CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
CCiinneem
mááttiiccaa
É a parte da Física que estuda os movimentos independentes de suas causas.
1. Introdução
1.1. Movimento: é a mudança de posição de um móvel com o passar do tempo em
relação a um certo referencial.
Um corpo está em repouso quando sua posição , em relação a certo referencial,
não varia no decurso do tempo.
1.2. Posição ( S ): é o local em que o móvel se encontra. A posição poderá está
associada à abcissa de um ponto ou então ao marco quilométrico de uma rodovia.
1.3. Espaço Percorrido ( EP ): é a distância real percorrida pelo móvel.
1.4. Deslocamento (S ): é distância em linha reta entre a posição final e a inicial.
Atenção: o espaço percorrido somente é igual ao deslocamento quando a
trajetória for retilínea sem mudança de sentido do móvel.
1.5. Ponto Material: é um corpo em que as dimensões podem ser desprezíveis e
reduzidas a um ponto.
1.6. Trajetória: é a linha que um corpo descreve durante o seu movimento. As
trajetórias podem ser circulares ou retilíneas.
Observação: as noções de trajetória e movimento são relativas e portanto
dependem do referencial adotado.
2. Velocidade Média
É a razão entre o deslocamento realizado por um móvel e o tempo gasto para realizar
esse deslocamento.
Vm =
∆S S 2 − S1
=
∆T T2 − T1
Unidades: Km/h, m/s, cm/s, ...
onde: T1: instante em que o móvel passa por S1.
T2: instante em que o móvel passa por S2.
Transformação Importante: De Km/h
De m/s
÷ 3,6
× 3,6
Matemática – Física – Química
Curso Prático & Objetivo
m/s
Km/h
1
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
Atenção: é comum alguns vestibulares diferenciar Velocidade Média Vetorial de
Velocidade Média Escalar, logo:
Velocidade Média
Vetorial
Velocidade Média
Escalar
∆S
∆T
Vm =
Vm =
E.P.
∆T
3. Velocidade Instantânea
É a velocidade que um móvel possui em determinado instante.
4. Movimento Progressivo e Movimento Retrógrado ( Regressivo )
4.1. Movimento Progressivo
É o movimento em que as posições do móvel aumentam com o passar do tempo.
A velocidade é adotada com valor positivo ( V > 0 ).
10
20
30
40
50
S (m)
4.2. Movimento Retrógrado ou Regressivo
É o movimento em que as posições do móvel diminuem com o passar do tempo.
A velocidade é adotada com valor negativo ( V < 0 ).
10
20
30
40
50
S (m)
5. Movimento Retilíneo Uniforme ( M.R.U.)
É o movimento adotado pelo móvel quando a sua velocidade com o decorrer do tempo
premanece inalterável, ou seja, a velocidade permanece constante.
A trajetória é retilínea e mesmo que o móvel venha a mudar de sentido durante o
movimento essa mudança é realizada sobre a mesma trajetória.
Devido ao fato da velocidade ser constante o móvel percorre distâncias iguais em
tempos iguais, ou seja, se a velocidade do for de 30m/s implica dizer que a cada 1s a
distância percorrida será sempre de 30m.
Matemática – Física – Química
Curso Prático & Objetivo
2
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
5.1. Características
trajetória retilínea;
velocidade constante;
velocidade instantânea igual a velocidade média, logo poderemos dizer que a
velocidade do móvel é determinada por Vm =
∆S
;
∆T
o móvel percorre distâncias iguais em tempos iguais.
5.2. Equação Horária ou Função Horária
É a equação que relaciona a posição do móvel em função do tempo. Através dessa
equação poderemos determinar a posição do móvel em determinado tempo ou ainda
em qual tempo o móvel passará por determinada posição.
S = S 0 + VT
Posição Final
Posição Inicial
Velocidade
Tempo
5.3. Velocidade Relativa
É a velocidade de um móvel em relação a outro móvel em movimento.
mesmo sentido: Vr = VA − VB
sentidos contrários: Vr = VA + VB
Observação: Nos cálculos acima supõe-se que VA > VB
Exemplo 1: Se dois móveis A e B se movem no mesmo sentido com velocidades de
30m/s e 10m/s respectivamente implica dizer que a velocidade relativa entre
ambos é de 20m/s, ou seja, a velocidade de afastamento ou aproximação dos
móveis é de 20m a cada 1s.
Exemplo 2: Se dois móveis A e B se movem em sentido opostos com velocidades
de 30m/s e 10m/s respectivamente implica dizer que a velocidade relativa entre
ambos é de 40m/s, ou seja, a velocidade de afastamento ou aproximação dos
móveis é de 40m a cada 1s.
Atenção: A velocidade relativa somente é aplicada no M.R.U.
Matemática – Física – Química
Curso Prático & Objetivo
3
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
6. Movimento Retilíneo Uniformemente Variado ( M.R.U.V.)
6.1. Características
trajetória retilínea;
velocidade varia uniformemente com o tempo;
t = 1s ⇒ v = 10m / s
t = 2s ⇒ v = 20m / s
t = 3s ⇒ v = 30m / s
t = 4s ⇒ v = 40m / s
Observe que a velocidade varia uniformemente, aumentando 10m/s a cada 1s.
t = 1s ⇒ v = 10m / s
t = 2s ⇒ v = 15m / s
t = 3s ⇒ v = 18m / s
t = 4s ⇒ v = 25m / s
Observe que o movimento é variado, mas não uniformemente variado, pois a
velocidade não varia de maneira uniforme. Esse movimento não será estudado,
apenas o movimento em que a velocidade varia de maneira uniforme.
aceleração constante e diferente de zero.
→
6.2. Aceleração ( a )
É a grandeza responsável pela variação de velocidade de um móvel.
a=
∆V V f − V0
=
∆T T f − T0
Unidades: m/s2, Km/h2, cm/s2, ...
Exemplo: Se a aceleração de um móvel é 10m/s2 implica dizer que a cada 1s a
velocidade do móvel varia ( aumenta ou diminui ) 10m/s.
Observação Importante:
M.R.U.
M.R.U.V.
V = cons tan te
a = 0 (nula )
V = var ia uniformemente
a = cons tan te e a ≠ 0
Matemática – Física – Química
Curso Prático & Objetivo
4
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
6.3. Equação da Velocidade
É uma equação que relaciona a velocidade de um móvel em função do tempo.
V = V0 + aT
Velocidade Final
Velocidade Inicial
Aceleração
Tempo
6.4. Movimento Acelerado e Movimento Retardado
6.4.1.
Movimento
Acelerado:
6.4.2.
possuem o mesmo sinal.
Movimento Retardado:
V = aumenta
⇒ Velocidade e aceleração
V = dim inui
⇒ Velocidade e aceleração
possuem sinais opostos.
6.5. Equação de Torricelli
É uma equação que relaciona a posição do móvel em função do tempo.
V 2 = V02 + 2a∆S
Velocidade Final
Velocidade inicial
Aceleração
Deslocamento
6.6. Equação Horária ou Função Horária da Posição
É uma equação que relaciona a posição do móvel em função do tempo.
S = S 0 + V0 T +
1 2
aT
2
Posição Final
Posição Inicial
Velocidade Inicial
Tempo
Aceleração
Tempo
Atenção:
Na mudança de sentido a velocidade do corpo é nula ( V = 0 ).
Quando o corpo passa pela origem das posicões a sua posição é nula, indicando a sua
representação por ( S = 0 ).
Matemática – Física – Química
Curso Prático & Objetivo
5
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
7. Queda Livre e Lançamento Horizontal
7.1. Queda Livre
É o movimento em que abandona-se um corpo de determinada altura e o mesmo
começa a cair com velocidade inicial nula (
V0 = 0 ) em M.R.U.V.
7.1.1. Características
a queda livre é um M.R.U.V. na vertical;
no vácuo todos os corpos ( independente da massa ) caem com a mesma
aceleração denominada aceleração da gravidade (
g = 9,8m / s 2 ), podendo ser,
quando não se exige tanto rigor, arredondado para
g = 10m / s 2 ;
a = + g ( orientação da trajetória para baixo )
a = − g ( orientação da trajetória para cima )
7.1.2. Funções Horárias ou Equações Horárias
V = V0 + gT
V 2 = V02 + 2g∆h
h = h0 + V0 T +
∆h = V0 T +
1
gT 2
2
1
gT 2
2
7.2. Lançamento Vertical
Se ao invés de um corpo ser abandonado tivesse sido lançado verticalmente para
cima ou para baixo com
V0 ≠ 0 o mesmo estaria realizando um Lançamento
Vertical em M.R.U.V.
7.2.1. Características
o Lançamento Vertical é um M.R.U.V. na vertical;
a velocidade no ponto mais alto da trajetória ( mudança de sentido ) é nula
( V = 0 ). A aceleração ( g ) não;
o tempo de subida é igual ao tempo de descida ( válido para quando a posição de
lançamento for igual à posição de retorno ou chegada do móvel );
o tempo total do movimento é dado pela soma do tempo de subida com o tempo
de descida do móvel;
as velocidades numa mesma altura durante a subida e descida são iguais em
módulo tendo apenas sinais contrários;
durante a subida o movimneto é progressivo ( V > 0 ) e durante a descida o
movimento é retrogrado ou regressivo ( V < 0 ) ;
Matemática – Física – Química
Curso Prático & Objetivo
6
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
durante a subida do móvel o movimento é retardado e durante a descida o
movimento é acelerado;
a altura máxima e o tempo para atingir essa altura podem ser obtidos pelas
fórmulas abaixo:
Taltura máxima =
V0
Hmáxima =
g
V02
2g
7.2.2. Funções Horárias ou Equações Horárias
As equações são as mesmas utilizdas na Queda Livre ou M.R.U.V.
V = V0 + gT
h = h0 + V0 T +
V 2 = V02 + 2g∆h
∆h = V0 T +
1
gT 2
2
1
gT 2
2
8. Gráficos
8.1. Gráficos do M.R.U.
8.1.1. Posição × Tempo
S(m)
S(m)
S0
Retrógrado (
V <0 )
ou
T(s)
S0
Progressivo (
T(s)
V >0 )
Atenção:
No ponto em que o gráfico corta o eixo do tempo o móvel passa pela origem das
posições ( S = 0 );
Como o movimento é uniforme determinamos a velocidade do móvel através da
equação da velocidade média:
Vm =
∆S
∆T
A equação dos gráficos é dada por: S = S0 + VT
Matemática – Física – Química
Curso Prático & Objetivo
7
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
8.1.2. Velocidade × Tempo
V ( m/s )
Progressivo (
V ( m/s )
V >0 )
Retrógrado (
V <0 )
+V
ou
t1
t2
T(s)
t1
t2
T(s)
-V
Atenção: No gráfico Velocidade × Tempo calculando-se a área entre os instantes
t1 e t2 determinamos o deslocamento ( ∆S ) sofrido pelo móvel. Observamos
também que a velocidade é determinada por uma reta paralela ao eixo do tempo,
pois a velocidade com o passar do tempo permanece constante.
Lembrete: Cálculo de Áreas
Retângulo
Trapézio
b1
Triângulo
L1
h
L2
h
b
A = L1 × L2
A=
b2
b×h
2
A=
( b1 + b2 ) × h
2
8.1.3. Aceleração × Tempo
No M.R.U. não há aceleração, pois a velocidade é constante, logo o gráfico é
representado por um reta sobre o eixo do tempo.
a ( m/s2 )
T(s)
Observação:
1) A trajetória NÃO
É
DETERMINADA
PELOS
GRÁFICOS. Estes
apenas representam as funções do movimento.
2) Não confunda repouso com movimento uniforme. Um ponto material em
repouso possui ESPAÇO CONSTANTE com o tempo e velocidade NULA
( ver gráficos pag. 10 - 2ª observação ).
Matemática – Física – Química
Curso Prático & Objetivo
8
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
8.2. Gráficos do M.R.U.V.
8.2.1. Velocidade × Tempo
V ( m/s )
0
t1
T(s)
V0
Leitura do gráfico:
De 0 a t1 o movimento é retrógrado ( V < 0 ) e retardado, pois o módulo da
velocidade diminui;
No instante t1 a velocidade é nula ( V = 0 ) e o móvel muda de sentido;
De t1 em diante o movimento é progressivo ( V > 0 ) e acelerado, pois o módulo
da velocidade aumenta.
ou ainda
V ( m/s )
V0
0
T1
T(s)
Leitura do gráfico:
De 0 a t1 o movimento é progressivo ( V > 0 ) e retardado, pois o módulo da
velocidade diminui;
No instante t1 a velocidade é nula ( V = 0 ) e o móvel muda de sentido;
De t1 em diante o movimento é retrógrado ( V < 0 ) e acelerado, pois o módulo
da velocidade aumenta.
Atenção:
No gráfico Velocidade × Tempo calculando-se a área entre dois instantes
quaisquer determinamos o deslocamento do móvel ( ∆S ).
A equação dos gráficos acima é dada por:
V = V0 + aT
A aceleração é obtida através da fórmula da aceleração:
Matemática – Física – Química
Curso Prático & Objetivo
a =
∆V
∆T
9
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
8.2.2. Aceleração × Tempo
a ( m/s2 )
a ( m/s2 )
a>0
a<0
ou
t1
t1
t2
t2
T(s)
T(s)
Atenção: No gráfico Aceleração × Tempo a área compreendida entre t1 e t2
determina a variação de velocidade sofrida pelo móvel entre esses dois instantes.
8.2.3. Posição × Tempo
S(m)
S(m)
a>0
S0
a<0
ou
S0
retardado
acelerado
retardado
T(s)
t1
retrógrado
acelerado
T(s)
t1
progressivo
progressivo
retrógrado
Atenção:
No instante t1 ( vértice da parábola ) a velocidade do móvel é nula e o móvel
muda de sentido.
A equação dos gráficos acima é dado por:
S = S 0 + V0 T +
1 2
aT
2
Observações:
1) A trajetória NÃO É DETERMINADA PELOS GRÁFICOS. Estes apenas
representam as funções do movimento.
2) Não confunda repouso com movimento uniforme. Um ponto material em repouso
possui ESPAÇO CONSTANTE com o tempo e velocidade NULA.
S
V
Repouso
T
Matemática – Física – Química
Curso Prático & Objetivo
T
10
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
9. Vetores
9.1. Grandeza Vetotial e Grandeza Escalar
9.1.1. Grandeza Vetorial : é toda grandeza que somente fica perfeitamente
definida através de um vetor, pois devemos determinar além do seu módulo ( valor
da grandeza ) a sua direção e o seu sentido. Exemplos: velocidade, aceleração,
impulso, força, etc.
9.1.2. Grandeza Escalar: é toda grandeza que fica perfeitamente definida
quando mencionamos apenas o seu módulo ( valor da grandeza ), pois a mesma não
possui direção nem sentido. Exemplos: temperatura, massa, volume, etc.
9.2 Características do Vetor
9.2.1. Módulo: indica o valor numérico da grandeza.
9.2.2. Direção: indica a reta em que o vetor se apoia ( horizontal, vertical,
inclinada ou oblíqua ).
9.2.3 Sentido: indica a orientação tomada sobre a direção. ( norte, sul , leste,
para cima, para direita, ... ).
9.3. Igualdade de Vetores
Dois ou mais vetores são iguais entre si quando ambos possuem as mesmas
caracterísitcas ( módulo, direção e sentido ).
→
A
→
→
A
B
→
B
→
→
A= B
→
→
A= B
9.4. Operações Vetoriais ou Resultantes Vetoriais
9.4.1. Soma ou Adição Vetorial
Existem dois processos de adição ou soma de vetores, onde ambos podem ser
utilizados em todos os casos dando sempre os mesmos resultados.
9.4.2. Regra do Polígono
Regra que consiste em colocar a extremidade de um vetor na origem do outro,
sendo que o vetor resultante ( soma ) terá a extremidade coincidindo com
extremidade e a origem coincidindo com a origem do outro.
Matemática – Física – Química
Curso Prático & Objetivo
11
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
9.4.3. Regra do Paralelogramo
Regra que consiste em colocar a origem de um vetor com a origem do outro,
traça-se então um paralelogramo no qual o vetor resultante ( soma ) terá a origem
coincidindo com as origens dos vetores e a extremidade coincidindo com as
extremidades do prolongamento dos lados do paralelogramo formado.
Exemplo: Determinar o módulo e a representação gráfica do vetor resultante da
→
adição vetorial entre os vetores
→
→
A
B
→
A+ B determinados abaixo.
→
Dados: A = 3u e
→
B = 4u
Resolução:
1) Processo do Polígono
→
B
→
→
R
A
ou
→
→
A
R
→
B
2) Processo do Paralelogramo
→
→
A
R
→
B
O módulo do vetor resultante ( soma ), tanto no processo do Polígono quanto no
Paralelogramo, devem ser determinados através do teorema de Pitágoras, pois os
vetores são perpendiculares entre si.
→2
R
→2
R
→
R =
→2
→2
=A +B
= 32 + 4 2
→
25 ⇒ R = 5
Matemática – Física – Química
Curso Prático & Objetivo
12
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
9.4.4. Subtração Vetorial
→
Observação: Vetor Oposto ( − A ) é aquele que possui o mesmo módulo, direção,
mas sentido oposto ao vetor original.
→
→
−A
A
Determinamos a subtração vetorial invertendo-se o sentido do segundo vetor
( vetor oposto ) e aplicando-se a regra do Polígono ou Paralelogramo.
→
V
→
→
D
→
= A− B ⇔ V
D
→
 →
= A+ − B 


9.4.5. Multiplicação de um número real por um Vetor
→
→
A
2A
→
→
− 2B
B
9.4.6. Casos particulares
9.4.6.1. Os vetores possuem a mesma direção e sentido: a resultante é
obtida somando-se os valores dos vetores e conservando-se a direção e o
sentido.
→
F 1 = 10 N
→
F R = 30 N
→
F 2 = 20 N
→
→
→
FR = F1+ F2
Visite a HomePage:
http://cursopraticoobjetivo.hpg.com.br
Envie críticas e sugestões!!!
Matemática – Física – Química
Curso Prático & Objetivo
13
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
9.4.6.2. Os vetores possuem a mesma direção e sentidos opostos: a
resultante é obtida subtraindo os valores dos vetores, conservando-se a
direção e mantendo-se o sentido do vetor de maior módulo.
→
→
→
F 2 = 10N
F 1 = 20 N
→
F R = 10 N
→
→
FR = F1 − F2
9.4.6.3. Os vetores são perpendiculares entre si: a resultante gráfica é
obtida através da regra do Polígono ou Paralelogramo, enquanto o módulo do
vetor resultante através do Teorema de Pitágoras.
→
→
F1
FR
→
F2
→2
FR
→2
→2
= F1 + F2
9.4.6.4. Processo Analítico: o processo analítico é empregado quando os
vetores não possuem a mesma direção e não são perpendiculares entre si,
formando um ângulo α entre si.
→
→
F1
F1
→
FR
α
→
F2
→
Fr =
→2
→2
F1 + F2+
→
F2
→
→
2 F 1 F 2 cos α
Consulte regularmente...seu dentista...seu oftalmologista...seu médico...e viva melhor!!!
Matemática – Física – Química
Curso Prático & Objetivo
14
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
Observação: quando aplicamos a regra do Polígono e obtemos um polígono fechado
a resultante vetorial é nula.
→
R=0
Atenção:
A resultante entre dois vetores terá resultante máxima quando ambos tiverem
a mesma direção e sentido.
→
→
→
R máx . = F 1 + F 2
A resultante entre dois vetores terá resultante mínima quando ambos tiverem
a mesma direção e sentidos opostos.
→
→
→
R mín . = F 1 − F 2
Dica 1: Se os vetores forem iguais em módulo e formarem entre si um ângulo de
1200 a resultante será dada por:
→
→
F 1 = F 2 , então a resultante é equivalente a:
→
→
→
R = F1 = F2
Dica 2: Se os vetores forem iguais em módulo e formarem entre si um ângulo de
600 a resultante será dada por:
→
→
F 1 = F 2 , então a resultante é equivalente a:
→
→
→
→
R = F 1 3 ou R = F 2 3
Respeite as leis de trânsito
Matemática – Física – Química
Curso Prático & Objetivo
15
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
9.5. Decomposição Vetorial
A decomposição vetorial consiste em decompor um vetor nas suas componentes
→
→
horizontal ( F x ) e vertical ( F y ), obtendo-se assim dois outros vetores que
somando-os daria o vetor no qual os originou.
y
y
→
F
⇒
→
Fy
α
→
Fx
x
→
→
Fx
Cos α =
Sen α =
→
F
→
x
Fy
→
F
→
→
F x = F .Cos α
→
F y = F .Sen α
10. Composição de Movimentos
Toda vez que um corpo estiver sujeito, ao mesmo tempo, a dois ou mais movimentos, a
velocidade resultante é dada pela soma vetorial das velocidades dos componentes do
movimento.
Princípio de Galileu
Quando um corpo está sujeito a movimentos simultâneos em relação a um sistema de
referência, ele executa cada um desses movimentos independentes entre si.
Raciocínio Geral
Seja R um referencial absoluto e R1 um referencial que se move com velocidade de
→
transporte
V t em relação a R1. P é um ponto material que se desloca em relação a R1
→
com velocidade relativa
V.
→
→
→
V Re s. = V Re l. + V Arr.
Viaje até os lugares mais fantásticos!!!
Matemática – Física – Química
Curso Prático & Objetivo
16
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
11. Movimento Circular Uniforme ( M.C.U. )
11.1. Características
trajetória circular;
velocidade vetorial varia ( tangente à trajetória ), mas a velocidade escalar é
constante.
11.2. Período ( T )
É o tempo gasto pelo móvel para efetuar uma volta.
Unidades: s, min., h, dias, ...
11.3. Frequência ( f )
É o número de voltas que o corpo executa por uma unidade de medida de tempo.
Unidades: rps = voltas/s = Hertz ( Hz )
rpm = voltas/min.
÷ 60
× 60
RPM
RPS
11.4. Relação entre Período
T .F = 1
RPS
RPM
× Frequência
T=
⇒
1
F
ou
F=
1
T
11.5. Velocidade Angular ( ω )
É a razão entre o ângulo percorrido pelo móvel e o tempo gasto para percorrer esse
ângulo.
∆α
ω=
∆α 2π
=
= 2πf
∆T
T
Exemplo: Se o móvel possui velocidade angular de
cada segundo o móvel percorre um ângulo
π
2
Unidade: rad/s
π
2
rad / s isso implica dizer que a
rad ou 900.
Matemática – Física – Química
Curso Prático & Objetivo
17
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
11.6. Velocidade Linear ou Velocidade Escalar ( V )
V = ωR
→
11.7. Aceleração Centrípeta (
a cp )
Aceleração responsável pela variação da direção da velocidade em cada ponto da
trajetória. A aceleração centrípeta varia somente na direção e sentido, onde os
mesmos são sempre orientados para o centro da trajetória enquanto que o módulo
permanece constante.
→
a cp =
V2
R
→
ou
a cp = ω2 R
Unidades: m/s2, cm/s2, ...
11.8. Transmissão de Movimentos
É o movimento de um corpo que provoca o movimento de outro através de uma correia,
contato direto ou eixo móvel.
Transmissão por Cinta ou Correia
( A )
( B )
RB
RA
Por Contato ( engrenagens )
( B )
( A )
Observação: Na transmissão por cinta ou correia os corpos giram no mesmo sentido,
enquanto na transmissão por contato os corpos giram em sentidos opostos.
Matemática – Física – Química
Curso Prático & Objetivo
18
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
Fórmulas: Válidas para transmissão por correia e contato ( engrenagens )
VA = VB = Vcint a
como:
V = ωR , teremos
como:
ω = 2πf
ϖ ARA = ωB RB
fARA = fB RB
, teremos
RA RB
=
TA TB
ou
Por Eixo Móvel
( B )
( A )
RA
Fórmulas:
ω A = ωB
RB
ou
V A VB
=
R A RB
ou
fA = fB
ou
T A = TB
12. Movimento Circular Uniformemente Variado ( M.C.U.V. )
O Movimento Circular Uniformemente Variado não é um movimento periódico, pois
varia o módulo de sua velocidade e, portanto, o tempo de cada volta na circunferência é
variável.
12.1. Função Horária da Velocidade Angular
ω = ω 0 + γT
12.2. Função Horária do Espaço Angular
1
2
α = α 0 + ω 0T + γT 2
12.3. Equação de Torricelli
ω 2 = ω 02 + 2γ∆α
Matemática – Física – Química
Curso Prático & Objetivo
19
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
12.4. Relação entre Aceleração Angular (
γ =
γ
) e Aceleração Linear ( a )
a
R
Legendas:
R = raio da trajetória
ω = velocidade angular final
ω 0 = velocidade angular inicial
γ = aceleração angular
= tempo
α = posição angular final
α 0 = posição angular inicial
∆α = variação do espaço angular
T
13. Velocidade Vetorial e Aceleração Vetorial
→
V )
13.1. Velocidade Vetorial (
→
Módulo: igual ao da velocidade escalar, V = V ;
Direção: tangente à trajetória no ponto considerado;
Sentido: do movimento.
→
13.2. Aceleração Vetorial (
a )
A Aceleração Vetorial é dada pela soma ( resultante ) vetorial da Aceleração
→
Tangencial (
→
a t ) com a Aceleração Centrípeta ( a cp ).
→
→
→
a = a t + a cp
→
13.2.1. Aceleração Tangencial (
at )
Módulo: igual ao da aceleração escalar,
→
at
= a;
Direção: tangente à trajetória no ponto considerado;
→
Sentido: o mesmo de
V se o movimento for acelerado e oposto ao
→
de
V se o movimento for retardado ( veja figura a seguir ).
Matemática – Física – Química
Curso Prático & Objetivo
20
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
P
→
→
→
at
V
at
Acelerado
→
V
P
Retardado
→
13.2.2. Aceleração Centrípeta (
Módulo:
→
a cp
=
a cp )
V2
;
R
Direção:perpendicular à velocidade vetorial no ponto considerado;
Sentido: orientado para o centro da trajetória, logo a aceleração
centrípeta somente é definida para trajetórias circulares.
P
→
→
→
at
V
at
→
→
a cp
a
→
→
→
a cp
a
Acelerado
V
P
Retardado
13.3. Casos Particulares
13.3.1. Movimento retilíneo uniforme ( M.R.U. )
Velocidade vetorial constante, pois não varia módulo, direção e sentido;
Aceleração vetorial é nula, pois a aceleração tangencial não existe ( não há
aceleração escalar ) assim como a aceleração centrípeta ( a trajetória é
retilínea ).
13.3.2. Movimento circular uniforme ( M.C.U. )
Velocidade vetorial varia, pois embora não mude o módulo, altera em cada
ponto da trajetória a direção e o sentido do vetor velocidade;
Aceleração tangencial é nula, pois o módulo da velocidade é constante;
Aceleração centrípeta é constante em módulo, pois o módulo da velocidade
é constante, mas muda a direção e o sentido em cada ponto da trajetória ;
Evite o stres! Pratique exercícios de Física, Química e Matemática.
Matemática – Física – Química
Curso Prático & Objetivo
21
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
Logo, a aceleração vetorial varia, sendo igual à aceleração centrípeta.
→
→
a = a cp
13.3.3. Movimento retilíneo uniformemente variado ( M.R.U.V. )
Velocidade
constantes
Aceleração
sentido;
Aceleração
vetorial varia, pois embora a direção e o sentido sejam
o módulo muda com o passar do tempo;
tangencial é constante, pois não muda o módulo, a direção e o
centrípeta é nula, pois a trajetória é retilínea;
Logo, a aceleração vetorial é constante e igual a aceleração tangencial.
→
→
a = at
13.3.4. Movimento circular uniformemente variado ( M.C.U.V. )
Velocidade vetorial varia, pois varia o módulo, direção e o sentido em cada
ponto da trajetória;
Aceleração tangencial é constante em módulo, mas varia a direção e o
sentido em cada ponto da trajetória, logo a aceleração tangencial varia;
Aceleração centrípeta varia o módulo, pois varia a velocidade assim como a
direção e o sentido em cada ponto da trajetória.
Logo, a aceleração vetorial varia em todos os pontos da trajetória. A sua
resultante é dada pela soma vetorial da aceleração tangencial com a
aceleração centrípeta em cada ponto da trajetória.
→
→
→
a = a t + a cp
( UFS – 2002 ) Uma partícula apresenta, em sua trajetória, diversos tipos de movimento.
Analise as afirmações acerca desse movimento.
0
1
2
3
4
0
1
2
3
4
-
Num trecho reto, ela pode estar submetida a uma aceleração centrípeta.
Num trecho reto, ela pode estar submetida a uma aceleração tangencial.
Num trecho curvo, ela é submetida a uma aceleração tangencial.
Num trecho curvo, ela é submetida a uma aceleração centrípeta.
Num trecho curvo, a aceleração resultante sobre a partícula pode ser nula.
Gabarito: F V F V F
Ficou com dúvidas? [email protected]
Matemática – Física – Química
Curso Prático & Objetivo
22
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
14. Lançamento Horizontal e Lançamento Oblíquo
14.1. Lançamento Horizontal
O lançamento horizontal é a composição de dois movimentos independentes entre si
( Princípio de Galileu ), um movimento vertical e o outro horizontal.
→
V
→
→
Vx = V
→
→
Vx = V
→
Vy = 0
→
Vy
→
V
→
→
Vx = V
Solo
→
Vy
→
V
Características:
Na horizontal o movimento é uniforme e responsável pelo alcance ( distância
horizontal percorrida pelo móvel );
Na vertical o móvel realiza uma queda livre com velocidade inicial vertical nula, esse
movimento é o responsável pelo tempo de queda do móvel e componente vertical da
velocidade do corpo.
Atenção:
Na resolução das questões, decomponha a velocidade de lançamento na componente
→
→
horizontal ( V x ) e vertical ( V y ), pois os dois movimentos são independentes
entre si;
A velocidade horizontal é igual à velocidade de lançamento do corpo;
A velocidade vertical inicial é sempre nula;
A velocidade em cada ponto da trajetória é dada pela resultante vetorial definida
por:
→
→
→
V = Vx+ Vy
Fórmulas:
Na horizontal, podemos calcular o alcance através da fórmula abaixo:
→
A = V x .T , onde T corresponde ao tempo de queda do móvel.
Visite a Home Page:
http://cursopraticoobjetivo.hpj.com.br
Matemática – Física – Química
Curso Prático & Objetivo
23
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
Na vertical podemos calcular o tempo de queda através da fórmula abaixo:
∆h =
g t2
2
O tempo de queda do móvel depende apenas da altura de lançamento, ou seja, se
dois corpos em lançamento horizontal forem lançados da mesma altura com
velocidades iniciais diferentes, ambos chegarão ao solo no mesmo tempo, sendo
diferente somente o alcance atingido pelos corpos, no qual terá maior alcance o
corpo que for lançado com maior velocidade.
As fórmulas utilizadas no movimento vertical são as mesmas da queda livre
relacionadas abaixo:
V = V0 + gT
V 2 = V02 + 2g∆h
∆h =
gT 2
2
Observação: A questão a seguir é referente ao Lançamento Oblíquo que será estudado
detalhadamente no próximo tópico.
( Unicap – 2001 )
Vx ( m/s )
Vy ( m/s )
30
40
0
6
T(s)
0
3
6
T(s)
-30
Os gráficos das figuras 01 e 02 representam as componentes horizontal e vertical da
velocidade de um projétil. Com base nos referidos gráficos, podemos afirmar:
0
1
2
3
4
0
1
2
3
4
-
O projétil foi lançado com uma velocidade de módulo igual a 50 m/s.
O projétil atingiu a altura máxima em 3s
Sabendo que o projétil foi lançado da origem, seu alcance é 180 m.
A velocidade do projétil, ao atingir a altura máxima, é de 40 m/s.
No instante de 4 s, o projétil possui um movimento acelerado.
Gabarito: V V F V V
Matemática – Física – Química
Curso Prático & Objetivo
24
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
14.2. Lançamento Oblíquo
O lançamento oblíquo é a composição de dois movimentos independentes entre si
( Princípio de Galileu ), um na vertical e o outro na horizontal.
y
→
→
V x = V mínima
→
V0
→
Vx
→
V 0y
α
→
Hmáx.
→
→
Vy
V 0x
V
→
V 0x
x
A
→
V 0y
→
V0
Legendas:
A = alcance atingido pelo móvel
α = ângulo de inclinação de lançamento do móvel
Hmáx.= altura máxima atingida pelo móvel
→
V 0 = velocidade de lançamento
→
V x = componente horizontal da velocidade ( constante )
→
V y = componente vertical da velocidade
Características:
Na horizontal o movimento é uniforme e responsável pelo alcance ( distância
horizontal percorrida pelo móvel );
Na vertical o móvel realiza um lançamento vertical com velocidade inicial não nula.
O movimento vertical é o responsável pelo tempo de subida e descida do móvel;
O tempo de permanência do corpo no ar é dado pelo tempo de subida acrescido do
tempo de descida do móvel;
O tempo de subida será igual ao de descida se a posição de retorno for igual à
posição de lançamento do móvel;
→
Na composição vertical ( V y ) o movimento de subida é retardado enquanto que o de
descida é acelerado;
Não existe ponto da trajetória em que a velocidade seja nula. A velocidade é mínima
no ponto culminante ( altura máxima ), pois a velocidade vertical é nula prevalecendo
somente a velocidade horizontal que é constante em todos os pontos da trajetória;
Ângulos complementares dão o mesmo alcance para as mesmas velocidades de
lançamento;
Matemática – Física – Química
Curso Prático & Objetivo
25
CCuurrssoo PPrrááttiiccoo &
&O
Obbjjeettiivvoo
M
Moovviim
meennttoo ddee uum
maa PPaarrttííccuullaa
O alcance máximo ocorre quando a inclinação da velocidade de lançamento com a
horizontal for igual a 450;
A altura máxima atingida pelo corpo quando o ângulo de inclinação for 450 pode ser
dado pela fórmula abaixo:
→2
V0
Amáx. =
→
g
Atenção:
Na resolução das questões, decomponha a velocidade de lançamento nas
→
→
componentes vertical ( V x ) e horizontal ( V y ).
A velocidade em cada ponto da trajetória é dada pela resultante vetorial definida
por:
→
→
→
Vr = Vx + V y
O alcance é calculado pela fórmula abaixo:
→
A = V x .T
, onde T corresponde ao tempo do movimento do móvel.
O tempo de subida é dado pela fórmula abaixo:
→
Tsubida =
V 0y
→
g
A altura máxima é dado pela fórmula abaixo:
→2
hmáxima =
Voy
→
2g
A velocidade vertical em qualquer ponto da trajetória pode ser obtida pela fórmula
abaixo:
→
→
→
V y = V 0y + g t
Matemática – Física – Química
Curso Prático & Objetivo
26
Download

Movimento de uma Partícula