 3.2 Placas de concreto simples ensaiadas.
Placa
CS70-38,1-FA80
CS70-70,0-FA80
CS70-100,0-FA80
CS70-125,0-FA80
CS70-150,0-FA80
CS70-38,1-FA80-FV1
CS70-50,8-FA80-FV2
CS70-70,0-FA80-FV1
CS70-100,0-FA80-FV1
CS70-100,0-FA80-FV2
CS70-125,0-FA80-FV1
CS70-38,1-FA80-FC1
CS70-50,8-FA80-FC1
CS70-50,8-FA80-FC2
CS70-70,0-FA80-FC1
CS70-70,0-FA80-FC2
CS70-100,0-FA80-FC2
CS70-125,0-FA80-FC1
Espessura
(mm)
Fibras de Aço
3
(kg/m )
38,1
70,0
100,0
125,0
150,0
38,1
50,8
70,0
80
Compósitos de fibras
Tipo das
Número de
fibras
camadas de reforço
-
80
Vidro
80
Carbono
100,0
125,0
38,1
50,8
70,0
100,0
125,0
77
-
1
2
1
1
2
1
1
1
2
1
2
2
1
TAB. 3.3 Placas de concreto armado ensaiadas.
Placa
CA70-38,1
CA70-50,8
CA70-70,0
CA70-100,0
CA70-125,0
CA70-150,0
CA70-38,1-FA80
CA70-50,8-FA80
CA70-70,0-FA80
CA70-100,0-FA80
CA70-125,0-FA80
CA70-150,0-FA80
CA70-38,1-FV1
CA70-50,8-FV1
CA70-50,8-FV2
CA70-70,0-FV1
CA70-100,0-FV1
CA70-100,0-FV2
CA70-125,0-FV1
CA70-125,0-FV2
CA70-38,1-FC1
CA70-50,8-FC1
CA70-50,8-FC2
CA70-70,0-FC1
CA70-70,0-FC2
CA70-100,0-FC2
CA70-125,0-FC1
CA70-150-FC1
CA70-150-FC2
CA70-38,1-FA80-FV1
CA70-38,1-FA80-FV2
CA70-50,8-FA80-FV1
CA70-50,8-FA80-FV2
CA70-70,0-FA80-FV2
CA70-100,0-FA80-FV1
CA70-100,0-FA80-FV2
CA70-125,0-FA80-FV1
CA70-125,0-FA80-FV2
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FC2
CA70-50,8-FA80-FC1
CA70-50,8-FA80-FC2
CA70-70,0-FA80-FC1
CA70-70,0-FA80-FC2
CA70-100,0-FA80-FC1
CA70-100,0-FA80-FC2
CA70-125,0-FA80-FC1
Espessura
(mm)
Fibras de
Aço (kg/m3)
38,1
50,8
70,0
100,0
125,0
150,0
38,1
50,8
70,0
100,0
125,0
150,0
38,1
Compósitos de fibras
Número de
Tipo das
camadas
fibras
de reforço
-
-
-
sim
80
-
-
sim
50,8
70,0
-
Vidro
-
Carbono
80
Vidro
80
Carbono
100,0
125,0
38,1
50,8
70,0
100,0
125,0
150,0
38,1
50,8
70,0
100,0
125,0
38,1
50,8
70,0
100,0
125,0
78
Barras
de aço
1
1
2
1
1
2
1
2
1
1
2
1
2
2
1
1
2
1
2
1
2
2
1
2
1
2
1
2
1
2
1
2
1
2
1
sim
sim
sim
sim
3.3 MATERIAIS UTILIZADOS
3.3.1
CONCRETO
Para o experimento decidiu-se por empregar na confecção das placas um
concreto de alta resistência com resistência média à compressão de 70 MPa, com o
uso de adição de sílica ativa e aditivo superplastificante. O fator água-cimento
utilizado foi de 0,35. Tal concreto foi escolhido em função dos resultados de
SOBRAL (2011).
O cimento utilizado foi o CP-V ARI, da HOLCIM, sendo consumidos 457 kg por
3
m de concreto. O agregado miúdo utilizado foi areia natural de rio lavada com
módulo de finura igual a 2,88 e dimensão máxima característica de 2,4 mm. O
agregado graúdo foi gnaisse britado com dimensão máxima característica de
9,5 mm (brita 0).
A adição mineral introduzida ao concreto foi uma dispersão aquosa de sílica ativa
SILITEC na taxa de 10% em massa de cimento. O aditivo superplastificante utilizado
foi uma solução de policarboxilato modificado de TEC FLOW 7000 no consumo de
2,0% em massa de cimento. A FIG. 3.1 mostra as embalagens da adição e do
aditivo empregados.
O traço em massa empregado na execução do concreto está apresentado na
TAB. 3.4.
TAB. 3.4 Composição do concreto dos corpos de prova (fc = 70 MPa).
Concreto 70 MPa
Componentes
Traço (massa) Consumo (kg/m3)
Cimento CP-V ARI
1
457 kg
Areia
1,59
726 kg
Brita 0
2,27
1039 kg
Sílica ativa
0,10
46 kg
Superplastificante
0,02
9,1 kg
Água
0,35
160 kg
Nos concretos com reforço de fibras de aço, as mesmas quantidades de
materiais (v. TAB. 3.4) foram adicionadas ao concreto de forma gradual.
79
(a) Sílica ativa.
(b) Superplastificante.
FIG. 3.1 Adição e aditivo ao concreto.
Por betonada de concreto foram moldados quatro corpos de prova cilíndricos
com dimensões de 150 mm x 300 mm (conforme NBR 573:2008) e em média seis
placas de concreto.
A FIG. 3.2 mostra o aspecto do concreto após sua execução e das formas
prontas de três betonadas.
Para a execução dos ensaios para determinação da resistência à compressão e
do módulo de elasticidade do concreto, foi utilizada a prensa de 5000 kN de
capacidade (v. FIG. 3.3) do Laboratório de Materiais de Construção e Concreto da
Seção de Engenharia de Fortificação e Construção do IME.
Para realização desses ensaios, buscou-se uma data próxima à execução dos
testes balísticos no intuito de obter a resistência e módulo de elasticidade os mais
próximos possíveis da realidade da vida do concreto na data do ensaio balístico,
sendo os corpos de prova mais jovens com 60 dias.
80
FIG. 3.2 Confecção das placas e corpos de prova cilíndricos.
FIG. 3.3 Prensa Amster de 5000 kN de capacidade do IME.
81
A FIG. 3.4 mostra corpos de prova cilíndricos de 150 mm x 300 mm
instrumentados com o uso de extensômetros elétricos de resistência para a
realização dos ensaios na prensa.
FIG. 3.4 Instrumentação dos corpos de prova cilíndricos.
3.3.2
BARRAS DE AÇO
Algumas placas de concreto foram armadas com uma malha de 4 barras em
cada face maior e em cada direção, com exceção das de 38,1 mm de espessura que
somente receberam uma malha de 4 barras em cada direção.
A taxa de armadura (ρs) de cada placa foi constante para cada espessura, como
pode ser vista na TAB. 3.5.
Os valores escolhidos para ρs situaram-se entre cerca de 1,1% e 1,6%, o que em
média fica em torno de 4 vezes a taxa mínima de armadura necessária para se
armar uma estrutura de concreto de fc acima de 50 MPa, conforme a
NBR 6118:2007.
TAB. 3.5 Distribuição das barras por espessura de placa.
Bitola
Nr Barras na face
Nr Barras na face
Taxa de
Espessura
Barra
direção X
direção Y
armadura
(mm)
(mm) Anterior Posterior Anterior Posterior
(ρs %)
38,1
6,3
4
4
1,09
50,8
6,3
4
4
4
4
1,64
70,0
6,3
4
4
4
4
1,19
100,0
8,0
4
4
4
4
1,34
125,0
8,0
4
4
4
4
1,07
150,0
10,0
4
4
4
4
1,40
82
A
FIG. 3.5 mostra o detalhamento das armaduras utilizadas nas placas de
38,1 mm e de 50,8 mm a 150 mm.
(a) Armadura utilizada nas placas de
38,1 mm;
(b) Armadura utilizada nas placas de 50,8
mm a 150 mm.
FIG. 3.5 Detalhamento das armaduras de aço.
A TAB. 3.6 apresenta as especificações nominais das barras de aço empregadas
nas placas.
TAB. 3.6 Especificações nominais das barras de aço.
Espessura
(mm)
Massa Nominal
(kg/m)
Tolerância
Resistência Característica
de escoamento (MPa)
6,3
0,245
± 7%
8,0
0,395
500
10,0
0,617
± 6%
(Fonte: Catálogo de aço para a construção civil da Gerdau, 2009).
A FIG. 3.6 mostra as formas para execução de corpos de prova em concreto
armado.
83
FIG. 3.6 Formas com barras de aço para concretagem.
3.3.3
FIBRAS DE AÇO
As fibras de aço foram distribuídas aleatoriamente, dispersas descontinuamente,
buscando sua homogeneidade na mistura de concreto fresco.
Foi utilizado apenas um tipo de fibra de aço marca Wirand® FF1 da Maccaferri,
cujas especificações constam da TAB. 3.7.
TAB. 3.7 - Especificações do fabricante das fibra de aço Wirand FF1.
Características
Wirand® FF1
Diâmetro (mm)
1,00 ± 0,1
Comprimento (mm)
50 ± 0,5
Fator de forma – comprimento/diâmetro
50
Número de fibras por kg
3244
Resistência à tração do aço (MPa)
>1100
Módulo de elasticidade (GPa)
210
(Fonte: Maccaferri, 2012).
Para a confecção das placas foram adicionadas fibras de aço ao concreto numa
proporção de 80 kg/m3 de concreto, pois é um valor que conduz a aumentos na
resistência e ductilidade de concretos de alta resistência.
84
A FIG. 3.7 mostra forma geométrica das fibras de aço FF1.
FIG. 3.7 Geometria da fibra FF1.
Disponível em: <http://www.officinemaccaferri.com/products/concrete-fibre-reinforcement/steelfibres/13300-2.html>
Acessado em: Janeiro, 2012.
A FIG. 3.8 mostra um conjunto de fibras de aço FF1.
FIG. 3.8 Conjunto de fibras de Aço FF1.
3.3.4
FIBRAS DE CARBONO
Com o objetivo de aumentar a resistência à tração da estrutura de concreto, as
placas foram reforçadas externamente com folhas unidirecional de fibras de carbono
TEC-FIBER da Rheoset, conforme mostra a FIG. 3.9.
A TAB. 3.8 mostra especificações nominais das folhas unidirecionais de fibras
de carbono da RheoSet.
85
FIG. 3.9 Rolo de folha unidirecional de fibras de carbono.
TAB. 3.8 Especificações da folha unidirecional de fibras de carbono da RheoSet.
Resistência à tração
3550 MPa
Módulo de elasticidade 235 GPa
Deformação de ruptura
1,55%
Largura da faixa
500 mm
Espessura de projeto 0,165 mm
Gramatura do material 300 g/m2
Disponível em: <http://www.rheotec.com.br/arquivos/tec-fiber.htm>.
Acessado em: Maio, 2011.
3.3.5
FIBRAS DE VIDRO
As placas de concreto foram reforçadas com tecido bidirecional de fibras de vidro
WR 800, conforme mostra a FIG. 3.10.
A TAB. 3.9 mostra especificações nominais do tecido bidirecional de fibras de
vidro WR 800 da Maxepoxi Industrial e Comercial Ltda.
FIG. 3.10 Rolo de tecido de fibra de vidro
86
TAB. 3.9 Especificações do tecido bidirecional de fibras de vidro.
Gramatura (g/m2)
799
Largura (cm)
140
Comprimento do rolo (m)
50
Área do rolo (m2)
65
Espessura (mm)
0,85
Carga de ruptura de urdume (kgf/cm)
223,3
Carga de ruptura da trama (kgf/cm)
176
Tipo de tecelagem
Tela
Composição
100% vidro
Disponível em: <http://www.maxepoxi.com.br/tecnica_tecidos.asp>.
Acessado em: Janeiro, 2012.
3.3.6
RESINA DE IMPRIMAÇÃO
Para o procedimento de colagem a superfície foi limpa com álcool e nela foi
aplicada a resina de imprimação TEC-POXI PR da RheoSet, que tem a função de
garantir a aderência perfeita da resina epoxídica à superfície da placa de concreto.
Na TAB. 3.10 são expostas características da resina de imprimação TEC-POXI
PR da RheoSet utilizada no trabalho.
A resina TEC-POXI PR é uma resina pré-dosada bi-componente. Para utilizá-la
deve-se misturar os componentes A e B (v. FIG. 3.11), na proporção de 66,7% e
33,3% respectivamente, manualmente por 5 minutos, até se obter uma mistura
homogênea em transparência.
TAB. 3.10 Especificações da resina de imprimação.
Aspecto / Cor
Incolor
Viscosidade
65 a 75 s (CF 4)
Massa específica
1,050 g/cm3
Pot Life (tempo de vida útil da mistura)
mínimo de 40 min
Secagem ao manuseio
máximo 6 hs
Secagem completa
máximo 10 hs
Cura inicial
7 dias
Resistência à tração
20,0 ± 2,0 MPa após 24 horas
Rendimento teórico
250 a 350 g/m2
Disponível em: <http://www.rheotec.com.br/arquivos/tec-poxipr.htm>.
Acessado em Janeiro, 2012.
87
FIG. 3.11 Componentes A e B da resina de imprimação.
3.3.7
RESINA EPÓXI
Para o procedimento de colagem das folhas de fibras de carbono e do tecido de
fibras de vidro na superfície imprimada e seca das placas, foi utilizada a resina
saturante epóxi TEC-POXI da Rheo Set, formulada para colagem e saturação das
fibras para a formação dos compósitos utilizados no reforço estrutural.
Na TAB. 3.11 são expostas características da resina epóxi TEC-POXI da
RheoSet utilizada no trabalho.
Da mesma forma que a resina de imprimação, a resina epóxi TEC-POXI é prédosada bi-componente, sendo sua mistura, também, na proporção de 66,7% e
33,3% (componentes A e B, respectivamente), executada manualmente por 5
minutos, até se obter uma mistura homogênea em transparência.
TAB. 3.11 Especificações da resina epóxi.
Cor
Azul transparente
Viscosidade
70 a 80 s (CF 4)
Massa específica
1,055 g/cm3
Pot Life (tempo de vida útil da mistura)
mínimo de 40 min
Secagem ao manuseio
máximo 6 hs
Secagem completa
máximo 10 hs
Cura total
7 dias
Aderência
1,5 MPa
Resistência à tração
55,0 ± 3,0 MPa após 24 horas
Resistência à compressão
mínimo 60 MPa
Rendimento teórico
250 a 350 g/m2
Disponível em: <http://www.rheotec.com.br/arquivos/tec-poxi.htm>.
Acessado em Janeiro, 2012.
88
A FIG. 3.12 mostra os componentes A e B que compõem a resina epóxi.
FIG. 3.12 Componentes A e B da resina epóxi.
3.3.8
COMPÓSITO DE RESINA E FIBRAS DE CARBONO
O compósito resultante da combinação entre a resina e as fibras de carbono é
denominado Polímero Reforçado com Fibras de Carbono ou Carbon Fiber
Reinforced Polymer (CFRP). No caso do experimento foi fabricado o sistema curado
in situ, ou seja, o tecido de carbono foi colado sobre a superfície das placas de
concreto com a resina epóxi ou sobre outra folha, no caso dos corpos de prova com
duas camadas de folha de carbono.
O CFRP apresenta as desvantagens de baixa resistência ao fogo, deterioração
quando exposto ao tempo e aos raios ultravioletas, risco de vandalismo e elevado
custo se comparados com o compósito de resina e fibras de vidro.
3.3.9
COMPÓSITO DE RESINA E FIBRAS DE VIDRO
Os compósitos formados com fibras de vidro recebem a terminologia GFRP
(Glass Fiber Reinforced Polymer).
Para a execução do GFRP foi utilizada as resinas de imprimação TEC-POXI PR
e a resina epóxi TEC-POXI, ambas de Rheo Set. Sendo executados os mesmos
procedimentos do CFRP.
O GFRP tem vantagens sobre o CFRP no que se refere a custo do material,
elevada durabilidade e capacidade de deformação (para o caso de conter os
89
estilhaços de concreto provenientes dos impactos), grande resistência quando
exposto ao tempo e ao calor. Porém, possui baixo módulo de elasticidade.
3.4
EXECUÇÃO DAS PLACAS
Todo o concreto foi produzido no Laboratório de Materiais de Construção e
Concreto da Seção de Engenharia de Fortificação e Construção do IME utilizando
uma betoneira de 320 litros (v. FIG. 3.13).
Foram confeccionadas formas de madeira resinadas para execução dos corpos
de prova quadrados de 30 cm de dimensão e espessuras de 38,1 mm, 50,8 mm,
70,0 mm, 100,0 mm, 125,0 mm e 150,0 mm, conforme FIG. 3.14.
Para
facilitar
o
processo
de
desforma,
aplicou-se
desmoldante
6000
biodegradável, da Rheoset, antes do enchimento das formas com concreto.
Foram realizadas 15 betonadas, sendo 10 destas de concreto com fibras de aço
e 5, concreto simples.
FIG. 3.13 Betoneira de 320 l de capacidade.
90
FIG. 3.14 Formas de madeira de 30 cm x 30 cm de diferentes espessuras.
Antes de iniciar a concretagem, pesaram-se todos os materiais (v. FIG. 3.15) a
serem empregados (areia, brita 0, sílica ativa, superplastificante e fibras de aço),
organizaram-se as formas de madeira e passou-se o desmoldante nas mesmas.
(a) Areia e brita 0;
(b) Sílica ativa, superpastificante e fibras de aço.
FIG. 3.15 Material pesado para concretagem.
Para a execução do concreto tomou-se o seguinte procedimento: primeiramente
colocaram-se na betoneira toda a quantidade de agregado graúdo e 1/3 da água
91
prevista (v. FIG. 3.16a), ligou-se a betoneira e fez a mistura girar cerca de 3 min para
que toda a brita fosse molhada; em seguida adicionaram-se todo o cimento, a sílica
ativa e 1/3 de água, deixando-se a betoneira girar por mais 3 min para que toda a
brita fosse envolvida pela pasta de cimento (v. FIG. 3.16b e c); adicionaram-se então
o agregado miúdo e 1/3 de água restante misturada com o superplastificante
(v. FIG. 3.16d), deixando a betoneira girar por um período de 5 minutos para a
homogeneização completa do concreto.
Para o concreto com fibras de aço, estas foram adicionadas manualmente aos
poucos de forma lenta e uniforme (v. FIG. 3.17a) após a adição da areia, seguindo
então a sequência anteriormente descrita até o final do processo de concretagem
(v. FIG. 3.17b).
(a) brita 0 e 1/3 da água;
(b) Adição de cimento, sílica ativa;
(c) adição de 1/3 da água;
(d) Areia, 1/3 da água e superplastificante.
FIG. 3.16 Sequência de execução do concreto do trabalho.
92
(a) colocação das fibras de aço;
(b) concreto + fibras de aço.
FIG. 3.17 Sequência de execução do concreto com fibras.
Após a mistura, o concreto fresco pronto foi colocado nas formas e adensado
(v. FIG. 3. 18).
FIG. 3. 18 Concreto pronto.
No adensamento do concreto utilizou-se vibrador de imersão (v. FIG. 3.19a) com
diâmetro de 25 mm, para os corpos de prova cilíndrico, ou a mesa vibratória (v. FIG.
3.19b), para as placas quadradas. O adensamento foi realizado durante e
imediatamente após o seu lançamento manual nas formas.
93
(a) Vibrador de imersão;
(b) Mesa vibratória.
FIG. 3.19 Equipamentos utilizados no adensamento do concreto.
Para diminuir a evaporação da água foram colocados sacos plásticos sobre a
superfície dos corpos de prova de concreto recém-moldados no intuito de favorecer
a cura do concreto, FIG. 3.20.
FIG. 3.20 Corpos de prova recém-moldados com plástico na superfície.
94
Após 24 horas, as placas e os cilindros de concreto foram retirados das formas e
imersos em tanque com água saturada de cal por 7 dias, após o que, foram
colocados em condições ambientes do laboratório até a data do ensaio.
A FIG. 3.21 mostra o aspecto das placas de concreto após serem retiradas das
formas de madeira.
FIG. 3.21 Placas de concreto após a desforma.
3.5
APLICAÇÃO DO REFORÇO DE RESINA E FIBRAS
O sistema de reforço das placas foi formado por compósitos de resina e fibras de
carbono ou fibras de vidro, variando-se o número de camadas de reforço (uma ou
duas camadas). A aplicação do reforço seguiu a sequência da FIG. 3.22.
95
(a) Aplicação do primer na superfície de
concreto por meio de pincel;
(b) Aplicação da resina para saturação
do compósito de fibras de carbono;
(c) Aplicação da resina na superfície de
concreto após ter recebido primer;
(d) Aplicação da folha de fibras de
carbono na superfície de concreto
com rolo, após ter recebido resina;
(e) Aplicação da resina sobre folha de
fibras de carbono colada com pincel;
(f) Placa com uma camada de resina e
fibra de carbono pronta.
FIG. 3.22 Etapas de execução do sistema de reforço estrutural nas placas.
Para o corpo de prova com duas camadas de reforço, o procedimento foi o
mesmo, tendo sido feitas as etapas descritas na FIG. 3.23.
. O procedimento para a execução de uma e/ou duas camadas de reforço com
compósito de resina e fibras de vidro é semelhante ao das FIG. 3.22 e FIG. 3.23.
96
(a) Aplicação da resina para saturação da
2ª camadas do compósito de fibras de
carbono;
(c) Aplicar novamente resina na superfície
da 2ª camada;
(b) Aplicação da 2ª camada sobre a 1ª;
(d) Aplicação novamente do rolo.
FIG. 3.23 Etapas para a execução da 2ª camada do reforço.
A FIG. 3.24 mostra duas placas reforçadas com os compósitos de resina e fibras
de carbono e de vidro.
(a) Corpo de prova com duas camadas de
fibra de carbono pronto;
(b) Corpo de prova com uma camada fibra de
vidro pronto.
FIG. 3.24 Placas reforçadas com compósitos.
97
3.6
ENSAIOS BALÍSTICOS
As placas de concreto foram levadas para o Centro de Avaliação do Exército
(CAEx), onde foram realizados todos os ensaios de impacto balístico nas placas de
concreto.
O ensaio consistia no impacto de um tiro na região central da placa para se
avaliar o comprimento de penetração do projétil e comprimento de estilhaçamento
na placa, os danos nas faces anterior e posterior e a perda de massa após o
impacto.
Com base nos resultados de SOBRAL (2011), foi determinado qual calibre a que
cada placa seria submetida. Trinta placas foram impactadas com projétil de calibre 9
mm (v.TAB. 3.12), cinquenta e duas placas com 7,62 mm (v. TAB. 3.13) e vinte e
oito placas com 0.50 pol (v. TAB. 3.14).
Antes dos impactos todas as placas foram pesadas, sendo novamente pesadas
após o tiro no intuito de obter a perda de massa decorrente dos danos nas mesmas.
Para obter uma melhor precisão de perda de massa foi utilizada a mesma balança
de 120 kg de capacidade máxima em todas as placas antes e depois do tiro.
TAB. 3.12 Placas impactadas com 9 mm.
Tipo da placa
Espessura
CS70-38,1-FA80
CS70-38,1-FA80-FV1
CS70-38,1-FA80-FC1
CA70-38,1
CA70-38,1-FV1
38,1 mm
CA70-38,1-FC1
CA70-38,1-FA80
CA70-38,1-FA80-FC2
CA70-38,1-FA80-FC1
CA70-50,8
CA70-50,8-FC1
50,8 mm
CA70-50,8-FA80
98
TAB. 3.13 Placas impactadas com 7,62 mm.
Tipo da placa
Espessura
CA70-38,1-FA80-FV2
38,1 mm
CA70-38,1-FA80-FV1
CS70-50,8-FA80-FC2
CS70-50,8-FA80-FV2
CS70-50,8-FA80-FV2
CA70-50,8-FA80-FV1
CA70-50,8-FC2
CA70-50,8-FV2
CS70-50,8-FA80-FC1
50,8 mm
CS70-50,8-FA80-FC2
CA70-50,8-FV1
CA70-50,8-FA80-FV2
CA70-50,8-FA80-FC2
CA70-50,8-FA80-FC1
CA70-50,8-FA80-FC2
CS70-70,0-FA80
CS70-70,0-FA80-FC1
CS70-70,0-FA80-FC2
CA70-70,0-FV1
CA70-70,0
CS70-70,0-FA80-FV1
70,0 mm
CA70-70,0-FA80
CA70-70,0-FC1
CA70-70,0-FC2
CA70-70,0-FA80-FC1
CA70-70,0-FA80-FC2
CS70-100,0-FA80
CA70-100,0
CA70-100,0-FA80-FC1
100,0 mm
CA70-100,0-FA80
CA70-100,0-FA80-FV1
CS70-125,0-FA80
CA70-125,0
125,0 mm
CA70-125,0-FA80
CA70-150,0-FA80
150,0 mm
A estrutura utilizada para o ensaio, instalada em um túnel de tiro do CAEx, foi
composta de um provete fixo de tiro, uma barreira ótica de aferição de velocidade e
pórtico em aço para fixação da placa de concreto (v. FIG. 3.25).
99
TAB. 3.14 Placas impactadas com 0.50 pol.
Tipo da placa
Espessura
CA70-70,0-FA80-FC2
CA70-70,0-FA80-FV2
70,0 mm
CA70-70,0
CS70-100,0-FA80-FV2
CS70-100,0-FA80-FC2
CS70-100,0-FA80-FV1
CA70-100,0-FV1
100,0 mm
CA70-100,0-FV2
CA70-100,0-FC2
CA70-100,0-FA80-FV2
CA70-100,0-FA80-FC2
CS70-125,0-FA80
CA70-125,0-FV2
CA70-125,0
CA70-125,0-FA80-FV2
CA70-125,0-FA80
CA70-125,0-FA80-FV1
125,0 mm
CA70-125,0-FV1
CA70-125,0-FC1
CS70-125,0-FA80-FV1
CS70-125,0-FA80-FC1
CA70-125,0-FA80-FV1
CA70-125,0-FA80-FC1
CS70-150,0-FA80
CA70-150,0
CA70-150,0-FA80
150,0 mm
CA70-150-FC1
CA70-150-FC2
FIG. 3.25 Túnel aberto e equipamentos para o ensaio balístico.
100
Para o ensaio foram utilizados dois túneis de tiro. Nos tiros de 9 mm e 7,62 mm
foi utilizado um túnel fechado de 100 m de comprimento (v. FIG. 3.26) e para o tiro
de 0.50 pol, um túnel aberto de 300 m de comprimento (v.FIG. 3.25).
Provete fixo de tiro é capaz de realizar tiro com diversos calibres, sendo para isso
apenas necessário mudar o cano (FIG. 3.27a) e a culatra (FIG. 3.27b).
FIG. 3.26 Mira sendo feita no túnel fechado.
(a) Canos de diversos calibres;
(b) Culatras para diversos calibres.
FIG. 3.27 Canos e culatras.
Para o ensaio foram utilizados dois tipos de provete; o primeiro foi utilizado para
os tiros de 9 mm e 7,62 mm (FIG. 3.28a) e seu acionamento era elétrico; o outro,
para o tiro de 0.50 pol (FIG. 3.28b) tinha seu acionamento manual através de um
101
cordão para acionar o armamento. O carregamento de ambos era manual e utilizado
apenas um tiro por vez (FIG. 3.28c e d).
Foi utilizada uma barreira ótica para aferir a velocidade do projétil. Seu
funcionamento se dá medindo o tempo que o projétil leva para atravessá-lo. Como
seu comprimento é 150 cm, torna possível calcular a velocidade do projétil. Para o
experimento a câmara foi posicionada a 250 cm do provete de tiro. A FIG. 3.29
mostra a barreira ótica.
O Pórtico em aço (FIG. 3.30) é a estrutura mais solicitada do aparato montado,
pois é ele que segura as placas no momento do impacto. Sua localização em
relação ao provete foi determinada pela distância mínima de segurança para a
execução dos ensaios, ficando assim distanciados em relação ao provete 5 m, para
projétil de 9 mm de calibre, 15 m para projétil de 7,62 mm de calibre e 25 m, para
projétil de 0.50 pol de calibre.
(a) Provete de tiro 9 mm e 7,62 mm;
(b) Provete de tiro 0.50 pol;
(c) Um tiro por vez;
(d) Carregamento manual.
FIG. 3.28 Provetes de tiro utilizados.
102
FIG. 3.29 Barreira ótica.
FIG. 3.30 Pórtico de aço.
ara a fi ação das placas no pórtico foram utilizados grampos “C” de diversos
tamanhos, como mostra a FIG. 3.31.
FIG. 3.31 Grampos tipo "c".
103
3.6.1 PROJÉTEIS EMPREGADOS
Os calibres usados foram de armas usuais das Forças Armadas ou das Forças
Auxiliares: 9 mm (pistola), 7,62 mm e 0.50 pol (fuzil ou metralhadoras).
As munições para os tiros de 9 mm e 7,62 mm foram carregadas manualmente
no laboratório (v. FIG. 3.32) com a quantidade de pólvora necessária para atingir as
velocidades de acordo com os níveis de blindagem (v.TAB. 2.1) III-A (426 ± 15 m/s)
e III (838 ± 15 m/s), respectivamente para 9 mm e 7,62 mm. Para o tiro de 0.50 pol
utilizou-se munição comercial.
FIG. 3.32 Técnico do CAEx colocando pólvora no estojo.
Na TAB. 3.15 constam especificações dos projéteis utilizados nos ensaios.
TAB. 3.15 Características do projéteis utilizados.
Característica
9 mm 7,62 mm 0.50 pol
Diâmetro do projétil 9,02 mm 7,82 mm 12,7 mm
Comprimento do estojo 19,15 mm 51,18 mm 99 mm
Tipo de iniciação
Central Central Central
Massa
7,45g
9,33 g
42,4 g
104
3.7
ENSAIOS DE TRAÇÃO UNIAXIAL NOS COMPÓSITOS
3.7.1 ENSAIO DE TRAÇÃO CFRP
Baseado nos ensaios feitos por CARNEIRO (2004), realizaram-se ensaios de
tração uniaxial em corpos de prova de CFRP com uma e duas camadas de folha
unidirecional de carbono com 90 mm de largura e 720 mm de comprimento. As
espessuras dos corpos de prova foram 0,5 mm (1 camada de compósito de carbono)
e 0,9 mm (2 camadas de compósito de carbono), conforme FIG. 3.33.
(a) CFRP (1 camada) antes do ensaio;
(b) CFRP (2 camadas) antes do ensaio;
(c) CFRP (1 camada) depois do ensaio;
(d) CFRP (2 camadas) depois do ensaio.
FIG. 3.33 Ensaio de tração uniaxial de corpos de prova de CFRP.
105
Para a execução dos ensaios utilizou-se a prensa de 1000 kN de capacidade do
Laboratório de Materiais de Construção e Concreto da Seção de Engenharia de
Fortificação e Construção do IME, de acordo com a FIG. 3.34.
FIG. 3.34 Prensa de 1000 kN de capacidade utilizada no ensaio de tração uniaxial
dos compósitos de reforço.
3.7.2 ENSAIO DE TRAÇÃO GFRP
Utilizou-se a mesma prensa de 1000 kN de capacidade do Laboratório de
Materiais de Construção e Concreto da Seção de Engenharia de Fortificação e
Construção do IME, segundo mostra a FIG. 3.35.
106
Os ensaios de tração uniaxial foram realizados em moldes semelhantes aos do
CFRP. As espessuras foram 0,6 mm (1 camada de compósito de vidro) e 1,3 mm (2
camadas de compósito de vidro), conforme FIG. 3.36.
FIG. 3.35 Prensa de 1000 kN de capacidade utilizada no ensaio de tração
uniaxial GFRP.
107
(a) GFRP (1 camada) antes do ensaio;
(b) GFRP (2 camadas) antes do ensaio;
(c) GFRP (1 camada) depois do ensaio;
(d) GFRP (2 camadas) depois do ensaio.
FIG. 3.36 Ensaio de tração uniaxial de corpos de prova de GFRP.
108
4 RESULTADOS DOS ENSAIOS
Apresentam-se neste capítulo os resultados dos ensaios de caracterização do
concreto, de tração uniaxial dos compósitos e balísticos realizados.
4.1
RESISTÊNCIA DO CONCRETO À COMPRESSÃO
Os ensaios de resistência à compressão do concreto foram realizados nos
corpos de prova cilíndricos de 150 mm x 300 mm de dimensões extraídos das 15
betonadas executados, sendo 10 betonadas de concreto com fibras de aço e 5
betonadas de concreto simples sem fibras.
A TAB. 4.1 apresenta os resultados médios (3 corpos de prova) de resistência à
compressão dos concretos sem fibras de aço empregados para a confecção das
placas.
TAB. 4.1 Resultados de fc concretos sem fibras de aço.
Betonada fc (MPa)
Placas
CA70-38,1
CA70-38,1-FC1
CA70-38,1-FV1
CA70-50,8-FC2
1
67,7
CA70-70,0
CA70-100,0
CA70-125,0
CA70-150,0
CA70-38,1-FV1
CA70-50,8-FV1
CA70-50,8-FC1
8
68,5
CA70-70,0-FC2
CA70-100,0-FV1
CA70-125,0-FC1
CA70-150-FC2
CA70-38,1
CA70-50,8
CA70-50,8-FC1
9
64,6
CA70-70,0-FC1
CA70-100,0-FV2
CA70-125,0-FV1
CA70-150-FC1
109
Continuação da TAB. 4.1.
Betonada fc (MPa)
Placas
CA70-38,1
CA70-38,1-FV1
CA70-50,8-FC1
10
63,5
CA70-70,0-FV1
CA70-100,0
CA70-125,0
CA70-125,0-FV2
CA70-38,1-FC1
CA70-50,8-FV2
CA70-70,0
15
71,4
CA70-70,0-FV1
CA70-100,0-FC2
CA70-125,0
A TAB. 4.2 apresenta os resultados médios (3 corpos de prova) de resistência à
compressão dos concretos com fibras de aço (80 kg/m3) empregados para a
confecção das placas.
TAB. 4.2 Resultados de fc concretos com fibras de aço.
Betonada fc (MPa)
Placas
CA70-38,1-FA80
CA70-38,1-FA80-FC2
CA70-50,8-FA80
2
77,9
CA70-70,0-FA80
CA70-100,0-FA80
CA70-125,0-FA80
CA70-150,0-FA80
CA70-38,1-FA80-FV2
CA70-50,8-FA80-FV2
CA70-50,8-FA80-FC1
3
74,5
CA70-70,0-FA80-FC2
CA70-100,0-FA80-FV2
CA70-100,0-FA80-FC1
CA70-125,0-FA80-FV1
110
Continuação da TAB. 4.2.
Betonada fc (MPa)
Placas
CA70-38,1-FA80-FC2
CA70-50,8-FA80-FC2
CA70-70,0-FA80-FV1
4
76,1
CA70-70,0-FA80-FV2
CA70-100,0-FA80-FV1
CA70-100,0-FA80-FC2
CA70-125,0-FA80-FC1
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FC2
CA70-50,8-FA80-FC2
5
74,2
CA70-70,0-FA80-FC2
CA70-100,0-FA80-FV1
CA70-125,0-FA80-FV1
CA70-38,1-FA80-FV1
CA70-50,8-FA80-FC1
CA70-70,0-FA80-FC1
6
75,1
CA70-100,0-FA80-FC1
CA70-100,0-FA80-FC1
CA70-125,0-FA80-FV2
CS70-38,1-FA80-FV1
CS70-50,8-FA80-FV2
CS70-70,0-FA80-FV1
7
78,1
CS70-100,0-FA80-FV2
CS70-125,0-FA80
CS70-150,0-FA80
CS70-38,1-FA80
CS70-38,1-FA80-FC1
CS70-50,8-FA80-FC2
11
84,1
CS70-70,0-FA80-FC2
CS70-100,0-FA80-FV1
CS70-125,0-FA80
CS70-125,0-FA80-FV1
CS70-38,1-FA80-FC1
CS70-50,8-FA80-FC1
CS70-70,0-FA80-FC1
12
81,2
CS70-100,0-FA80-FC2
CS70-125,0-FA80
CS70-125,0-FA80-FC1
111
Continuação da TAB. 4.2.
Betonada fc (MPa)
Placas
CA70-38,1-FA80
CA70-38,1-FA80-FC1
CA70-50,8-FA80-FV1
13
78,5
CA70-70,0-FA80
CA70-100,0-FA80
CA70-125,0-FA80
CA70-150,0-FA80
CS70-38,1-FA80
CS70-38,1-FA80-FV1
CS70-50,8-FA80-FV2
CS70-50,8-FA80-FC2
14
71,6
CS70-70,0-FA80
CS70-70,0-FA80-FV1
CS70-100,0-FA80
CS70-125,0-FA80
4.2
MÓDULO DE ELASTICIDADE DO CONCRETO
A TAB. 4.3 apresenta os resultados médios (2 corpos de prova) do módulo de
elasticidade longitudinal secante dos concretos sem fibras de aço empregados para
a confecção das placas.
TAB. 4.3 Resultados do Ec concretos sem fibras de aço.
Betonada Ec (GPa)
Placas
CA70-38,1
CA70-38,1-FC1
CA70-38,1-FV1
CA70-50,8-FC2
1
31,4
CA70-70,0
CA70-100,0
CA70-125,0
CA70-150,0
CA70-38,1-FV1
CA70-50,8-FV1
CA70-50,8-FC1
8
32,5
CA70-70,0-FC2
CA70-100,0-FV1
CA70-125,0-FC1
CA70-150-FC2
112
Continuação da TAB. 4.3.
Betonada Ec (GPa)
Placas
CA70-38,1
CA70-50,8
CA70-50,8-FC1
9
29,9
CA70-70,0-FC1
CA70-100,0-FV2
CA70-125,0-FV1
CA70-150-FC1
CA70-38,1
CA70-38,1-FV1
CA70-50,8-FC1
10
29,2
CA70-70,0-FV1
CA70-100,0
CA70-125,0
CA70-125,0-FV2
CA70-38,1-FC1
CA70-50,8-FV2
CA70-70,0
15
33,8
CA70-70,0-FV1
CA70-100,0-FC2
CA70-125,0
A TAB. 4.4 apresenta os resultados médios (2 corpos de prova) do módulo de
elasticidade longitudinal secante dos concretos com fibras de aço (80 kg/m3)
empregados para a confecção das placas.
TAB. 4.4 Resultados do Ec concretos com fibras de aço.
Betonada Ec (GPa)
Placas
CA70-38,1-FA80
CA70-38,1-FA80-FC2
CA70-50,8-FA80
2
37,2
CA70-70,0-FA80
CA70-100,0-FA80
CA70-125,0-FA80
CA70-150,0-FA80
113
Continuação da TAB. 4.4.
Betonada Ec (GPa)
Placas
CA70-38,1-FA80-FV2
CA70-50,8-FA80-FV2
CA70-50,8-FA80-FC1
3
36,5
CA70-70,0-FA80-FC2
CA70-100,0-FA80-FV2
CA70-100,0-FA80-FC1
CA70-125,0-FA80-FV1
CA70-38,1-FA80-FC2
CA70-50,8-FA80-FC2
CA70-70,0-FA80-FV1
4
36,9
CA70-70,0-FA80-FV2
CA70-100,0-FA80-FV1
CA70-100,0-FA80-FC2
CA70-125,0-FA80-FC1
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FC2
CA70-50,8-FA80-FC2
5
36,6
CA70-70,0-FA80-FC2
CA70-100,0-FA80-FV1
CA70-125,0-FA80-FV1
CA70-38,1-FA80-FV1
CA70-50,8-FA80-FC1
CA70-50,8-FA80-FC1
6
36,8
CA70-70,0-FA80-FC1
CA70-100,0-FA80-FC1
CA70-125,0-FA80-FV2
CS70-38,1-FA80-FV1
CS70-50,8-FA80-FV2
CS70-70,0-FA80-FV1
7
37,3
CS70-100,0-FA80-FV2
CS70-125,0-FA80
CS70-150,0-FA80
CS70-38,1-FA80
CS70-38,1-FA80-FC1
CS70-50,8-FA80-FC2
11
38,6
CS70-70,0-FA80-FC2
CS70-100,0-FA80-FV1
CS70-125,0-FA80
CS70-125,0-FA80-FV1
114
Continuação da TAB. 4.4.
Betonada Ec (GPa)
Placas
CS70-38,1-FA80-FC1
CS70-50,8-FA80-FC1
CS70-70,0-FA80-FC1
12
37,4
CS70-100,0-FA80-FC2
CS70-125,0-FA80
CS70-125,0-FA80-FC1
CA70-38,1-FA80
CA70-38,1-FA80-FC1
CA70-50,8-FA80-FV1
13
37,3
CA70-70,0-FA80
CA70-100,0-FA80
CA70-125,0-FA80
CA70-150,0-FA80
CS70-38,1-FA80
CS70-38,1-FA80-FV1
CS70-50,8-FA80-FV2
CS70-50,8-FA80-FC2
14
33,8
CS70-70,0-FA80
CS70-70,0-FA80-FV1
CS70-100,0-FA80
CS70-125,0-FA80
4.3
RESULTADOS ENSAIOS COMPÓSITO DE RESINA E FIBRAS DE VIDRO
Na TAB. 4.5 constam os valores médios das propriedades do compósito de
resina e fibras de vidro, obtidos através do ensaio de tração uniaxial em três corpos
de prova conforme descritos no item 3.7.2.
TAB. 4.5 Propriedades do compósito de resina e fibras de vidro.
Número de Resistência à tração
Módulo de
Deformação última
camadas
(MPa)
elasticidade (GPa)
(0/00)
1
262
19,1
21,4
2
520
24,2
13,7
4.4
RESULTADOS
ENSAIOS
COMPÓSITO
DE
RESINA
E
FIBRAS
DE
CARBONO
Os valores médios das propriedades do compósito de resina e fibras de carbono,
obtidos através do ensaio de tração uniaxial em três corpos de prova conforme
descritos no item 3.7.1, estão apresentados na TAB. 4.6
115
TAB. 4.6 Propriedades do compósito de resina e fibras de carbono.
Número de Resistência à tração
Módulo de
Deformação última
camadas
(MPa)
elasticidade (GPa)
(0/00)
1
980
71,6
13,7
2
952
78,6
12,1
4.5
VARIAÇÃO DE MASSA DAS PLACAS DE CONCRETO
A perda de massa (Δm) é um fator importante, porque está relacionada aos
danos na estrutura da placa. Por isso foram aferidas as massas antes e após o
ensaio de impacto balístico, conforme as TAB. 4.7 a TAB. 4.12, para as espessuras
38,1 mm, 50,8 mm, 70,0 mm, 100,0 mm, 125,0 mm e 150,0 mm, respectivamente.
TAB. 4.7 Variação percentual de massa nas placas de 38,1 mm.
Massa Massa
Variação
Velocidade
Placa
Projétil
Inicial
Final
de Massa
(m/s)
(kg)
(kg)
(Δm%)
CS70-38,1-FA80
432,33
8,64
8,60
0,46
CS70-38,1-FA80
438,37
9,02
9,00
0,22
CS70-38,1-FA80-FV1
434,08
9,44
9,43
0,11
CS70-38,1-FA80-FV1
437,27
9,50
9,48
0,21
CS70-38,1-FA80-FV1
429,50
9,47
9,45
0,21
CS70-38,1-FA80-FC1
433,97
8,98
8,97
0,11
CS70-38,1-FA80-FC1
435,57
9,01
9,00
0,11
CS70-38,1-FA80-FC1
431,37
8,96
8,95
0,11
CA70-38,1
433,14
8,88
8,73
1,69
CA70-38,1
433,69
8,84
8,70
1,58
CA70-38,1
439,14
9,14
9,06
0,88
CA70-38,1-FV1
433,09
9,52
9,51
0,11
CA70-38,1-FV1
9 mm
434,10
9,60
9,58
0,21
CA70-38,1-FV1
428,80
9,54
9,53
0,10
CA70-38,1-FC1
445,47
9,16
9,15
0,11
CA70-38,1-FC1
428,30
9,20
9,19
0,11
CA70-38,1-FC1
426,43
9,14
9,13
0,11
CA70-38,1-FA80
430,95
10,18
10,12
0,59
CA70-38,1-FA80
433,29
9,12
9,10
0,22
CA70-38,1-FA80-FC2
422,27
10,08
10,07
0,10
CA70-38,1-FA80-FC2
419,70
10,10
10,09
0,10
CA70-38,1-FA80-FC2
430,97
10,11
10,10
0,10
CA70-38,1-FA80-FC1
426,91
9,18
9,16
0,22
CA70-38,1-FA80-FC1
430,03
9,21
9,18
0,33
CA70-38,1-FA80-FC1
431,18
9,16
9,15
0,11
CA70-38,1-FA80-FV1
837,03
10,12
9,80
3,16
7,62 mm
CA70-38,1-FA80-FV2
838,57
10,92
10,56
3,30
116
TAB. 4.8 Variação percentual de massa nas placas de 50,8 mm.
Massa Massa
Variação
Velocidade
Placa
Projétil
Inicial
Final
de Massa
(m/s)
(kg)
(kg)
(Δm%)
CA70-50,8
427,48
12,36
12,34
0,16
CA70-50,8-FC1
442,00
12,88
12,85
0,23
CA70-50,8-FC1
9 mm
426,09
12,90
12,88
0,16
CA70-50,8-FC1
434,45
12,86
12,84
0,16
CA70-50,8-FA80
429,12
12,42
12,40
0,16
CS70-50,8-FA80-FC2
837,50
12,36
11,96
3,24
CS70-50,8-FA80-FV2
827,43
12,82
12,26
4,37
CS70-50,8-FA80-FV2
825,01
12,75
12,16
4,63
CA70-50,8-FA80-FV1
834,26
13,16
12,86
2,28
CA70-50,8-FC2
841,59
12,24
11,76
3,92
CA70-50,8-FV2
830,82
12,86
12,32
4,20
CS70-50,8-FA80-FC1
825,54
12,46
12,04
3,37
CS70-50,8-FA80-FC2 7,62 mm
828,32
12,26
11,70
4,57
CA70-50,8-FV1
843,81
12,74
12,22
4,08
CA70-50,8-FA80-FV2
841,33
13,20
12,76
3,33
CA70-50,8-FA80-FC2
838,27
13,40
13,02
2,84
CA70-50,8-FA80-FC1
822,89
12,94
11,71
9,51
CA70-50,8-FA80-FC1
836,21
12,98
11,74
9,55
CA70-50,8-FA80-FC1
819,56
12,91
11,57
10,38
CA70-50,8-FA80-FC2
828,23
13,66
11,72
14,20
TAB. 4.9 Variação percentual de massa nas placas de 70,0 mm.
Placa
Projétil
CS70-70,0-FA80
CS70-70,0-FA80-FC1
CS70-70,0-FA80-FC2
CA70-70,0-FV1
CA70-70,0-FV1
CA70-70,0-FV1
CA70-70,0
CS70-70,0-FA80-FV1
7,62 mm
CS70-70,0-FA80-FV1
CS70-70,0-FA80-FV1
CA70-70,0-FA80
CA70-70,0-FA80
CA70-70,0-FC1
CA70-70,0-FC2
CA70-70,0-FA80-FC1
CA70-70,0-FA80-FC2
CA70-70,0-FA80-FC2
CA70-70,0-FA80-FV2 0.5 pol
CA70-70,0
Velocidade
(m/s)
Massa
Inicial
(kg)
Massa
Final (kg)
Variação
de Massa
(Δm%)
854,48
827,72
825,51
806,13
819,81
829,10
847,48
831,32
830,56
833,31
840,88
833,59
841,14
844,78
824,70
843,74
899,28
881,60
871,99
16,36
17,84
16,58
17,12
17,25
17,19
16,82
18,36
18,41
18,34
18,10
18,68
17,12
17,84
19,04
18,00
20,46
17,90
16,90
15,78
17,62
16,38
16,32
16,56
16,26
16,02
18,29
18,34
18,26
17,86
18,48
16,80
17,64
18,82
17,84
19,44
17,08
11,56
3,55
1,23
1,21
4,67
4,00
5,41
4,76
0,38
0,38
0,44
1,33
1,07
1,87
1,12
1,16
0,89
4,99
4,58
31,60%
117
TAB. 4.10 Variação percentual de massa nas placas de 100,0 mm.
Placa
Projétil
CS70-100,0-FA80
CA70-100,0
CA70-100,0
CA70-100,0-FA80-FC1
CA70-100,0-FA80-FC1
CA70-100,0-FA80-FC1 7,62 mm
CA70-100,0-FA80
CA70-100,0-FA80
CA70-100,0-FA80-FV1
CA70-100,0-FA80-FV1
CA70-100,0-FA80-FV1
CS70-100,0-FA80-FV2
CS70-100,0-FA80-FC2
CS70-100,0-FA80-FV1
CA70-100,0-FV1
0.5 pol
CA70-100,0-FV2
CA70-100,0-FC2
CA70-100,0-FA80-FV2
CA70-100,0-FA80-FC2
Velocidade
(m/s)
Massa
Inicial
(kg)
Massa
Final
(kg)
Variação
de Massa
(Δm%)
844,07
842,08
830,56
827,34
833,38
835,28
847,77
831,37
832,04
849,74
844,78
901,67
899,73
882,33
902,12
890,51
905,74
889,15
906,72
22,42
25,52
24,82
26,08
26,14
25,99
24,40
24,06
25,96
25,92
25,90
23,34
22,98
23,52
24,58
25,50
24,28
28,12
26,28
22,26
25,30
24,50
25,75
25,95
25,79
24,14
23,90
25,75
25,71
25,68
22,10
21,02
21,82
20,92
15,44
17,16
27,42
25,50
0,71
0,86
1,29
1,27
0,73
0,77
1,07
0,67
0,81
0,81
0,85
5,31
8,53
7,23
14,89
39,45
29,32
2,49
2,97
TAB. 4.11 Variação percentual de massa nas placas de 125,0 mm.
Massa Massa
Variação
Velocidade
Placa
Projétil
Inicial
Final
de Massa
(m/s)
(kg)
(kg)
(Δm%)
CS70-125,0-FA80
824,20
28,76
28,55
0,73
CS70-125,0-FA80
828,20
28,70
28,50
0,70
CS70-125,0-FA80
830,11
28,69
28,47
0,77
CA70-125,0
7,62 mm
835,61
30,26
29,90
1,19
CA70-125,0
834,01
30,31
29,92
1,29
CA70-125,0
830,84
30,28
29,95
1,09
CA70-125,0-FA80
833,80
30,12
29,94
0,60
CS70-125,0-FA80
891,68
29,22
27,06
7,39
CA70-125,0-FV2
902,57
30,34
23,92
21,16
CA70-125,0
895,18
28,06
23,32
16,89
CA70-125,0-FA80-FV2
899,54
30,60
29,28
4,31
CA70-125,0-FA80
897,10
29,72
28,48
4,17
CA70-125,0-FA80-FV1
898,04
30,12
29,74
1,26
0.5 pol
CA70-125,0-FV1
896,72
29,28
21,36
27,05
CA70-125,0-FC1
901,86
30,64
26,44
13,71
CS70-125,0-FA80-FV1
896,06
29,46
27,08
8,08
CS70-125,0-FA80-FC1
900,35
28,82
26,08
9,51
CA70-125,0-FA80-FV1
902,89
29,64
29,28
1,21
CA70-125,0-FA80-FC1
904,42
30,86
30,38
1,56
118
TAB. 4.12 Variação percentual de massa nas placas de 150,0 mm.
Massa Massa
Variação
Velocidade
Placa
Projétil
Inicial
Final
de Massa
(m/s)
(kg)
(kg)
(Δm%)
CA70-150,0-FA80
7,62 mm
837,75
37,44
37,22
0,59
CS70-150,0-FA80
891,86
34,70
34,20
1,44
CA70-150,0
900,60
35,68
30,48
14,57
CA70-150,0-FA80
0.5 pol
903,40
38,00
37,54
1,21
CA70-150-FC1
906,43
36,66
24,84
32,24
CA70-150-FC2
904,50
35,36
29,12
17,65
4.6
DANOS NAS FACES ANTERIOR E POSTERIOR
A magnitude dos danos causados, nas faces anterior e posterior, pelo impacto do
projétil foi estimada através do calculo da área de danos, admitida como sendo uma
elipse (Aelipse) dada pela Equação 4.1:
A elipse = .a.b
(Equação 4.1)
onde a e b são os semi-eixos da parábola.
A FIG. 4.1 mostra como foi realizada a aferição dos semi-eixos da elipse na face
das placas.
FIG. 4.1 Determinação dos comprimentos dos semi-eixos da elipse.
As TAB. 4.13 a TAB. 4.18 mostram os resultados da área dos danos nas faces
das placas ensaiadas, com espessuras 38,1 mm, 50,8 mm, 70,0 mm, 100,0 mm,
125,0 mm e 150,0 mm, respectivamente.
119
TAB. 4.13 Danos nas faces anterior e posterior das placas de 38,1 mm.
Área de danos (cm2)
Velocidade
Placa
Projétil
(m/s)
Face Anterior Face Posterior
CS70-38,1-FA80
CS70-38,1-FA80
CS70-38,1-FA80-FV1
CS70-38,1-FA80-FV1
CS70-38,1-FA80-FV1
CS70-38,1-FA80-FC1
CS70-38,1-FA80-FC1
CS70-38,1-FA80-FC1
CA70-38,1
CA70-38,1
CA70-38,1
CA70-38,1-FV1
CA70-38,1-FV1
CA70-38,1-FV1
CA70-38,1-FC1
CA70-38,1-FC1
CA70-38,1-FC1
CA70-38,1-FA80
CA70-38,1-FA80
CA70-38,1-FA80-FC2
CA70-38,1-FA80-FC2
CA70-38,1-FA80-FC2
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FV1
CA70-38,1-FA80-FV2
9 mm
7,62 mm
432,33
438,37
434,08
437,27
429,50
433,97
435,57
431,37
433,14
433,69
439,14
433,09
434,10
428,80
445,47
428,30
426,43
430,95
433,29
422,27
419,70
430,97
426,91
430,03
431,18
837,03
838,57
20
16
6
8
7
13
16
14
22
13
11
8
14
11
20
14
11
10
10
13
18
12
14
19
12
47
44
9
79
64
44
90
112
TAB. 4.14 Danos nas faces anterior e posterior das placas de 50,8 mm.
Área de danos (cm2)
Velocidade
Placa
Projétil
(m/s)
Face Anterior Face Posterior
CA70-50,8
427,48
16
CA70-50,8-FC1
442,00
14
CA70-50,8-FC1
9 mm
426,09
14
CA70-50,8-FC1
434,45
12
CA70-50,8-FA80
429,12
13
CS70-50,8-FA80-FC2
837,50
79
79
CS70-50,8-FA80-FV2
827,43
64
79
CS70-50,8-FA80-FV2
825,01
71
95
CA70-50,8-FA80-FV1
834,26
57
35
7,62 mm
CA70-50,8-FC2
841,59
95
79
CA70-50,8-FV2
830,82
79
104
CS70-50,8-FA80-FC1
825,54
123
57
CS70-50,8-FA80-FC2
828,32
165
49
120
Continuação da TAB. 4.14.
Placa
Projétil
CA70-50,8-FV1
CA70-50,8-FA80-FV2
CA70-50,8-FA80-FC2
CA70-50,8-FA80-FC1
CA70-50,8-FA80-FC1
CA70-50,8-FA80-FC1
CA70-50,8-FA80-FC2
7,62 mm
Velocidade
(m/s)
843,81
841,33
838,27
822,89
836,21
819,56
828,23
Área de danos (cm2)
Face Anterior Face Posterior
74
141
50
113
79
74
104
50
112
41
113
53
118
57
TAB. 4.15 Danos nas faces anterior e posterior das placas de 70,0 mm.
Área de danos (cm2)
Velocidade
Placa
Projétil
(m/s)
Face Anterior Face Posterior
CS70-70,0-FA80
854,48
95
143
CS70-70,0-FA80-FC1
827,72
64
CS70-70,0-FA80-FC2
825,51
87
CA70-70,0-FV1
806,13
109
CA70-70,0-FV1
819,81
79
CA70-70,0-FV1
829,10
113
CA70-70,0
847,48
79
182
CS70-70,0-FA80-FV1
831,32
71
7,62 mm
CS70-70,0-FA80-FV1
830,56
75
CS70-70,0-FA80-FV1
833,31
82
CA70-70,0-FA80
840,88
94
CA70-70,0-FA80
833,59
64
CA70-70,0-FC1
841,14
113
CA70-70,0-FC2
844,78
64
CA70-70,0-FA80-FC1
824,70
71
CA70-70,0-FA80-FC2
843,74
57
CA70-70,0-FA80-FC2
899,28
155
142
CA70-70,0-FA80-FV2
0.5 pol
881,60
118
102
CA70-70,0
871,99
171
312
121
TAB. 4.16 Danos nas faces anterior e posterior das placas de 100,0 mm.
Área de danos (cm2)
Velocidade
Placa
Projétil
(m/s)
Face Anterior Face Posterior
CS70-100,0-FA80
844,07
79
CA70-100,0
842,08
87
CA70-100,0
830,56
95
CA70-100,0-FA80-FC1
827,34
113
CA70-100,0-FA80-FC1
833,38
64
CA70-100,0-FA80-FC1 7,62 mm
835,28
71
CA70-100,0-FA80
847,77
86
CA70-100,0-FA80
831,37
50
CA70-100,0-FA80-FV1
832,04
79
CA70-100,0-FA80-FV1
849,74
81
CA70-100,0-FA80-FV1
844,78
81
CS70-100,0-FA80-FV2
901,67
125
247
CS70-100,0-FA80-FC2
899,73
137
371
CS70-100,0-FA80-FV1
882,33
283
239
CA70-100,0-FV1
902,12
330
214
0.5 pol
CA70-100,0-FV2
890,51
471
245
CA70-100,0-FC2
905,74
201
355
CA70-100,0-FA80-FV2
889,15
123
108
CA70-100,0-FA80-FC2
906,72
154
71
TAB. 4.17 Danos nas faces anterior e posterior das placas de 125,0 mm.
Área de danos (cm2)
Velocidade
Placa
Projétil
(m/s)
Face Anterior Face Posterior
CS70-125,0-FA80
824,20
71
CS70-125,0-FA80
828,20
72
CS70-125,0-FA80
830,11
75
CA70-125,0
7,62 mm
835,61
95
CA70-125,0
834,01
99
CA70-125,0
830,84
86
CA70-125,0-FA80
833,80
71
CS70-125,0-FA80
891,68
107
361
CA70-125,0-FV2
902,57
408
264
CA70-125,0
895,18
259
354
CA70-125,0-FA80-FV2
899,54
180
220
CA70-125,0-FA80
897,10
130
156
CA70-125,0-FA80-FV1
898,04
153
0.5 pol
CA70-125,0-FV1
896,72
433
280
CA70-125,0-FC1
901,86
289
370
CS70-125,0-FA80-FV1
896,06
207
313
CS70-125,0-FA80-FC1
900,35
135
207
CA70-125,0-FA80-FV1
902,89
133
CA70-125,0-FA80-FC1
904,42
171
-
122
TAB. 4.18 Danos nas faces anterior e posterior das placas de 150,0 mm.
Área de danos (cm2)
Velocidade
Placa
Projétil
(m/s)
Face Anterior Face Posterior
CA70-150,0-FA80
7,62 mm
837,75
87
CS70-150,0-FA80
891,86
137
CA70-150,0
900,60
214
414
CA70-150,0-FA80
0.5 pol
903,40
163
CA70-150-FC1
906,43
707
CA70-150-FC2
904,50
675
-
4.7
COMPRIMENTO DE PENETRAÇÃO E ESTILHAÇAMENTO
Os comprimentos de penetração (xp) e estilhaçamento (xe) foram aferidos
medindo a distância entre a superfície da face, anterior e posterior respectivamente,
e o ponto mais profundo da cratera formada pelo projétil. O procedimento de
aferição se fez com o uso de um palito de madeira para penetrar na cratera até o
fundo e uma régua para delimitar a superfície da face analisada.
Para o comportamento das placas sob impacto balístico foram verificados três
tipos de situação:

Penetração (PN) - o projétil adentrou a espessura da placa, mas não
conseguiu ultrapassar toda sua espessura, sendo depositado ou expulso
do interior da placa (v. FIG. 4.2a e FIG. 4.3);

Perfuração sem estilhaçamento (PF S/ EST) – o projétil ultrapassou toda a
espessura da placa sendo contida pelo reforço em compósito (v. FIG. 4.2b
e FIG. 4.4);

Perfuração com estilhaçamento (PF C/EST) – o projétil ultrapassou toda a
espessura da placa e do reforço de compósito, quando há a ocorrência
deste último (v. FIG. 4.2c, FIG. 4.5 e FIG. 4.6).
123
xp=t
xp>t
(b) Perfuração sem
(c) Perfuração com
(a) Penetração;
estilhaçamento;
estilhaçamento.
FIG. 4.2 Comportamento placas de concreto.
xp<t
(a) Face anterior;
(b) Face posterior.
FIG. 4.3 Aspecto da placa de concreto CS70-38,1-FA80 após impacto de projétil de
9 mm de calibre.
(a) Face anterior;
(b) Face posterior.
FIG. 4.4 Aspecto da placa de concreto CA70-38,1-FA80-FV2 após impacto balístico
de 7,62 mm de calibre.
124
(a) Face anterior;
(b) Face posterior.
FIG. 4.5 Aspecto da placa de concreto CS70-50,8-FA80-FC2 após impacto balístico
de projétil de 7,62 mm de calibre.
(a) Face anterior;
(b) Face posterior.
FIG. 4.6 Aspecto da placa de concreto CA70-125,0-FA80 após impacto balístico de
projétil de 0.50 pol de calibre.
Os resultados dos comprimentos de penetração e estilhaçamento ao longo da
espessura das placas de concreto foram reunidos nas TAB. 4.19 a TAB. 4.24.
TAB. 4.19 Comprimentos de penetração e estilhaçamento placas de 38,1 mm.
Velocidade
Placa
Projétil
Situação xp (mm) xe (mm)
(m/s)
CS70-38,1-FA80
432,33
PN
9,0
14,7
CS70-38,1-FA80
438,37
PN
9,5
CS70-38,1-FA80-FV1
434,08
PN
9,0
CS70-38,1-FA80-FV1
9 mm
437,27
PN
11,0
CS70-38,1-FA80-FV1
429,50
PN
11,0
CS70-38,1-FA80-FC1
433,97
PN
8,0
CS70-38,1-FA80-FC1
435,57
PN
9,5
-
125
Continuação da TAB. 4.19.
Placa
CS70-38,1-FA80-FC1
CA70-38,1
CA70-38,1
CA70-38,1
CA70-38,1-FV1
CA70-38,1-FV1
CA70-38,1-FV1
CA70-38,1-FC1
CA70-38,1-FC1
CA70-38,1-FC1
CA70-38,1-FA80
CA70-38,1-FA80
CA70-38,1-FA80-FC2
CA70-38,1-FA80-FC2
CA70-38,1-FA80-FC2
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FC1
CA70-38,1-FA80-FV1
CA70-38,1-FA80-FV2
Velocidade
Situação xp (mm) xe (mm)
(m/s)
431,37
PN
9,0
433,14
PN
9,0
23,0
433,69
PN
8,5
14,3
439,14
PN
8,5
16,5
433,09
PN
9,5
434,10
PN
11,0
428,80
PN
9,0
445,47
PN
10,0
428,30
PN
9,5
426,43
PN
9,0
430,95
PN
8,0
433,29
PN
8,5
422,27
PN
10,0
419,70
PN
8,5
430,97
PN
10,0
426,91
PN
10,5
430,03
PN
11,0
431,18
PN
9,0
837,03
PF S/EST
7,62 mm
838,57
PF S/EST
Projétil
TAB. 4.20 Comprimentos de penetração e estilhaçamento placas de 50,8 mm.
Velocidade
Placa
Projétil
Situação xp (mm) xe (mm)
(m/s)
CA70-50,8
427,48
PN
7,5
CA70-50,8-FC1
442,00
PN
10,5
CA70-50,8-FC1
9 mm
426,09
PN
9,5
CA70-50,8-FC1
434,45
PN
10,0
CA70-50,8-FA80
429,12
PN
7,0
CS70-50,8-FA80-FC2
837,50
PF C/EST
CS70-50,8-FA80-FV2
827,43
PF S/EST
CS70-50,8-FA80-FV2
825,01
PF S/EST
CA70-50,8-FA80-FV1
834,26
PF S/EST
CA70-50,8-FC2
841,59
PF C/EST
CA70-50,8-FV2
830,82
PF S/EST
CS70-50,8-FA80-FC1
825,54
PF C/EST
CS70-50,8-FA80-FC2 7,62 mm
828,32
PF C/EST
CA70-50,8-FV1
843,81
PF S/EST
CA70-50,8-FA80-FV2
841,33
PF S/EST
CA70-50,8-FA80-FC2
838,27
PF C/EST
CA70-50,8-FA80-FC1
822,89
PF C/EST
CA70-50,8-FA80-FC1
836,21
PF C/EST
CA70-50,8-FA80-FC1
819,56
PF C/EST
CA70-50,8-FA80-FC2
828,23
PN
32,5
-
126
TAB. 4.21 Comprimentos de penetração e estilhaçamento placas de 70,0 mm.
Velocidade
Placa
Projétil
Situação xp (mm) xe (mm)
(m/s)
CS70-70,0-FA80
854,48
PN
31,0
23,0
CS70-70,0-FA80-FC1
827,72
PN
32,5
CS70-70,0-FA80-FC2
825,51
PN
27,5
CA70-70,0-FV1
806,13
PN
29,0
CA70-70,0-FV1
819,81
PN
29,5
CA70-70,0-FV1
829,10
PN
32,0
CA70-70,0
847,48
PN
28,0
34,5
CS70-70,0-FA80-FV1
831,32
PN
32,0
7,62 mm
CS70-70,0-FA80-FV1
830,56
PN
32,5
CS70-70,0-FA80-FV1
833,31
PN
32,0
CA70-70,0-FA80
840,88
PN
30,5
CA70-70,0-FA80
833,59
PN
30,0
CA70-70,0-FC1
841,14
PN
30,5
CA70-70,0-FC2
844,78
PN
34,5
CA70-70,0-FA80-FC1
824,70
PN
28,5
CA70-70,0-FA80-FC2
843,74
PN
32,0
CA70-70,0-FA80-FC2
899,28
PF C/EST
CA70-70,0-FA80-FV2 0.50 pol
881,60
PF C/EST
CA70-70,0
871,99
PF C/EST
-
TAB. 4.22 Comprimentos de penetração e estilhaçamento placas de 100,0 mm.
Velocidade
Placa
Projétil
Situação xp (mm) xe (mm)
(m/s)
CS70-100,0-FA80
844,07
PN
29,0
CA70-100,0
842,08
PN
29,5
CA70-100,0
830,56
PN
34,0
CA70-100,0-FA80-FC1
827,34
PN
31,0
CA70-100,0-FA80-FC1
833,38
PN
31,5
CA70-100,0-FA80-FC1 7,62 mm
835,28
PN
32,0
CA70-100,0-FA80
847,77
PN
32,5
CA70-100,0-FA80
831,37
PN
31,5
CA70-100,0-FA80-FV1
832,04
PN
35,0
CA70-100,0-FA80-FV1
849,74
PN
30,0
CA70-100,0-FA80-FV1
844,78
PN
34,0
CS70-100,0-FA80-FV2
901,67
PF S/EST
CS70-100,0-FA80-FC2
899,73
PF C/EST
CS70-100,0-FA80-FV1
882,33
PF C/EST
CA70-100,0-FV1
902,12
PF C/EST
0.50 pol
CA70-100,0-FV2
890,51
PF S/EST
CA70-100,0-FC2
905,74
PF C/EST
CA70-100,0-FA80-FV2
889,15
PF S/EST
CA70-100,0-FA80-FC2
906,72
PF C/EST
-
127
TAB. 4.23 Comprimentos de penetração e estilhaçamento placas de 125,0 mm.
Velocidade
Placa
Projétil
Situação xp (mm) xe (mm)
(m/s)
CS70-125,0-FA80
824,20
PN
29,0
CS70-125,0-FA80
828,20
PN
30,0
CS70-125,0-FA80
830,11
PN
30,5
CA70-125,0
7,62 mm
835,61
PN
32,5
CA70-125,0
834,01
PN
31,0
CA70-125,0
830,84
PN
29,5
CA70-125,0-FA80
833,80
PN
29,5
CS70-125,0-FA80
891,68
PF C/EST
CA70-125,0-FV2
902,57
PF S/EST
CA70-125,0
895,18
PF C/EST
CA70-125,0-FA80-FV2
899,54
PF S/EST
CA70-125,0-FA80
897,10
PF C/EST
CA70-125,0-FA80-FV1
898,04
PN
83,0
0.50 pol
CA70-125,0-FV1
896,72
PF S/EST
CA70-125,0-FC1
901,86
PN
74,0
32,0
CS70-125,0-FA80-FV1
896,06
PF S/EST
CS70-125,0-FA80-FC1
900,35
PF C/EST
CA70-125,0-FA80-FV1
902,89
PN
77,0
CA70-125,0-FA80-FC1
904,42
PN
80,0
TAB. 4.24 Comprimentos de penetração e estilhaçamento placas de 150,0 mm.
Velocidade
Placa
Projétil
Situação xp (mm) xe (mm)
(m/s)
CA70-150,0-FA80
7,62 mm
837,75
PN
32,5
CS70-150,0-FA80
891,86
PN
82,0
CA70-150,0
900,60
PF C/EST
CA70-150,0-FA80
0.50 pol
903,40
PN
77,0
CA70-150-FC1
906,43
PN
79,0
CA70-150-FC2
904,50
PN
75,0
4.8
DESCRIÇÃO DAS PLACAS APÓS O ENSAIO
Verificou-se que todas as placas de 38,1 mm sofreram penetração quando foram
submetidas a impacto do projétil de calibre de 9 mm (v. FIG. 4.7a e b), tendo
algumas delas sofrido estilhaçamento (v. FIG. 4.7c e d), quando impactadas por
projéteis de 7,62 mm, estas placas sofreram perfuração sem estilhaçamento devido
ao compósito de resina e fibras de vidro (v. FIG. 4.7e e f).
128
(a) Tiro 9 mm – Face anterior
(Placa: CA70-38,1-FA80);
(b) Tiro 9 mm – Face posterior
(Placa: CA70-38,1-FA80);
(c) Tiro 9 mm – Face anterior
(Placa: CA70-38,1);
(d) Tiro 9 mm – Face posterior
(Placa: CA70-38,1);
(e) Tiro 7,62 mm – Face anterior
(Placa: CA70-38,1-FA80-FV1);
(f) Tiro 7,62 mm – Face posterior
(Placa: CA70-38,1-FA80-FV1).
FIG. 4.7 Placas de 38,1 mm.
Todas as placas de 50,8 mm sofreram penetração quando foram submetidas a
impacto do calibre de 9 mm (v. FIG. 4.8a e b). De acordo com a TAB. 4.20, quando
impactadas por tiros de 7,62 mm, todas as placas sofreram perfuração, com exceção
129
da placa de concreto armado com fibras de aço e reforçada com 2 lâminas de
compósito de carbono CA70-50,8-FA80-FC2 que sofreu penetração (v.FIG. 4.9 ).
Isto ocorreu, pois o tiro foi realizado contra a face que tinham duas camadas de
compósito de fibras de carbono e foi constatado que o projétil se chocou com uma
das barras de aço. O tiro contra a face reforçada com compósito foi executado para
se verificar a influência do compósito no comprimento de penetração do projétil. As
placas de 50,8 mm de concreto simples ou armado sem ou com fibras de aço
reforçadas com compósito de carbono sofreram perfuração com estilhaçamento.
Aquelas com compósitos de vidro sofreram perfuração sem ter ocorrido
estilhaçamento (v. FIG. 4.8c e d), o que não ocorreu com aquelas reforçadas com
compósito de carbono.
(a) Tiro 9 mm: penetração anterior
(Placa: CA70-50,8-FA80);
(b) Tiro 9 mm: face posterior sem danos
(Placa: CA70-50,8-FA80);
(c) Tiro 7,62 mm: perfuração anterior
(Placa: CS70-50,8-FA80-FV2);
(d) Tiro 7,62 mm: sem estilhaçamento
(Placa: CS70-50,8-FA80-FV2).
FIG. 4.8 Placas de 50,8 mm.
130
(a) Tiro 7,62 mm – Face anterior;
(b) Tiro 7,62 mm – Face posterior.
FIG. 4.9 Placa CA70-50,8-FA80-FC2.
Todas as placas de 70,0 mm impactadas com tiro de 7,62 mm de calibre,
independente da configuração e do tipo de reforço, sofreram penetração
(v. FIG. 4.10a e b), e todas as impactadas com 0.50 pol de calibre sofreram
perfuração com estilhaçamento (v. FIG. 4.10c e d).
(a) Tiro 7,62 mm: penetração anterior
(Placa: CS70-70,0-FA80-FC2);
(b) Tiro 7,62 mm: posterior sem danos
(Placa: CS70-70,0-FA80-FC2);
(c) Tiro 0,50 pol: perfuração anterior
(CA70-70,0-FA80-FC2);
(d) Tiro 0,50 pol: posterior com
estilhaçamento (CA70-70,0-FA80-FC2).
FIG. 4.10 Placas de 70,0 mm.
131
Todas as placas de 100,0 mm impactadas com tiro de 7,62 mm, independente da
configuração e do tipo de reforço, sofreram penetração com danos apenas na face
anterior (v. FIG. 4.11a e b). Todas as impactadas com 0.50 pol sofreram perfuração,
sendo em sua maioria havendo estilhaçamento. Aquelas que tinham reforço com
duas camadas de compósito de fibras de vidro não apresentaram estilhaçamento,
apesar de ter ocorrido a perfuração (v. FIG. 4.11c e d).
(a) Tiro 7,62 mm: penetração anterior
(Placa: CA70-100,0);
(b) Tiro 7,62 mm: posterior sem danos
(Placa: CA70-100,0);
(c) Tiro 0,50 pol: perfuração anterior
(Placa: CA70-100,0-FV2);
(d) Tiro 0,50 pol: posterior sem
estilhaçamento (Placa: CA70-100,0-FV2).
FIG. 4.11 Placas de 100,0 mm.
Todas as placas de 125,0 mm impactadas com tiro de 7,62 mm, independente da
configuração e do tipo de reforço, sofreram penetração com danos apenas na face
anterior. As impactadas com 0.50 pol sofreram penetração com danos somente na
face anterior, conforme visto nas FIG. 4.12a e c (CA70-125,0-FA80-FV1 e
CA70-125,0-FA80-FC1, respectivamente) ou penetração com danos nas faces
132
anterior e posterior, de acordo com FIG. 4.12a e e f (CA70-125,0-FC1). Também
ocorreu perfuração com estilhaçamento e sem estilhaçamento.
(a) Penetração anterior
(Placa: CA70-125,0-FA80-FV1);
(b) Posterior sem danos
(Placa: CA70-125,0-FA80-FV1);
(c) Penetração anterior
(Placa: CA70-125,0-FA80-FC1);
(d) Posterior sem danos
(Placa: CA70-125,0-FA80-FC1);
(e) Penetração face anterior
(Placa: CA70-125,0-FC1);
(f) Posterior com danos e estilhaçamento
(Placa: CA70-125,0-FC1).
FIG. 4.12 Placas de 125,0 mm, tiro 0.50 pol.
133
Todas as placas de 150,0 mm impactadas com 7,62 mm (v. FIG. 4.13a e b) e
0.50 pol sofreram penetração com danos na sua face anterior (v. FIG. 4.13c e d),
exceto a placa CA70-150,0 (v. FIG. 4.13e e f), que sofreu perfuração com
estilhaçamento.
(a) Tiro 7,62 mm: penetração anterior
(Placa: CA70-150,0-FA80);
(b) Tiro 7,62 mm: posterior sem danos
(Placa: CA70-150,0-FA80);
(e) Tiro 0,50 pol: penetração anterior
(Placa: CA70-150,0-FC2);
(f) Tiro 0,50 pol: posterior sem danos
(Placa: CA70-150,0-FC2).
(c) Tiro 0,50 pol: perfuração face anterior
(Placa: CA70-150,0);
(d) Tiro 0,50 pol: posterior com
estilhaçamento (Placa: CA70-150,0);
FIG. 4.13 Placas 150,0 mm.
134
5 ANÁLISE DOS RESULTADOS
5.1
INTRODUÇÃO
Neste capítulo apresenta-se a análise dos resultados dos ensaios de
caracterização do concreto e dos ensaios balísticos executados nas placas de
concreto.
A análise dos resultados dos ensaios balísticos contemplam os dados de
comprimento de penetração do projétil, de variação de massa, de área de danos nas
faces anterior e posterior das placas de concreto.
Foram feitas comparações entre os comprimentos de penetração dos projéteis
experimentais e teóricos segundo formulações apresentadas no capítulo 2.
5.2
RESISTÊNCIA DO CONCRETO À COMPRESSÃO
Da TAB. 4.1 verificou-se que o concreto simples confeccionado em 5 (cinco)
betonadas, apresentou valores de resistência média à compressão próximos,
variando de 63,5 MPa a 71,4 MPa, com média de 67,2 MPa.
Da TAB. 4.2 constatou-se que o concreto com fibras de aço, na taxa de 80 kg/m3
de fibras e confeccionado em 10 (dez) betonadas, apresentou resultados médios de
resistência à compressão maiores, cerca de 15%, que o do concreto simples. Tal
ganho foi próximo ao encontrado por MARINHO (2010), que foi igual a 9%. Os
valores variaram entre 71,6 MPa e 84,1 MPa, com média de 77,1 MPa.
O ganho de resistência decorrente da incorporação das fibras de aço é
decorrente da transferência de carga da matriz de concreto para as fibras de aço.
5.3
MÓDULO DE ELASTICIDADE LONGITUDINAL DO CONCRETO
Da TAB. 4.3 pode ser visualizado que o concreto simples apresentou valores
médios de módulo de elasticidade parecidos, variando de 29,2 GPa a 33,8 GPa,
com média de 31,4 GPa.
Da TAB. 4.4 verificou-se que o concreto com fibras de aço apresentou, da
mesma forma que fc, resultados médios de módulo de elasticidade maiores, em
135
torno de 18%, que os do concreto simples. Estes valores variaram entre 33,8 GPa e
38,6 GPa, com média de 36,9 GPa.
5.4
VARIAÇÃO DE MASSA DAS PLACAS DE CONCRETO
Compararam-se as placas de mesmas espessuras e calibres de projétil tendo
sido pesadas antes e depois do tiro obtidas a perda percentual de massa.
Da TAB. 4.7 verificou-se que a variação da massa nas placas com espessura de
38,1 mm foi maior para aquelas alvejadas por projéteis de 7,62 mm de calibre
(valores de 3,16% a 3,30%).
Aquelas placas somente com armadura interna (barras de aço) submetidas ao
tiro de 9 mm apresentaram as maiores perdas de massa (variação entre 0,88% e
1,69%). As placas de concreto com fibras de aço, armadas ou não com barras de
aço, tiveram uma variação de perda de massa entre 0,22% e 0,59%. As placas
reforçadas com compósitos de fibras de carbono ou de vidro apresentaram os
menores valores de variação de massa, situando–se na faixa de 0,10% a 0,33%. Os
menores valores foram encontrados para as placas reforçadas com duas camadas
de compósito de fibras de carbono.
Da TAB. 4.8 constatou-se que a variação da massa nas placas com espessura
de 50,8 mm submetidas ao tiro de 9 mm foi em média 0,17%. Aquelas submetidas
ao tiro de 7,62 mm apresentaram maiores perdas de massa que as das placas sob
tiro de 9 mm.
As placas de concreto simples com fibras de aço reforçadas com compósito de
fibras apresentaram menores valores médios de perda, cerca de 60% dos de placas
de concreto armado com fibras de aço reforçadas com compósito.
As placas de concreto armado com fibras de aço e reforçadas com compósito de
carbono apresentaram as maiores perda de massa (9,51% a 10,38%), pois foram
perfuradas e sofreram estilhaçamento. A placa CA70-50,8-FA80-FC2 foi a que
apresentou a maior perda de massa (14,20%), porém não foi colocada na análise
por ter sido ensaiada de forma diferente das outras placas, pois o tiro foi impactado
na face reforçada com o compósito.
136
A TAB. 4.9 mostrou que a maior variação da massa nas placas com espessura
de 70,0 mm se deu para a placa CA70-70,0 submetida ao tiro de 0.50 pol (31,60%),
pois houve perfuração da placa. As outras duas placas solicitadas por 0.50 pol
tiveram 4,99% (CA70-70,0-FA80-FC2) e 4,58% (CA70-70,0-FA80-FV2) de variação
de massa, valores menores devido às placas terem sido perfuradas com
estilhaçamento do concreto na face posterior que ficou contido entre a placa e o
compósito de reforço.
As placas impactadas pelo tiro de 7,62 mm que apresentaram as maiores perdas
de massa foram as placas CA70-70,0-FV1 e CA70-70,0 (variação entre 4,00% e
5,41%), mostrando que o reforço somente com barras de aço e/ou compósitos de
vidro não oferece um bom desempenho. Em geral as placas reforçadas com uma ou
duas camada de compósito de resina e fibras de vidro ou carbono e fibras de aço,
tiveram uma variação de massa entre 0,38% e 1,23%.
De acordo com a TAB. 4.10, as maiores variações de massa ocorreram nas
placas de 100,0 mm submetidas ao tiro de 0.50 pol em relação às placas sob o tiro
de 7,62 mm. As maiores variações de massa (14,89% a 39,45%) aconteceram nas
placas de concreto armado com barras de aço e reforçadas com compósitos de
fibras sem fibras de aço, enquanto as menores perdas (2,49% e 2,97%) ocorreram
nestas placas com fibras de aço. As placas de 100,0 mm solicitadas por projétil 7,62
mm de calibre tiveram baixas variações de massa (entre 0,67% e 1,29%).
Na TAB. 4.11 depreende-se que as placas de 125,0 mm de espessura armadas
com barras de aço e submetidas ao projétil de 7,62 mm de calibre apresentaram
maiores variações de massa (1,09% a 1,29%) que as placas sem barras de aço e
com fibras de aço. Quando se colocaram fibras de aço na placa de concreto armado
com barras de aço (CA70-125,0-FA80), a variação de massa foi cerca da metade
encontrada para as placas de concreto armado sem fibras. As placas de 125,0 mm
impactadas com 0.50 pol de calibre que tiveram as maiores variações de massa,
CA70-125,0-FV1 e CA70-125,0-FV2 (27,05% e 21,16%, respectivamente), sofreram
perfuração sem estilhaçamento. As menores variações de massa foram verificadas
nas placas CA70-125,0-FA80-FV1 e CA70-125,0-FA80-FC1 (1,21% e 1,56%,
respectivamente), que sofreram penetração do projétil.
137
Em se tratando das placas de 150,0 mm de espessura, a TAB. 4.12 mostrou que
a ausência de fibras de aço no concreto levou a maiores variações de massa
(14,57% a 32,24% contra 1,21% e 1,44%).
Em geral, as placas solicitadas com maiores calibres de projétil e/ou sem fibras
de aço no concreto apresentaram maiores variações de massa que as das placas
sob tiro de menor calibre e/ou com fibras de aço.
Parece que as placas reforçadas com compósito de fibras de vidro tenderam a
perder menos massa do que as armadas com barras de aço e/ou reforçadas com
compósitos de fibras de carbono.
5.5
DANOS NAS FACES ANTERIOR E POSTERIOR
Em se tratando das áreas de danos nas faces anterior e posterior das placas de
38,1 mm apresentadas na TAB. 4.13, verificou-se que as placas impactadas com
projétil de 7,62 mm de calibre sofreram danos nas faces anterior e posterior, tendo
apresentado áreas de danos próximas, independente do número de camadas de
reforço. Nas outras placas submetidas ao impacto de projétil de 9 mm de calibre,
todas tiveram danos na face anterior (6 cm2 a 22 cm2). Apenas as placas CA70-38,1
(danos face posterior entre 44 cm2 e 79 cm2) e CS70-38,1-FA80 (danos face
posterior 9 cm2) sofreram danos nas duas faces.
Na TAB. 4.14 foi possível verificar que as placas de 50,8 mm impactadas por
projétil de 9 mm de calibre somente sofreram danos na face anterior (área de danos
entre 12 cm2 e 16 cm2). Todas as placas solicitadas por projétil 7,62 mm de calibre
sofreram danos nas faces anterior (50 cm2 a 165 cm2) e posterior (35 cm2 a 141
cm2). Verificou-se que a presença de barras de aço teve maior influencia em diminuir
os danos na face anterior, a presença de fibras de aço teve maior influencia em
diminuir os danos na face posterior, a presença de material compósito de vidro
diminuiu os danos na face anterior e aumentou os da face posterior, por fim, a
presença de material compósito de carbono aumentou os danos na face anterior e
diminuiu na face posterior.
A FIG. 5.1 resume os resultados de danos nas faces das placas de 38,1 mm e
50,8 mm impactadas pelo calibre de 9 mm.
138
FIG. 5.1 Danos nas faces anterior e posterior (cm2), calibre de 9 mm.
De posse da TAB. 4.15 constatou-se que a solicitação de projétil 0.50 pol de
calibre nas placas de 70,0 mm de espessura geraram danos nas faces anterior
(entre 118 cm2 e 171 cm2) e posterior (entre 102 cm2 e 312 cm2). Todas as placas
solicitadas pelo calibre 7,62 mm sofreram danos na face anterior (entre 57 cm2 e 113
cm2). Somente sofreram danos posteriores as placas CS70-70,0-FA80 (área de 143
cm2) e CA70-70,0 (área de 182 cm2). As placas CS70-70,0-FA80-FC1 e CS70-70,0FA80-FV1 apresentaram praticamente as mesmas áreas de danos na face anterior
das placas (média de 75 cm2), o que ocorreu para as placas CA70-70,0-FC1 e
CA70-70,0-FV1 de forma semelhante (média de 110 cm2). As placas de concreto
simples ou armado, todas com fibras de aço e alvejadas por projétil de 7,62 mm de
calibre, apresentaram áreas de danos menores (entre 64 cm 2 e 95 cm2) que as das
mesmas placas reforçadas com compósitos de fibras (entre 57 cm 2 e 87 cm2).
O impacto de 0.50 pol de calibre nas placas de 100,0 mm (v. TAB. 4.16) causou
danos nas faces anterior (entre 123 cm 2 e 471 cm2) e posterior (entre 71 cm2 e 371
cm2). Os maiores danos ocorreram nas placas que não possuíam fibras de aço. As
placas de concreto simples com fibras de aço e reforçadas com compósitos de fibras
ficaram mais danificadas na face posterior que as de concreto armado com fibras de
aço e reforçadas com compósitos de fibras, o que leva a concluir a eficiência da
armadura interna de barras de aço. Todas as placas impactadas por 7,62 mm
sofreram apenas danos na face anterior (entre 50 cm 2 e 113 cm2). As placas que
139
continham fibras de aço apresentaram área de danos menor que a de placas sem
fibras de aço.
Todas as placas de 125,0 mm (v. TAB. 4.17) solicitadas pelos projéteis de 7,62
mm de calibre apenas apresentaram danos na face anterior (entre 71 cm2 e 99
cm2). As placas impactadas com projéteis de 0.50 pol de calibre sofreram danos nas
faces anterior (entre 107 cm2 e 433 cm2) e posterior (entre 156 cm2 e 370 cm2),
com exceção das placas CA70-125,0-FA80-FV1 e CA70-125,0-FA80-FC1, que
sofreram danos apenas na face anterior.
Pela TAB. 4.18 constatou-se que, após terem sido alvejadas por projéteis de 7,62
mm e 0.50 pol de calibre, todas as placas de 150,0 mm sofreram apenas danos na
face anterior (entre 87 cm2 e 707 cm2), com exceção da placa CA70-150,0 que teve
414 cm2 de danos na face posterior. As placas sem fibras de aço, CA70-150,0-FC1 e
CA70-150,0-FC2, tiveram os maiores danos frontais, 707 cm2 e 675 cm2
respectivamente.
A FIG. 5.2 resume os resultados de danos nas faces das placas de 38,1 mm a
150,0 mm impactadas pelo calibre de 7,62 mm.
FIG. 5.2 Danos nas faces anterior e posterior (cm2), calibre de 7,62 mm.
A grande variação dos danos nas faces pode ser atribuída à região de impacto
do projétil não ser sempre a mesma, pois o projétil pode acertar uma região de
argamassa de concreto, ou sobre brita ou barra de aço, o que pode mascarar os
resultados.
140
De forma geral, independentemente da espessura, os maiores danos ocorreram
nas placas apenas armadas com barras de aço. Placas de concreto com fibras de
aço apresentaram uma área de danos menor que as sem fibras de aço. A adição de
barras de aço em placas de concreto com fibras de aço conduziu a uma diminuição
da área de danos. A colagem de compósito de fibras de vidro nas placas de
concreto levou a uma redução da área de danos na face posterior em comparação
com a das placas de concreto reforçadas com compósito de fibras de carbono.
A FIG. 5.3 resume os resultados de danos nas faces das placas de 70,0 mm a
150,0 mm impactadas pelo calibre de 0.50 pol.
FIG. 5.3 Danos nas faces anterior e posterior (cm2), calibre de 0.50 pol mm.
5.6
COMPRIMENTO DE PENETRAÇÃO
Em geral, os comprimentos de penetração dos projéteis (xp) dos três calibres nas
placas de concreto apresentaram resultados próximos. Considerando o projétil de 9
mm de calibre, independente do tipo das placas, os valores de xp situaram-se de 7,0
mm a 11 mm, com valor médio de 9,3 mm; para o projétil de 7,62 mm de calibre,
estes resultados ficaram dentro do intervalo de 27,5 mm a 35 mm, sendo o valor
médio igual a 31,1 mm, enquanto para o projétil de 0.50 pol de calibre, passaram
141
para 74 mm a 83 mm, tendo como valor médio 78,4 mm, conforme resumido na
TAB. 5.1.
TAB. 5.1 Comprimento de penetração médio nas placas.
Calibre do projétil
9 mm
7,62 mm
0.50 pol
Valores
xp
t
xp
t
xp
t
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
máximo 11,0
38,1
35,0
100,0
83,0
125,0
mínimo 7,0
50,8
27,5
70,0
74,0
médio
9,3 38,1 a 50,8 31,1 70,0 a 150,0 78,4 125,0 e 150,0
De posse das TAB. 4.19 a TAB. 4.24, os resultados de comprimento de
penetração dos ensaios balísticos foram comparados com os de cada modelo de
fórmulas empíricas listadas no capitulo 2. Verificou-se que a maioria dos modelos
levam a valores a favor da segurança, isto é, valores superiores aos resultados
médios experimentais, o que era de se esperar.
O modelo PETRY MODIFICADO apud VOSSOUGHI et al. (2007) conduziu a
valores de comprimento de penetração mais próximos dos resultados médios
experimentais, enquanto outros modelos WHIFFEN apud LI et al. (2005) e AMMANN
e WHITNEY apud LI et al. (2005) acarretaram valores de comprimento de
penetração muito divergentes dos resultados médios experimentais.
5.6.1 PETRY MODIFICADO APUD VOSSOUGHI ET AL. (2007)
A FIG. 5.4 mostra a comparação entre os valores de comprimento de penetração
dos projéteis nas placas de concreto experimental (xp experimental) versus teórico
(xp teórico) segundo o modelo de PETRY MODIFICADO apud VOSSOUGHI et al.
(2007). Com relação a estes valores, a razão (xp teórico/xp experimental) média foi
1,10, tendo desvio padrão de 21%.
142
200
xp teórico (mm)
CS-FA
CS-FA-FV
150
CS-FA-FC
CA
100
CA-FA
CA-FV
calibre de 0.50 pol
50
CA-FC
calibre de 7,62 mm
CA-FA-FV
calibre de 9 mm
CA-FA-FC
0
0
50
100
150
200
xp experimental (mm)
FIG. 5.4 Valores de xp experimental e teórico segundo PETRY MODIFICADO apud
VOSSOUGHI et al. (2007).
Nota-se nessa figura que, para projéteis de 9 mm e 7,62 mm de calibre, os
valores de xp teórico foram, em média, 29% e 3% superiores aos de xp experimental
Também verifica-se dessa figura que, para projéteis de 0.50 pol de calibre, os
valores de xp teórico foram, em média, 31% menores que os de xp experimental,
levando a concluir que o modelo de PETRY MODIFICADO apud VOSSOUGHI et al.
(2007) subestima os valores de xp.
5.6.2 UKAEA APUD LI ET AL. (2005)
De acordo com a FIG. 5.5 todos os valores de xp teórico segundo o modelo de
UKAEA apud LI et al. (2005) foram maiores que os de xp experimental. Em média, os
valores de xp teórico foram 92% superiores aos de xp experimental, com desvio
padrão de 21%.
Para os calibres de 9 mm, 7,62 mm e 0.50 pol, a média entre os valores de razão
(xp teórico/xp experimental) foi 1,88, 2,02 e 1,64, respectivamente.
143
200
xp teórico (mm)
CS-FA
calibre de 0.50 pol
150
CS-FA-FV
CS-FA-FC
CA
100
CA-FA
calibre de 7,62 mm
CA-FV
CA-FC
50
CA-FA-FV
calibre de 9 mm
CA-FA-FC
0
0
50
100
150
200
xp experimental (mm)
FIG. 5.5 Valores de xp experimental e teórico segundo UKAEA apud LI et al. (2005).
5.6.3 WHIFFEN APUD LI ET AL. (2005)
Tal qual como ocorreu para o modelo de UKAEA apud LI et al. (2005) (v. FIG.
5.6), todos os valores de xp teórico, segundo o modelo de WHIFFEN apud LI et al.
(2005) foram maiores que os de xp experimental. Em média, os valores de xp teórico
foram 139% superiores aos de xp experimental, com desvio padrão de 30%.
A média entre os valores de razão (xp teórico/xp experimental) foi igual a 2,43,
2,47 e 1,85 para os calibres de 9 mm, 7,62 mm e 0.50 pol, respectivamente.
144
200
CS-FA
xp teórico (mm)
calibre de 0.50 pol
CS-FA-FV
150
CS-FA-FC
CA
100
CA-FA
calibre de 7,62 mm
CA-FV
CA-FC
50
CA-FA-FV
calibre de 9 mm
CA-FA-FC
0
0
50
100
150
200
xp experimental (mm)
FIG. 5.6 Valores de xp experimental e teórico segundo WHIFFEN apud LI et al.
(2005).
5.6.4 MÉTODO ACE APUD VOSSOUGHI ET AL. (2007)
De acordo com a FIG. 5.7, o método do ACE levou a resultados de xp, em média,
84% maiores que os xp experimental, apresentando um desvio padrão cerca de
20%.
Comparando os valores de xp segundo o método do ACE e experimental, por
calibre, a média entre os valores de razão (xp teórico/xp experimental) foi igual a
1,82, 1,91 e 1,54 para os calibres de 9 mm, 7,62 mm e 0.50 pol, respectivamente.
145
200
xp teórico (mm)
CS-FA
CS-FA-FV
150
calibre de 0.50 pol
CS-FA-FC
CA
100
CA-FA
calibre de 7,62 mm
CA-FV
CA-FC
50
CA-FA-FV
calibre de 9 mm
CA-FA-FC
0
0
50
100
150
200
xp experimental (mm)
FIG. 5.7 Valores de xp experimental e teórico segundo ACE apud VOSSOUGHI et al.
(2007).
5.6.5 HALDAR APUD VOSSOUGHI ET AL. (2007)
A tendência dos valores teóricos de xp segundo o modelo de HALDAR foi
parecida com a dos valores teóricos segundo os modelos de UKAEA e da ACE,
como mostrado na FIG. 5.8.
Todos os valores de xp teórico segundo o modelo de HALDAR foram maiores que
os de xp experimental. Em média, os valores de xp teórico foram 90% superiores aos
de xp experimental, com desvio padrão de 24%.
A média entre os valores de razão (xp teórico/xp experimental) foi igual a 1,93,
1,97 e 1,48 para os calibres de 9 mm, 7,62 mm e 0.50 pol, respectivamente.
146
200
xp teórico (mm)
CS-FA
150
CS-FA-FV
calibre de 0.50 pol
CS-FA-FC
CA
100
CA-FA
calibre de 7,62 mm
CA-FV
CA-FC
50
CA-FA-FV
calibre de 9 mm
CA-FA-FC
0
0
50
100
150
200
xp experimental (mm)
FIG. 5.8 Valores de xp experimental e teórico segundo HALDAR apud VOSSOUGHI
et al. (2007).
5.6.6 ADELI E AMIN APUD LI ET AL. (2005)
Não foi possível calcular o comprimento de penetração para esse modelo,
porque o adimensional I (v. Eq. 2.8) foram todos maiores que 21, valor este limita
para cálculo de xp.
5.6.7 MÉTODO NDRC MODIFICADO APUD VOSSOUGHI ET AL. (2007)
A formulação NDRC MODIFICADO superestimou, em média, 96% os valores
teóricos de xp em relação ao valores experimentais de xp nas placas de concreto
impactadas, independentemente do projétil, conforme pode ser visto na FIG. 5.9.
Constata-se nessa figura que, para projéteis de 9 mm, 7,62 mm e 0.50 pol de
calibre, os valores de xp teórico foram, em média, 94%, 104% e 65% superiores aos
de xp experimental.
147
200
xp teórico (mm)
CS-FA
calibre de 0.50 pol
150
CS-FA-FV
CS-FA-FC
CA
100
CA-FA
calibre de 7,62 mm
CA-FV
CA-FC
50
CA-FA-FV
calibre de 9 mm
CA-FA-FC
0
0
50
100
150
200
xp experimental (mm)
FIG. 5.9 Valores de xp experimental e teórico segundo NDRC MODIFICADO apud
VOSSOUGHI et al. (2007).
5.6.8 AMMANN E WHITNEY APUD LI ET AL. (2005)
Conforme FIG. 5.10, todos os valores de xp teórico, segundo o modelo de
AMMANN e WHITNEY apud LI et al. (2005) foram maiores que os de xp
experimental. Em média, os valores de xp teórico foram 121% superiores aos de xp
experimental, com o maior desvio padrão entre todos os modelos de previsão de x p
igual a 67%.
A média entre os valores de razão (xp teórico/xp experimental) foi igual a 1,46,
2,81 e 2,33 para os calibres de 9 mm, 7,62 mm e 0.50 pol, respectivamente. Houve
discrepância entre os valores de xp teórico/xp experimental para os calibres de
7,62 mm e 0.50 pol, já que para estes projéteis a velocidade de impacto ultrapassa
800 m/s, ainda que o modelo de AMMANN e WHITNEY seja adequado para
projéteis com velocidade de impacto superior a 300 m/s.
148
FIG. 5.10 Valores de xp experimental e teórico segundo AMMANN e WHITNEY apud
LI et al. (2005).
5.6.9 MÉTODO BRL MODIFICADO APUD VOSSOUGHI ET AL. (2007)
A média dos valores da razão (xp teórico/xp experimental) encontrada segundo o
modelo BRL foi 2,12, tendo desvio padrão de 28%.
Nota-se na FIG. 5.11 que, para projéteis de 9 mm, 7,62 mm e 0.50 pol de calibre,
os valores de xp teórico foram, em média, 94%, 133% e 87% superiores aos de x p
experimental
149
200
CS-FA
xp teórico (mm)
calibre de 0.50 pol
CS-FA-FV
150
CS-FA-FC
CA
100
CA-FA
calibre de 7,62 mm
CA-FV
CA-FC
50
CA-FA-FV
calibre de 9 mm
CA-FA-FC
0
0
50
100
150
200
xp experimental (mm)
FIG. 5.11 Valores de xp experimental e teórico segundo BRL MODIFICADO apud
VOSSOUGHI et al. (2007).
5.6.10 CONSIDERAÇÕES GERAIS
A TAB. 5.2 resume a média dos valores de razão (xp teórico/xp experimental) dos
modelos empregados na avaliação do comprimento de penetração x p para cada
calibre utilizado.
Da TAB. 5.2 verifica-se que a maioria das formulações teóricas apresentadas
conduz a valores de comprimento de penetração do projétil xp maiores que os
experimentais, isto é, as formulações superestimam os valores reais de xp, com
exceção do modelo de PETRY MODIFICADO aplicado ao calibre de 0.50 pol.
Verificou-se dessa tabela também que o modelo de WHIFFEN é o que conduz
aos maiores valores teóricos de xp para projétil de 9 mm de calibre, e que o de
AMMANN e WHITNEY é os que mais superestima os valores de xp para os projéteis
de 7,62 mm e 0.50 pol de calibres.
150
O modelo de MÉTODO WHIFFEN é o que mais está a favor de segurança, cuja
média entre os valores de razão (xp teórico/xp experimental) considerando todos os
calibre é de 2,25.
TAB. 5.2 Valores de razão (xp teórico/xp experimental) média dos modelos.
Calibre Calibre
Calibre
Modelo
9 mm 7,62 mm 0.50 pol
MÉTODO PETRY MODIFICADO
1,29
1,03
0,69
MÉTODO UKAEA
1,88
2,02
1,64
MÉTODO WHIFFEN
2,43
2,47
1,85
MÉTODO ACE
1,82
1,91
1,54
MÉTODO HALDAR
1,93
1,97
1,48
MÉTODO ADELI E AMIN
MÉTODO NDRC MODIFICADO
1,94
2,04
1,65
MÉTODO AMMANN E WHITNEY
1,46
2,81
2,33
MÉTODO BRL MODIFICADA
1,94
2,33
1,87
Pode constatar da FIG. 5.12 que o comprimento de penetração experimental
relativo à bitola do projétil (xp exp/d) tem uma faixa de valores variável em função da
velocidade de impacto do projétil. Para o projétil de 9 mm de calibre, xp exp/d variou
entre 0,78 e 1,22, enquanto para o projétil de 7,62 mm de calibre, xp
exp/d
passou
para 3,61 e 4,60. O aumento dos valores de xp exp/d para o projétil de 7,62 mm de
calibre em relação aos de xp
exp/d
para o projétil de 9 mm de calibre foi devido ao
primeiro possuir velocidades de impacto (806 m/s até 854 m/s) maiores que o
segundo (420 m/s até 445 m/s), o que incrementa o valor do comprimento de
penetração. Os valores de xp
exp/d
situaram-se entre 5,83 e 6,54 para o projétil de
0.50 pol de calibre, que apresenta velocidades de impacto variando de 892 m/s a
906 m/s.
A FIG. 5.13 reúne valores de comprimento de penetração experimental relativos
à espessura da placa (xp
exp/t)
em função da velocidade de impacto do projétil.
Percebe-se que para que não ocorra a perfuração da placa, os valores de xp
exp/t
para o projétil de 9 mm de calibre estão na faixa de 0,14 a 0,29. Para os projéteis de
7,62 mm e de 0.50 pol de calibre, estes valores passam para 0,22 a 0,49 e 0,50 a
0,66.
151
xp exp /d
7
6
5
4
3
2
1
0
CS-FA
calibre de 0.50 pol
CS-FA-FV
CS-FA-FC
calibre de 7,62 mm
CA
CA-FA
CA-FV
calibre de 9 mm
CA-FC
CA-FA-FV
CA-FA-FC
0
200
400
600
800
1000
v (m/s)
xexp /t
FIG. 5.12 Valores de xp experimental relativo ao calibre do projétil em função da
velocidade de impacto do projétil.
0,70
0,60
0,50
0,40
0,30
0,20
0,10
0,00
CS-FA
calibre de 0.50 pol
CS-FA-FV
CS-FA-FC
calibre de 7,62mm
CA
CA-FA
CA-FV
calibre de 9 mm
CA-FC
CA-FA-FV
CA-FA-FC
0
200
400 600
v (m/s)
800 1000
FIG. 5.13 Valores de xp experimental relativo à espessura da placa em função da
velocidade de impacto do projétil.
152
5.7
COMPRIMENTO DE ESTILHAÇAMENTO
O cone de estilhaçamento, medido na face posterior ao tiro, foi observado em
somente sete placas de concreto ensaiadas, que sofreram penetração do projétil. A
TAB. 5.3 mostra o comprimento de estilhaçamento (xe) aferido.
TAB. 5.3 Valores de comprimento de estilhaçamento (xe).
Tipo placa
Espessura (mm) Calibre xe (mm)
CS70-38,1-FA80
38,1
9 mm
14,7
CA70-38,1
38,1
9 mm
23,0
CA70-38,1
38,1
9 mm
14,3
CA70-38,1
38,1
9 mm
16,5
CS70-70,0-FA80
70,0
7,62 mm
23,0
CA70-70,0
70,0
7,62 mm
34,5
CA70-125,0-FC1
125,0
0.50 pol
32,0
As placas de concreto de 38,1 mm de espessura impactadas com projétil de 9
mm de calibre que apresentaram comprimento de estilhaçamento foi a que não tinha
armadura interna de barras de aço, mas possuía fibras de aço, e as que foram
armadas com barras de aço sem fibras de aço e desprovidas de compósitos de
fibras. O mesmo ocorreu para as placas de concreto de 70 mm de espessura,
submetidas ao impacto de projétil de 7,62 mm de calibre. Apenas a placa de
concreto CA70-125,0-FC1 sofreu penetração com estilhaçamento, apesar de ter sido
reforçada com uma camada de compósito de fibras de carbono.
Nota-se também da TAB. 5.3 que o comprimento de estilhaçamento tendeu a ser
menor que nas placas com fibras de aço.
Nenhuma das placas de concreto de 50,8 mm, 100 mm ou 150 mm de espessura
sofreu penetração com estilhaçamento.
153
6 CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABALHOS
Este trabalho tratou do estudo teórico e experimental de placas quadradas de
concreto submetidas a impacto balístico. A composição das placas foi de concreto
simples ou armado, com ou sem fibras de aço, e reforçadas ou não com compósitos
de resina e fibras de carbono (CFRP) ou de vidro (GFRP). As placas tiveram
diferentes espessuras e foram utilizados de três tipos de calibres.
Com base nos ensaios realizados, nos resultados apresentados no capitulo 4 e
nas análises feitas no capitulo 5, foi possível tirar algumas conclusões, sendo
destacadas a seguir.
A resina epóxi utilizada na colagem dos compósitos ao concreto não teve bom
desempenho, pois a maioria das placas reforçadas apresentou descolamento do
compósito em função das tensões de tração oriundas das ondas de choque
provocadas pelo projétil no interior da placa de concreto. Apesar do descolamento, o
compósito colado ao concreto na face posterior ao tiro conteve os estilhaços de
concreto na maioria dos casos.
Os maiores danos nas faces anterior e posterior ocorreram nas placas de
concreto armado sem fibras de aço ou sem reforço com compósito de fibras. Os
danos ocorridos nas placas reforçadas com CFRP ou GFRP, em geral, foram
maiores na face anterior que os na face posterior ao tiro.
Para a quantidade de fibras de aço utilizada, o uso destas no concreto aumentou
sua resistência à compressão e seu módulo de elasticidade longitudinal, e diminuiu
os danos nas faces anterior e posterior e a perda de massa das placas de concreto
sob impacto balístico.
Verificou-se que quanto maior a velocidade de impacto do projétil, nem sempre
relacionada ao maior calibre do projétil, maiores são os danos gerados à estrutura
de concreto.
O uso de fibras de aço ou de compósito de resina e fibras de vidro ou de carbono
pareceu que não influencia o valor do comprimento de penetração do projétil na
placa de concreto, mas é importante para evitar a ruptura da placa de concreto ou
impedir a ocorrência de estilhaçamento do concreto na face posterior ao tiro da
placa de concreto.
154
Constatou-se que todas as placas com espessura de 38,1 mm de espessura
resistiram ao tiro de 9 mm de calibre com ou sem estilhaçamento, apresentando um
comprimento de penetração médio (xp, med) de 9,5 mm. Apesar da adição de barras
de aço e de fibras de aço ao concreto e do reforço com 1 ou 2 camadas de GFRP
das placas de 38,1 mm de espessura, estas foram perfuradas pelo tiro de 7,62 mm
de calibre.
Quando se aumentou a espessura das placas para 50,8 mm com barras de aço e
com fibras de aço ou 1 camada de CFRP, o tiro de 9 mm de calibre penetrou em
média 8,9 mm, sem ter havido perfuração ou estilhaçamento do concreto na face
posterior ao tiro. Quanto o tiro foi de 7,62 mm de calibre, houve perfuração sem ou
com estilhaçamento do concreto na face posterior ao tiro das placas sem ou com
barras de aço ou fibras de aço reforçadas com 1 ou 2 camadas de GFRP ou CFRP.
Foi verificado que todas as placas de espessura de 70 mm de espessura,
independente do tipo de concreto ou reforço, quando solicitadas pelo calibre de 7,62
mm, ocorreu penetração (xp,
med
= 31 mm) sem estilhaçamento ou com
estilhaçamento (placas que somente tinham fibras de aço ou barras de aço).
Quando alvejadas pelo projétil de 0.50 pol de calibre, as placas de espessura de 70
mm de espessura sofreram perfuração com estilhaçamento.
As placas de 100 mm de espessura sofreram somente penetração quando
impactadas com tiro de 7,62 mm de calibre, tendo xp, med = 32 mm. Quando alvejadas
pelo projétil de 0.50 pol de calibre, estas foram perfuradas sem ou com
estilhaçamento, mesmo tendo sido armadas ou não com barras de aço ou sem ou
com fibras de aço e todas reforçadas com 1 ou 2 camadas de GFRP ou CFRP.
Ocorreu apenas penetração sem estilhaçamento nas placas de 125 mm
impactadas com tiro de 7,62 mm de calibre (xp, med = 30 mm). Quando estas foram
atingidas pelo tiro de 0.50 pol, houve penetração (xp,
med
= 79 mm) nas placas de
concreto armado sem fibras de aço (com estilhaçamento) ou com fibras de aço (sem
estilhaçamento) e reforçadas com 1 camada de GFRP ou CFRP, ou perfuração sem
ou com estilhaçamento.
A placa de 150 mm de concreto armado com fibras de aço sofreu penetração
sem estilhaçamento quando foi alvejada pelo tiro de 7,62 mm de calibre (x p = 32,5
mm). Aquela de concreto armado sem fibras de aço e sem CFRP, quando
impactada pelo tiro de 0.5 pol de calibre, sofreu perfuração. Quando se adicionaram
155
fibras de aço ou 1 ou 2 camadas de CFRP nas placas de concreto de 150 mm de
espessura, estas resistiram ao tiro de 0.5 pol de calibre, tendo ocorrido apenas
penetração (xp, med = 78 mm).
Dos modelos de previsão do comprimento de penetração em concreto, o que
mais se aproximou dos resultados de comprimento de penetração do projétil no
concreto foi o de PETRY MODIFICADO apud VOSSOUGHI et al. (2007), enquanto
os de WHIFFEN apud LI et al. (2005) e AMMANN e WHITNEY apud LI et al. (2005)
foram os que levaram a resultados mais discrepantes.
Todos os modelos de previsão do comprimento de penetração projétil no
concreto listados neste trabalho superestimaram tal parâmetro, como era de se
esperar, exceto o de PETRY MODIFICADO apud VOSSOUGHI et al. (2007), que
subestimou xp em 31%, no caso de projétil de 0.50 pol de calibre.
Para dar continuidade a este trabalho, sugere-se repetir os mesmos ensaios
balísticos para concretos com diferentes valores de resistência à compressão a fim
de se verificar o desempenho das fibras de aço e dos compósitos de fibras.
Pelo fato de ter havido descolamento dos compósitos de fibras, recomenda-se
testar a concretagem da placa com o compósito de fibras no fundo da forma ou
internamente sob um cobrimento de concreto.
Sugere-se testar a variação da taxa de armadura interna com o objetivo de
verificar se há efeito de confinamento pela armadura interna na região central da
placa de concreto.
Sugere-se a utilização de alumínio, compósitos de aramida ou a combinação de
compósitos de fibras de vidro e de carbono na face posterior protegida com camada
de argamassa cimentícia, e de placas cerâmicas balísticas na face anterior das
placas de concreto.
Sabendo que as placas de concreto com espessura maior que 70 mm,
independente do reforço, sofreram apenas penetração, recomenda-se que sejam
confeccionadas placas quadradas com dimensão de 50 cm, objetivando testá-las de
acordo com a NBR 15000 (2005), com 5 tiros para nível de blindagem III, conforme
apresentado na TAB. 2.1.
156
7 REFERÊNCIA BIBLIOGRÁFICA
ALMANSA, E. M., CANOVAS, M. F. Behavior of normal and steel fibersreinforced concrete under impact of small projectiles. Cement and Concrete
Research, v. 29, pp.1807–1814, 1999.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT. NBR 15000 –
Blindagens para impactos balísticos - Classificação e critérios de avaliação,
2005.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT, NBR 5738, Concreto
– Procedimento para moldagem e cura de corpos-de-prova, 2003.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT, NBR 5739, Concreto
- Ensaios de compressão de corpos-de-prova cilíndricos, 2007.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT, NBR 8522, Concreto
- Determinação do módulo estático de elasticidade à compressão, 2008.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT, NBR 6118, Projeto
de estruturas de concreto – Procedimento, 2007.
BANGASH M.Y.H. Shock, Impact and Explosion: Structural Analysis and
Design. Ed. Springer, ISBN: 978-3-540-77067-1, Germany, 2009.
CARNEIRO, L. A. V. Reforço de vigas e pilares de concreto com materiais
compósitos de resina e fibras, Tese de doutorado apresentada ao Programa
de Engenharia Civil, COPPE/UFRJ, Rio de Janeiro, 2004.
DANCYGIER, A. N., Effect of reinforcement ratio on the resistance of reinforced
concrete to hard projectile impact. Nuclear Engineering and Design, v.172, n.
1-2, pp. 233-245, 1997.
DANCYGIER, A. N., Yankelevsky, D. Z., Jaegermann, C. Response of high
performance concrete plates to impact of non-deforming projectiles.
International Journal of Impact Engineering, v. 34, n. 11, pp 1768-1779, 2007.
DOS SANTOS, A. C. Ensaio para Análise da Interface entre o Betão e Polímero
Reforçado com Fibra, Tese de doutorado apresentada à Escola Politécnica da
Universidade de São Paulo, São Paulo, 2003.
157
IOGO, T. C. ’A., Estudo Experimental do Reforço à Força Cortante de
Corpos-de-prova de Concreto com Compósito de Fibras de Carbono.
Dissertação de Mestrado da Universidade Federal Fluminense, Niterói, 2010.
FORRESTAL, M. J., FREW, D. J., HANCHAK, S. J., BRAR, N. S. Penetration of
Grout and Concrete Targets with Ogive-Nose Steel Projectiles. International
Journal of Impact Engineering, v. 18, n. 5, pp 465-476, 1996.
FREW, D. J., HANCHAK, S. J., GREEN, M. L., FORRESTAL, M. J. Penetration of
Concrete Targets with Ogive-Nose Steel Rods. International Journal of Impact
Engineering, v. 21, n. 6, pp. 489-497, 1998.
GERDAU, Catálogo aços para a construção civil, 2009.
JÚDICE, F. M. S., FREITAS, L. B., CARNEIRO, L. A. V., DOMINGUES, L. C. S.,
Avaliação das Propriedades de Concretos de Alto Desempenho com Fibras
de Aço, 16p. Anais do 42º Congresso Brasileiro de Concreto-IBRACON, 2000.
LI, Q. M., REID, S. R., WEN, H. M., TELFORD, A. R. Local impact effects of hard
missiles on concrete targets. International Journal of Impact Engineering, v. 32
n. 1–4, pp. 224–284, 2005.
LUO, X., SUN, W., CHAN, S. Y. N. Characteristic of high-performance steel fiberreinforced concrete subject to high velocity impact. Cement and Concrete
Research, v. 30, pp. 907–914, 2000.
MACCAFERRI, Fibras como elemento estrutural para reforço de concreto,
Manual Técnico. Disponível em: < http://www.maccaferri.com.br>, acessado em
jan, 2011.
MARINHO, J. E. S. Comportamento de Concretos com Fibras para
Pavimentação sob Cargas Dinâmicas Harmônicas, Dissertação de Mestrado
apresentada ao Programa de Pós-graduação em Engenharia de Transportes,
IME, Rio de Janeiro, 2010.
MOHAMED, M. E., ELTEHAWY, E. M., KAMAL, I. M., AGGOUR, A. A. Experimental
Analysis of Reinforced Concrete Panels Penetration Resistance. Aerospace
Sciences & Aviation Technology, ASAT-13-TE-14, 2009.
158
ONG, K. C. G., BASHEERKHAN, M., PARAMASIVAM, P. Resistance of fibre
concrete slabs to low velocity projectile impact. Cement and Concrete
Composites, v. 21, pp. 391–401, 1999.
RIERA, J. D. Penetration, scabbing and perforation of concrete structure hit by
solid missiles. Nuclear Engineering and Design, v.115, n. 1, pp.1 21-131, 1989.
SAFE,
Blindagem
Balística,
Disponível
em:<
http://safeblindados.com.br/servicos/92-blindagem-balistica.html>, Acessado em:
dezembro, 2010.
SILVA, A. S. Comportamento de Pilares Curtos Confinados por Compósitos de
Fibras de Vidro e Carbono, Escola Politécnica da Universidade de São Paulo,
São Paulo, 2002.
SOBRAL, T. R. J. Concretos Sob Cargas de Impacto para a Segurança das Vias
Públicas, Dissertação de Mestrado apresentada ao Programa de Pós-graduação
em Engenharia de Transportes, IME, Rio de Janeiro, 2011.
SONG, P. S., WU, J. C., HWANG, S., SHEU, B. C. Assessment of Statistical
Variations in Impact Resistance of High-Strength Concrete and HighStrength Steel Fiber-Reinforced Concrete. Cement and Concrete Research, v.
35, pp. 393–399, 2005.
VOSSOUGHI, F., OSTERTAG, C. P., MONTEIRO, P. J. M., JOHNSON, G. C.
Resistance of concrete protected by fabric to projectile impact. Cement and
Concrete Research, v. 37, pp. 96–106, 2007.
WIKIPÉDIA, Site: http://pt.wikipedia.org/wiki/Balística.
ZHANG, M. H., SHIM, V. P. W., LU, G., CHEW, C.W. Resistance of high-strength
concrete to projectile impact. International Journal of Impact Engineering, v. 31,
pp. 825–841, 2005.
159
Download

concreto armado reforçado com fibras sob cargas de impacto para a