Biochemical Systematics and Ecology 35 (2007) 670e675
Chemical composition and larvicidal activity of
essential oils from Piper species
Selene Maia de Morais a,*, Valdir Alves Facundo b, Luciana Medeiros Bertini c,
Eveline Solon Barreira Cavalcanti a, Jo~ao Francisco dos Anjos Júnior b,
Silane Aparecida Ferreira b, Edy Sousa de Brito d, Manoel Alves de Souza Neto d
Department of Chemistry, Ceara State University, Av. Paranjana 1700, Campus do Itaperi, CEP 60740-000, Fortaleza, Ceara, Brazil
Department of Chemistry, Federal University of Rondônia, Br 364, Km 9.5, CEP 78900-500, Porto Velho, Rondônia, Brazil
Department of Organic and Inorganic Chemistry, Federal University of Ceara, Pici Campus, CEP 60021-970, Fortaleza, Ceara, Brazil
Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2270, Planalto do Pici, CEP 60511-110, Fortaleza, Ceara, Brazil
Received 7 December 2006; accepted 5 May 2007
The larvicidal activity of essential oils of four species of Piper from the Amazon Forest was tested using third-instar larvae of
Aedes aegypti. The oils were extracted by steam distillation and analyzed by GC and GCeMS. The main components isolated from
each Piper species were as follows: viridiflorol (27.50%), aromadendrene (15.55%) and b-selinene (10.50%) from Piper gaudichaudianum; b-selinene (15.77%) and caryophyllene oxide (16.63%) from Piper humaytanum; dillapiol (54.70%) and myristicin
(25.61%) from Piper permucronatum; and asaricin (27.37%) and myristicin (20.26%) from Piper hostmanianum. Amongst all essential oils tested, the most active against larvae of A. aegypti was the oil extracted from P. permucronatum, with a LC50 ¼ 36 mg/ml
(LC90 ¼ 47 mg/ml), followed by the essential oil of P. hostmanianum, with a LC50 ¼ 54 mg/ml (LC90 ¼ 72 mg/ml). The oils with
higher content of arylpropanoids were more active against larvae of A. aegypti.
Ó 2007 Elsevier Ltd. All rights reserved.
Keywords: Larvicidal activity; Essential oil; Piperaceae; Aedes aegypti; Dillapiol
1. Introduction
The genus Piper (Piperaceae) is largely distributed in tropical and subtropical regions of the world. Chemical studies have shown that the genus Piper has many components including unsaturated amides, flavonoids, lignans, aristolactams, long and short chain esters, terpenes, steroids, propenylphenols, and alkaloids (Parmar et al., 1997, 1998;
Navickiene et al., 2000; Facundo et al., 2005). It is well established that secondary metabolites play an important
role in plant chemical defense. The genus Piper has been an important source of secondary metabolites which
* Corresponding author. Department of Chemistry, Ceara State University, Rua Ana Bilhar 601, Apto. 400, Meireles, CEP 60740-000, Fortaleza,
Ceara, Brazil. Tel.: þ55 85 242681; fax: þ55 85 2429715.
E-mail address: [email protected] (S.M. de Morais).
0305-1978/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved.
S.M. de Morais et al. / Biochemical Systematics and Ecology 35 (2007) 670e675
Craveiro, A.A., Matos, F.J.A., Alencar, J.W., 1976. A simple and inexpensive steam generator for essential oils extraction. J. Chem. Educ. 53, 652.
Facundo, V.A., Silveira, A.S.P., Morais, S.M., 2005. Constituents of Piper alatabacum Trel & Yuncker (Piperaceae). Biochem. Syst. Ecol. 33,
Kiran, S.R., Bhavani, K., Devi, P.S., Rao, B.R.R., Reddy, K.J., 2006. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour. Technol. 97, 2481e2484.
Lichterstein, E.P., Casida, J.E., 1963. Naturally occurring insecticides, myristicin, an insecticide and synergist occurring naturally in the edible
parts of parsnips. J. Agric. Food Chem. 11, 410e415.
Martins, A.P., Salgueiro, L., Vila, R., Tomi, F., Igueral, S.C., Casanova, J., Cunha, A.P., Adzet, T., 1998. Essential oils from four Piper species.
Phytochemistry 49, 2019e2023.
Morais, S.M., Cavalcanti, E.S.B., Bertini, L.M., Oliveira, C.L.L., Rodrigues, J.R.B., Leal-Cardoso, J.H., 2006. Larvicidal activity of essential oils
from Brazilian Croton species against Aedes Aegypti L. J. Am. Mosq. Control Assoc. 22, 161e164.
Morais, S.M., Craveiro, A.A., Machado, M.I.L., Alencar, J.W., 1996. Volatile constituents of Eugenia uniflora leaf oil from Northeastern Brazil.
J. Essent. Oil Res. 8, 449e451.
Mundina, M., Vila, R., Tomi, F., Tomas, X., Cicció, J.F., Adzet, T., Casanova, J., Canigueral, S., 2001. Composition and chemical polymorphism
of the essential oils from Piper lanceaefolium. Biochem. Syst. Ecol. 29, 739e748.
Navickiene, H.M.D., Alécio, A.C., Kato, M.J., Bolzani, V.S., Young, M.C.M., Cavalheiro, A.J., Furlan, M., 2000. Antifungal amides from Piper
hispidum and Piper tuberculatum. Phytochemistry 55, 621e626.
Park, I.K., Lee, S.G., Shin, S.C., Park, J.D., Ahn, Y.J., 2002. Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three
mosquito species. J. Agric. Food Chem. 50, 1866e1870.
Parmar, V.S., Jain, S.C., Bisht, K.S., Jain, R., Taneja, P., Jha, A., Tyagi, O.D., Prasad, A.K., Wengel, J., Olsen, C., Boll, P.M., 1997. Phytochemistry
of the genus Piper. Phytochemistry 46, 597e673.
Parmar, V.S., Jain, S.C., Gupta, S., Talwar, S., Rajwanshi, V.K., Kumar, R., Azim, A., Malhotra, S., Kumar, N., Jain, R., Sharma, N.K.,
Tyagi, O.D., Lawrie, S.J., Errington, W., Howarth, O.W., Olsen, C.E., Singh, S.K., Wengel, J., 1998. Polyphenols and alkaloids from Piper
species. Phytochemistry 49, 1069e1078.
Santos, P.R.D., Moreira, D.L., Guimar~aes, E.F., Kaplan, M.A.C., 2001. Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic
forest. Phytochemistry 58, 547e551.
Simas, N.K., Lima, E.C., Conceiç~ao, S.R., Kuster, R.M., Oliveira Filho, A.M., 2004. Produtos naturais para o controle da transmiss~ao da dengue e
atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quim. Nova 27, 210e237.
Stenhagen, E., Abrahamson, S., MacLafferty, F.W., 1974. Registry of Mass Spectral Data. J. Wiley & Sons, New York.
Torquilho, H.S., Pinto, A.C., Godoy, R.L.O., Guimar~aes, E.F., 1999. Essential oil of Piper permucronatum Yuncker (Piperaceae) from Rio de
Janeiro, Brazil. J. Essent. Oil Res. 11, 429e430.
Walia, S., Saha, S., Parmar, B.S., 2004. Liquid chromatographic method for the analysis of two plant based insecticide synergists dillapiole and
dihydrodillapiole. J. Chromatogr. A 1047, 229e233.
World Health Organization (WHO), 1975. Instruction for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/
VBC/75.583. Mimeographed document.
Wulf, L.W., Nagel, C.W., Branen, A.L., 1978. Analysis of myristicin and falcarinol in carrots by high-pressure liquid chromatography. J. Agric.
Food Chem. 2, 3190e3193.

Chemical composition and larvicidal activity of