Towards the development of an HIV CD4+ T
cell epitope-based epitope vaccine: new
developments
Edecio Cunha-Neto
Lab of Clinical Immunology and Allergy-LIM 60
Lab. Of Immunology, Heart Institute ( InCor)
University of São Paulo
São Paulo. Brazil
Atualmente…
35 ongoing clinical trials
2
Hipervariabilty: major obstacle for anti-HIV vaccine
Ideal vaccine :
-Responses in tha majority
of the population
-”matching the circulating
viruses
Influenza, world-1996
1 HIV patient
AIDS vaccine blueprint, IAVI, 2008
Congo,
1997
Is there evidence that CD4+ T cells play a
protective role against HIV/SIV infection?
LTNP :strong CD4+ T cell responses to HIV (Schwarz, 1994)
Responses and progression in LTNP (Martinez, 2005)
Cytolytic CD4+ T cells:
 in acute phase: control of HIV viremia (Shogoian 2012,
Ranasinghe 2013)
 induced in the RV144 trial (DeSouza et al. 2012)
 associated to reduction of SIV macrophage reservoirs
(Sacha , 2009)
Vaccine-protected macaques challenged with SIV display
powerful CD4+ T cell response (Wilson 2009, Hansen 2011)
Induction of CD4+ T cell responses has
been overlooked in HIV vaccine design
Why?
1. Fear of creating activated CD4+ T cells and fuel viral replication in sites of early
infection
2. Notion that anti-HIV antibody and CD8+ T cell responses are *necessary* and
*sufficient * for direct blocking of infection and killing of infected cells
“Textbook” information on cellular immunology says
anti-HIV CD8+T cell and antibody responses may be CD4+ T cell dependent
•Anti-HIV CD4+T cells may have direct effector functions
HIV vaccine concepts tested up to now:
mostly directed against whole HIV proteins, made to elicit
CD8+ T cell responses
2007:phase IIb trial, STEP(Merck): Ad5GagPolNef
only 25% displayed simultaneous CD4+ and
CD8+ T cell responses
Few epitopes recognized per vaccinee
2009: Phase III trial RV 144, Thailand: ALVAC+GP120, 30% efficacy
40% displayed a CD4+ T cell response (Env V2), no CD8+
Only binding antibodies (no broadly neutralizing)
Insufficient efficacy
Incomplete immunological coverage (especially CD4+, less than 40% in both studies )
Recognition of few epitopes
Failed to cope with variability
Whole HIV proteins: evolutionary escape?
How to overcome the obstacles for the
development of an effective T cell-based vaccine
against HIV?
A CD4 epitope-based HIV vaccine should be able to
-Deal with viral diversity and population coverage: broad responses of
multiple conserved epitopes in the majority of HLA-disparate vaccinees,
-Provide cognate T cell help to CD8+ responses/antibody production
Induce effector anti-HIV CD4+ T cells?
Approach: In silico prediction of CD4+ T cell epitopes, able to bind to multiple HLADR molecules among with conserved HIV-1 regions
Complete HIV-1 proteome:
conserved
consensus
subtype B
gag
env
pol
nef
tat
rev
vif
vpr
vpu
Potential
promíscuous
epitopes
- algoritmo TEPITOPE
Sturniolo et al. 1999,
Iwai et al. 2003, Fonseca 2004,
Fonseca 2005ª, 2005b,
Damico 2005, Rosa 2006, Garcia 2008
Fonseca e cols. submetido
18 predicted conserved
CD4+ T cell epitopes
in 8 major HIV proteins
(gag, pol, env, rev, vpr, vif, vpu, nef)
Recognized by over
90% HIV-1 infected patients
Each patient recognized an average of 5 peptides
No HLA association
Polyepitopic/polyallelic vaccine candidate?
Fonseca , Cunha-Neto et al. , 2006
Peptides
Sequence
p1773–89
EELRSLYNTVATLYCVH
p2433–45
SPEVIPMFSALSE
p24131–150
KRWIILGLNKIVRMYSPTSI
p632–46
DKELYPLASLRSLFG
pol63-77
QRPLVTIKIGGQLKE
pol136-150
TPVNIIGRNLLTQIG
pol785-799
GKIILVAVHVASGYI
gp41261–276
RDLLLIVTRIVELLGR
gp16019–31
TMLLGMLMICSAA
gp160174–185
ALFYKLDVVPID
gp160188–201
NTSYRLISCNTSVI
gp160481–498
SELYLYKVVKIEPLGVAP
rev11–27
ELLKTVRLIKFLYQSNP
vpr58–72
EAIIRILQQLLFIHF
vpr65–82
QQLLFIHFRIGCRHSRIG
vif144–158
SLQYLALVALVAPKK
vpu6–20
VLAIVALVVATIIAI
nef180–194
VLEWRFDSRLAFHHV
Most HLA-DR molecules tested can present multiple (>50%)
selected peptides
Binding/IC50 (nM)
Peptide
p17(73-89)
p24(33-45)
p24(131-150)
p6(32-46)
pol(63-77)
pol(136-150)
pol(785-799)
gp41(261-276)
gp160(19-31)
gp160(174-185)
gp160(188-201)
gp160(481-498)
ver(11-27)
vpr(58-72)
vpr(65-82)
vif(144-158)
nef(180-194)
vpu(6-20)
#peptides bound to HLADR
HLA-DR binding
DRB1*0 DRB1*0 DRB1*0 DRB1*0 DRB1*0 DRB1*0 DRB1*0 DRB1*1 DRB1*1 DRB1*1 DRB1*1 DRB1*1 DRB1*1 DRB3*0 DRB3*0 DRB4*0 DRB5*0 #bound
molecules
1:01
3:01
4:01
4:05
7:01
8:02
9:01
0:01
1:01
2:01
3:02
5:01
6:02
1:01
2:02
1:01
1:01
68
1916
444
7,1
3,9
4,5
88
7,4
2,3
1171
3,1
22
10459 124
37
1535 2187
17
196
308 3959 1298
5241
9577
15
9088
63
59
7309 329
2,6
599
789
28
229
6,8
1556 23324 453
1383
361
228
0,39 15181
3,9
89
5,5
111
266
506
590
15
6
15
271
1082
24
2808
105
85
18
69
224 2859
4513 6709
6242 208
575
231
701
5661
19
26
169
432
468
19
54
2484
440 28413
66
5574
3,1
16
89
157
815
4100
16
9
52
1,3
4,1
5,1
16
284
435
158
877
124
188
13
25
544
79
235
593
335
207
32
14
21
135
2094
550
473
6294
17
291
18
233
4555
579
14
187
881
87
6,5
3,9
2,2
74
871
59
83
318
3,5
63
2,6
19
87
58
1,2
44
18
338
121
16
31
202
705
2378
577
9668
1072
3532
175
500
9754
2622
51
60
2212
18
15
18
11
216
2748 488
290 27413 117
25
8,4
5,1
9,2
3551
57
183
9629
98
3181
26
70
4137 10080 262
754
3537
725
5675
5352
75
135
3256
1650
109
800
70
92
5,9
1,0
7796
79
462
391
2386 3772
272
95
15323 8,1
1248 709
141
1078
1332
11
6
15
69
479
7,6
7247
4,0
263
10
2480
74
1152
608 2008
976 4538
1221
669
5239 2012
113
14
54
466
53
1506
529
574
2111 4812
671 17564
5,8
839
110
6,5
5338 603
14
9
4825
7956
37
722
2469
8882
27248
7787
290
440
905
172
21526
2414
409
18
1461
337
175
14
74
22
495
778
1207
4319
1257
5422
28
0,59
199
51
199
4013
10334
4585
295
38
45
37
1019
3321
596
20992
1110
200
310
286
4836
5246
3,9
7,5
137
8
5
11
(% )
12
70,6
12
70,6
17
100,0
14
82,4
12
70,6
8
47,1
9
52,9
11
64,7
3
17,6
12
70,6
13
76,5
16
94,1
16
94,1
7
41,2
9
52,9
15
88,2
15
88,2
9
52,9
DR binding to
>50% peptides
13/17
76%
17 tested HLA-DR molecules
Fonseca , Cunha-Neto et al. , 2006
Construction of a CD4 multiepitope HIV vaccine
Artificial gene
p17
(73-89)
gp160
(174-185)
p24
(33-45)
p24
p6
(131-150) (32-46)
gp160
gp160
(481-498)
(188-201)
rev
(11-27)
pol
(63-77)
pol
(136-150)
vpr
(58-72)
vpr
(65-82)
pol
gp41
(785-799) (261-276)
vif
(144-158)
vpu
(6-20)
gp160
(19-31)
nef
(180-194)
Novel epitopes
GPGPG Spacers
B)
Codon
optimization
AAG CTT ACC ATG GAG GAG CTG AGA AGC CTG TAC AAC ACC GTG GCC
ACC CTG TAC TGC GTG CAC GGC CCC GGC CCC GGC AGC CCC GAG GTG
ATC CCC ATG TTC AGC GCC CTG AGC GAG GGC CCC GGC CCC GGC AAG
AGA TGG ATC ATC CTG GGC CTG AAC AAG ATC GTG AGA ATG TAC AGC
CCC ACC AGC ATC GGC CCC GGC CCC GGC GAC AAG GAG CTG TAC CCC
CTG GCC AGC CTG AGA AGC CTG TTC GGC GGC CCC GGC CCC GGC CAG
AGA CCC CTG GTG ACC ATC AAG ATC GGC GGC CAG CTG AAG GAG GGC
CCC GGC CCC GGC ACC CCC GTG AAC ATC ATC GGC AGA AAC CTG CTG
ACC CAG ATC GGC GGC CCC GGC CCC GGC GGC AAG ATC ATC CTG GTG
GCC GTG CAC GTG GCC AGC GGC TAC ATC GGC CCC GGC CCC GGC AGA
GAC CTG CTG CTG ATC GTG ACC AGA ATC GTG GAG CTG CTG GGC AGA
GGC CCC GGC CCC GGC ACC ATG CTG CTG GGC ATG CTG ATG ATC TGC
AGC GCC GCC GGC CCC GGC CCC GGC GCC CTG TTC TAC AAG CTG GAC
GTG GTG CCC ATC GAC GGC CCC GGC CCC GGC AAC ACC AGC TAC AGA
CTG ATC AGC TGC AAC ACC AGC GTG ATC GGC CCC GGC CCC GGC AGC
GAG CTG TAC CTG TAC AAG GTG GTG AAG ATC GAG CCC CTG GGC GTG
GCC CCC GGC CCC GGC CCC GGC GAG CTG CTG AAG ACC GTG AGA CTG
ATC AAG TTC CTG TAC CAG AGC AAC CCC GGC CCC GGC CCC GGC GAG
GCC ATC ATC AGA ATC CTG CAG CAG CTG CTG TTC ATC CAC TTC GGC
CCC GGC CCC GGC CAG CAG CTG CTG TTC ATC CAC TTC AGA ATC GGC
TGC AGA CAC AGC AGA ATC GGC GGC CCC GGC CCC GGC AGC CTG CAG
TAC CTG GCC CTG GTG GCC CTG GTG GCC CCC AAG AAG GGC CCC GGC
CCC GGC GTG CTG GCC ATC GTG GCC CTG GTG GTG GCC ACC ATC ATC
GCC ATC GGC CCC GGC CCC GGC GTG CTG GAG TGG AGA TTC GAC AGC
AGA CTG GCC TTC CAC CAC GTGTAG CTC GAG
Insertion into
pVAX1 plasmid
AAG CTT –Hind III site
ACC ATG –Kosak sequence
TAG – Stop Códon
CTC GAG – Xho I site
GGC CCC GGC CCC GGC- spacers (GPGPG)
Ribeiro, Cunha-Neto et al. 2010
11
Immunization and functional assays
100ug DNA/dose, IM: HIVBr18 or pVAX1
BALB/C mice
1st
0
3rd
2nd
14
28
Cardiotoxin
42
days
antigen-specific T cell immune responses (pooled HIV-1 synthetic peptides)
Putative correlates of
protection
Immunogenicity
Cytokine profile
Polyfunctionality
Memory status
Longevity
Breadth
Coverage
CD4+ T cell help
proliferation of CD4+ and CD8+ T cells and type 1 cytokines
HIVBr18
HIVBr18
5
10 3 3
10
CD3+ CD4+
0
0
10
2
10 32
4
pool
10 5
10 3
0 10
10 4
<FITC-A>:
CFSE10
<FITC-A>: CFSE
10
5
10
<PerCP-Cy5-5 -A>: CD4
10 3
10
10 2
0 0 1010
5
CFSE
4 4
1010
3
5 5
10 104
0 <FITC-A>:
10
10
10
CFSE
<FITC-A>:
CFSE
<FITC-A>: CFSE
10 5
0
3
8.15
11.6
1044
pool
5
10 55
0
10
10 5
10
10 3
4
10
10
10
2 CFSE
3
4
<FITC-A>:
2
0 0 1010
10
10
10 3
10 4
<FITC-A>:
<FITC-A>:CFSE
CFSE
8.47
11.6%
3
103
10
10 3
3
10 10
00
0
0
10
10454
10
00 10
10
10
<FITC-A>: <FITC-A>:
CFSE
<FITC-A>:CFSE
CFSE
5
1010 5
10 5
3
10 2
10 2
10343
10
10
5
4 4
10 10
0
10223
10
10
10
<FITC-A>: CFSE
4
8.15
9.44
10 2
2
3
5 5
12.1
10 4
10
2
10 10
2
10
10 2
0
3 3
1010
2
2
5
0
22
10 2
0
105
10
10 4
10 2
2
00
4
<APC-A>: CD8
<PerCP-Cy5-5
-A>:
CD4
<PerCP-Cy5-5
-A>:
CD4
3
10
10 2
3
11.6
12.7%
10
10 3
10
10
<FITC-A>: CFSE
0
10 5
10.8
10 4 12.7
4
10 4
10
2
0
10 5
5
10
10 5
Pooled HIV peptides
2
10 2
10
0
0
0
3000
23
10
210
34
10
3
10
2000
45
10
4
10
10 2 0 0 10
10
10
<FITC-A>:
CFSE
<FITC-A>:
CFSE CFSE
<FITC-A>:
10
10 5
5
5
105
10
10
5
11
11
12.7 9.44
10 4
10 3
10 4
1044
10
<APC-A>: CD8
0
2
10 3
<APC-A>: CD8
<APC-A>:
10 2
10
sem estimulo
10 4
0.75%
<PerCP-Cy5-5 -A>: CD4
2
10 3
5
0.75
sem estimulo
<APC-A>: CD8
10
10 3
10 4 4
10
<APC-A>: CD8
CD8
3
10
CD3+ CD8+
10
4
10
0.97%
10
0.75
1.41
<PerCP-Cy5-5 -A>: CD4
10 4
1.56
4
<APC-A>: CD8
<APC-A>: CD8
1.41
0.97
10
5
10
<APC-A>: CD8
<APC-A>: CD8
5
<PerCP-Cy5-5 -A>: CD4
10
<APC-A>: CD8
<PerCP-Cy5-5 -A>: CD4
No peptide
sem estimulo
10 5
5
10
Cytokine production
(pg/ml)
0
Immunization with HIVBr18 induces a long-lived
polyfunctional Th1 CD4+ and CD8+ T cell response
33
10
10
10
3
10 2
2
10
10 2
10 2
0
00
0
0
2
1000
10 22
3
33
4
44
10 10 10
10 10 1010 10
<FITC-A>:
CFSECFSE
<FITC-A>:
<FITC-A>:
CFSE
5
10 5 5
10
pool
pVAX
0
10 2
10 3
1000
HIV-specific TCM cells were deteted at least 6 mo
After the last immunization
500
0
TNF- 
IFN-g
IL-2
IL-5
10 4
HIVBr18
<FITC-A>: CFSE
IL-4
Rosa et al., submitted
89
)
(7
3-
p2 (33
4
(1 45)
31
-1
p6 50
(3 )
po 2-4
6)
l
po (63
-7
l(
7)
1
po 36l ( 150
gp 785 )
41 -79
(2
9)
gp 6116 276
gp
0
)
16 (19
-3
0(
gp 17 1)
16 4-1
0
8
gp (18 5)
16 8-2
0(
0
48 1)
149
re
v
8
(1 )
1
vp -2
r ( 7)
5
vp 8-7
r ( 2)
6
vi
f ( 5-8
14
2
4- )
1
vp 58
)
u
ne
(6
-2
f(
18 0)
019
4)
p2
4
p1
7
% CFSElow cells
(7
3-
89
)
p2 (33
4
(1 45)
31
-1
p6 50)
(3
2
po -4
l ( 6)
6
po
3l(
7
13 7)
6
po
-1
l(
50
7
gp 85 )
41 -79
(2
9)
6
gp 1-2
16
76
gp
0
)
16 (19
-3
0(
gp 17 1)
16 4-1
0
8
gp (18 5)
16 8-2
0(
0
48 1)
1
re -49
v
8
(1 )
1
vp
2
r ( 7)
58
vp
72
r
)
vi (65
f(
-8
2)
14
41
vp 58)
u
ne
(6
-2
f(
18 0)
019
4)
p2
4
p1
7
SFU/10 6cells
Breadth of the immune response induced by HIVBr18
in BALB/c mice
IFN-g
IL-2
200
150
100
75
50
IFN-g /IL-2
ELISPOT
25
0
CD3+CD4+
CD3+CD8+
10.0
7.5
5.0
2.5
2.0
CD4+/CD8+ T cell
proliferation
1.5
1.0
0.5
0.0
N=9 experiments
Polyfunctional Th1 CD4+ and CD8+ T cell response
proliferation of CD4+ and CD8+ T cells and type 1 cytokines
10 5
0.296
2.32
2.91
0.388
10 4
10 4
10 4
10 3
10 3
10 3
10 2
10
0
10 2
10 3
10 4
10 5
10
10
2
10
3
10
4
10
5
10 5
0.608
0.055
0.466
2
0
0
IL2
0
IFNg
2
0
10 5
Gated on CD3+CD8+
10 5
0.377
TNF
Gated on CD3+CD4+
10 5
0
10
2
10
3
10
4
10
5
10 5
0.226
0.647
0.338
10 4
10 4
10 4
10 3
10 3
10 3
2
10 2
10 2
0
0
0
0.363
CD4+
10
1.5
1.0
0.5
10
2
10
3
10
4
10
5
0
10 2
10 3
10 4
10 5
0
10 2
10 3
10 4
10 5
CFSE
CD4+
CD8+
0.25
0.00
3
CFSElow IFN-g
CFSElow IL-2
CFSElow TNF-
+
+
+
% expressing CD3 + T cells
% expressing CD3 + T cells
0
CD8+
+
+
-
1.5
1.0
0.5
0.25
2
+
+
1
+
+
+-
+
-
+
Rosa et al., submitted
Can immunization with HIVBr18 elicit
broad T cell responses in the context of
distinct HLA class II molecules?
HLA-DR2, -DR4, HLA-DQ6 and –DQ8
transgenic mice
(common HLA class II molecules, ca. 30%)
Ribeiro et al. 2010
Breadth of T cell responses, all HLA class II
transgenic strains
ELISPOT
Proliferation CD4+ T cells
Proliferation CD8+ T cells
Number of recognized epitopes
Total responses
18
15
12
9
6
3
0
DR2
DR4
DQ6
DQ8
all strains
Tg mice: 16/18 epitopes recognized, 11 by CD4+ T cells
Avg: 5 pept recognized by CD4+Tcells/Tg strain
Humans bear 3-8 HLA class II molecules
Ribeiro et al. 2010
Summary
A vaccine based on conserved promiscuous HIV CD4 epitopes
induces:
•Responses to multiple epitopes in the context of multiple HLA class II,
•Long-lived polyfunctional Th1 response
Can HIVBr18 provide cognate help to
HIV-specific CD8+ T cell responses?
gag
(73-89)
gag
gag
gag
(165177)
(263282)
(480494)
pol
(63-77)
pol
pol
gp41
(136150)
(785799)
(261276)
gp
160
(19-31)
gp
160
gp
160
gp
160
(174185)
(188201)
(481498)
rev
vpr
vpr
(11-27)
(58-72)
(65-82)
vif
(144158)
vpu
(6-20)
nef
(180194)
Effect of preimmunization with HIVBr18 on
Gag-specific T cell responses
DNA plasmid Immunogens:
BALB/c
gag (1-300)
HIVBr18
HIVBr18 (2 doses) + Gag (1-300) (2 doses)
vs.
Gag (1-300) (4 doses)
Gag peptide pools
Proliferation and IFN-g ELISPOT
Challenge with Vaccinia-gag
Vaccinina-Gag virus titration
Preimmunization with HIVBr18 on CD8+ T cell
proliferation against Gag peptides
%CD3+ CD8+ CFSE low
6
Gag
4
2
0
gag pool 1
gag pool 2
gag pool 3
gag pool 4
gag pool 5
gag pool 6
Increase in breadth/magnitude~4x
gag pool 7
Immunization with HIVBr18 DNA prior to HIVgp140 increases
IgG2a/IgG1 ratio of anti-gp140 IgG
pVAX priming
HIVBr18 priming
4.0
**
3.5
antibody titers (Log10)
ratio IgG2a/IgG1
3.0
2.5
2.0
1.0
**
0.8
0.6
0.4
0.2
0.0
Adjuvant
CFA/IFA
Poly: IC
CpG ODN
Daniela Santoro Rosa
Juliana Ribeiro
UNIFESP
Summary-II
•cognate help help for CD8+ T cell and antibody-inducing conventional
whole-gene HIV vaccines
•Incorporation
into
the
viral
vector
Adenovirus
5
increased
immunogenicity of the vaccine
May be useful for
•Providing cognate help for conventional whole-gene HIV vaccines
•Augmenting the vaccine coverage in HLA-disparate human population
•Generating responses against divergent viral isolates
the
Butantan Institute Rhesus Colony
Pilot Rhesus macaque HIVBr18
immunization: DNA+Electroporation
bleeds
weeks
immunizations
November 5, 2013
Pilot study:
Four 8-year-old macaques,
Instituto Butantan Rhesus macaque colony, São Paulo
Electroporation:
Set
Paramet
ers
Poring
Pulse
#
V
1
100
Length Interval
(ms)
(ms)
30
50
Transfer
Pulse
No.
3
D. Rate Polarity
(%)
10
+
V
20
Length Interval
(ms)
(ms)
50
50
No.
5
D. Rate Polarity
(%)
40
+/-
Rhesus macaques vs. mouse strains
3 doses of HIVBr18 IM
IFN-g ELISPOT assay
4000
2000
Rhesus (individual)
Mouse strains
BALB/c
DQ8
DQ6
DR4
DR2
Rh #45
Rh #43
0
Rh #41
1000
Rh #33
SFU/ 106 cells
3000
IFN-g ELISPOT: individual peptides
Post 3 dose
3000
2850
2700
2550
2400
2250
2100
1950
1800
1650
1500
1350
1200
1050
900
750
600
450
300
150
0
(1
127
vp
)
r(
58
-7
2)
vp
r(
65
-8
vi
2)
f(
14
415
8)
vp
u
(6
ne
-2
0)
f(
18
019
4)
po
ol
5u
M
8)
re
v
1-
49
1)
0(
48
816
gp
gp
16
0(
18
417
16
0(
0(
gp
16
20
5)
-3
18
1)
)
19
-2
gp
(2
61
541
gp
76
9)
79
0)
78
l(
po
po
l(
l(
13
6-
63
15
7)
-7
46
2po
(3
p6
1(1
3
p2
4
4(
p2
)
)
15
0
5)
-4
33
-8
9)
#33
#41
#43
#45
73
7(
p1
SFU/ 106 cells
IFN-gammardELISPOT assay
13 out of 18 epitopes were recognized
Avg. 8 peptides recognized/animal
Polyfunctional T cells
1.0
17/12/2013
pos 3rd dose
% specific T cells
stim: Br18 pool
0.8
animal ID
#33
#41
#43
#45
0.6
0.4
0.2
0.0
IFN +
IL2 +
TNF +
+
+
-
+
+
+
-
+
+
CD4+
+
-
+
-
+
+
+
+
+
-
+
+
+
-
+
+
+
-
+
CD8+
After 6 hours in culture with Br18 pooled peptides
-
IFN-gamma + T cells
ICS IFN - pool Br18 - cinetica todos animais
animal ID
#33
#41
#43
#45
1.5
1.0
0.5
CD4+
CD8+
/1
3
17
/1
2
/1
3
/1
2
03
/1
1/
13
19
/1
1/
13
05
/1
3
17
/1
2
/1
3
/1
2
03
/1
1/
13
19
/1
1/
13
0.0
05
% cytokine producing
T cells
2.0
CD4+ CD107+ and/or GrB+
17/12/2013
10
% CD4 CD107 or GrB
Memo T cells
8
6
4
2
0
NAIVE
TSCM
TCM
CD107+
TEM
NAIVE
TSCM
TCM
CD107+GRB+
TEM
NAIVE
TSCM
TCM
GRB+
TCM and TEM presents a cytotoxic profile
TEM
Summary-Rhesus macaques
-The HIVBr18 DNA vaccine induced broad, strong polyfunctional
CD4+ T cell responses
-Granzyme/CD107a/b+ CD4 T cells were generated
Timeline, HIVBr18
tempo
2002-4
2005 2005-9
Desenho do
imunógeno
seleção de
epitopos
promíscuos
conservados do
subtipo B
Pedido de
patente
2009-2011
Patente
concedida nos
EUA
testes pré-clinicos
imunogenicidade
Desenho da Vacina
DNA HIVBr18
Vetores novos
HIVBr18 em Vetores
novos: Ad5,
YF17DD, MVA,
plasmo-VLPMuLV, Vacina HivBr27,
proteina de fusão conservados do
anti-DEC205
tipo M, crossclade
Ribeiro et al. 2010;
Rosa et al. 2011a;
Rosa et al. 2011b;
Almeida et al. 2012
Fonseca etal. 2006
Agências
financiadoras FAPESP
Instituto do
Milênio
FAPESP
Instituto do
Milênio
2012
FAPESP
FAPESP/CEPID?
Instituto do Milênio
PN-DST/AIDS
NIH
Proximas etapas: amplificação vetores virais; produção GMP
Teste em primatas
33
Ensaio clínico
Recursos estimados: ~6 Mi dólares
Perspectives
• Combinations of viral vectors to increase potency
in immunogenicity assays NHP models
• Phase I clinical trial
How much does it cost to develop and
test an HIV vaccine?
1000
Milhões US$
217
100
67
9
12
2
2
máximo
minimo
14,8
4
1
114,8
17
10
2,5
2,8
4,8
1
35
http://www.hivresourcetracking.org/content/vaccines
36
University of São Paulo School of Medicine
Division of Clinical Immunology and Allergy
Laboratory of Clinical Immunology and
Allergy-LIM 60 – Dept. of Medicine
Susan Ribeiro
Rafael Almeida
Simone Fonseca (now at UFG)
Adriana C Silva
Esper Kallás
Luís A Fonseca
Edecio Cunha Neto
[email protected]
Laboratory of Immunology, Heart Institute
UNIFESP, São Paulo
Daniela Santoro Rosa
Juliana Ribeiro
LIAI, San Diego
Alex Sette
John Sidney
Roche, Nutley, USA
Juergen Hammer
NIH, USA
Kim Hasenkrug
Srinivas Rao
Mario Roederer
ICB-USP
Luiz Carlos Ferreira
Jorge Kalil
Hélcio Rodrigues
Eliane Mairena
Dept Infectious diseases
Aluísio Segurado University of São Paulo
U. Winsconsin-Mad., USA
Dave O’ Connor
Funding: FAPESP, CNPq, Brazilian Ministry of Health, ICGEB
[Letvin, N. L 2006]
Can we generate responses against epitopes
conserved among HIV-1 M-group strains ?
300
6
SFU/10 cells
400
Vaccination with M-type-based HIVBr27
induces cross-clade responses to multiple
HIV-1 subtypes
200
100
integrase(216-235) -Br27
QITKIQNFRVYYRDSRDPIW
M
integrase(216-235) -1
QITKIQNFRVYYRDSRDPLW
A1
12
integrase(216-235) -2
QITKIQNFRVYYRDNRDPLW
B
9
integrase(216-235) -3
QIIKIQNFRVYYRDSRDPIW
C consensus
6
integrase(216-235) -4
QITKIQNFRVYYRDSRDPVW
F1 consensus
integrase(216-235) -5
QIIKIQNFRVYYRDSRDPVW
D
integrase(216-235) -6
QITKIQNFRVYFRDSRDPIW
G
M A1 B
C
D F1 G
3
0
M A1 B
C
D F1
G
M A1 B
C
D
G
12
9
6
3
+
% CD8 CFSE
low
Tcells
+
% CD4 CFSE
low
Tcells
0
0
F1
integrase(216-235)
Almeida, 2012
39
Download

CD4+ T cell response