Ab Initio Calculations of Three
and Four Body Dynamics
M. Tomasellia,b
Th. Kühla, D. Ursescua
a Gesellschaft
für Schwerionenforschung, D-64291 Darmstadt,Germany
b Technical University Darmstadt, D-64289 Darmstadt, Germany
Motivation
Brasil: Few body 18
Marco Tomaselli
2006
The Equation of Motion (EoM) in the zero
order dynamic linearization (GLA)
Brasil: Few body 18
Marco Tomaselli
2006
The Equation of Motion (EoM) in
the second order GLA-III
Brasil: Few body 18
Marco Tomaselli
2006
The Equation of Motion (EoM)-IV
Brasil: Few body 18
Marco Tomaselli
2006
The Hamilton's Operator
Brasil: Few body 18
Marco Tomaselli
2006
The Non-Linear Eigenvalue Equation
Brasil: Few body 18
Marco Tomaselli
2006
Analogy with cluster theory
Correlations can be introduced via eiS method
N
N
i 1

1 2
i 1
eiS  ai 0  (1  S1  S 2  S3 ...) ai 0
S2  a1 a2a3 a4
S1  a a
S3  a1 a2a3 a4a5 a6 .....
Perturbation approximation possible. We prefer to calculate the
effective operators.
H eff  e
 iS 
He
iS
Oeff  e
 iS 
Oe
iS
The perturbative terms of the correlation operators Si correspond
to the diagram of the dynamic theory. The particle–hole terms
generated by the S3 operator are put to zero in the ladder perturbation.
Brasil: Few body 18
Marco Tomaselli
2006
Configuration mixing wave functions
(CMWF)
Brasil: Few body 18
Marco Tomaselli
2006
Effective Hamiltonian S2
Brasil: Few body 18
Marco Tomaselli
2006
The wavefunction of the deuteron
Brasil: Few body 18
Marco Tomaselli
2006
Cluster model based on Dynamic
Correlation Model (DCM)
N
N   ai 0
i 1
N
N
N 1
[ H ,  a ] 0   a 0   ai a1 0

i

i
i 1
N 1
i 1
N 1
i 1
N 2 2
i 1
i 1
i 1 i '1
[ H ,  ai a1 ] 0   ai a1 0   ai ai ' 0
......
N
N 1
N 2 2
i 1
i 1
i 1 i '1
tot  N  N 1,1  N 2,2  ...   ai 0   ai a1 0   ai ai ' 0 ...
Brasil: Few body 18
Marco Tomaselli
2006
Effect of linearisation on commutator
chain for two body clusters
Within the GLA the higher order terms (4p-2h) are calculated with
the Wick's theorem by neglecting the normal order.
Collect the resulting terms
E  E2 p  2 p V 2 p
3 p1h V 2 p
2 p
0
E  E3 p1h  3 p1h V 3 p1h  3 p1h
2 p V 3 p1h
Dynamic eigenvalue equations for mixed mode amplitudes
2 particles => 3 particles – 1 hole
Brasil: Few body 18
Marco Tomaselli
2006
Dynamics eigenvalue equation for one dressed
dressed nucleon clusters
which is solvable self-consistently
Brasil: Few body 18
Marco Tomaselli
2006
Degree of spuriousity
Brasil: Few body 18
Marco Tomaselli
2006
Charge distributions of 6He
Brasil: Few body 18
Marco Tomaselli
2006
Charge radii of 6He
Brasil: Few body 18
Marco Tomaselli
2006
Charge distributions of 6Li
Brasil: Few body 18
Marco Tomaselli
2006
Charge form factor for 6Li
Brasil: Few body 18
Marco Tomaselli
2006
Elastic proton scattering on 6Li
Brasil: Few body 18
Marco Tomaselli
2006
Medium effects on the two body
matrix elements (18O)
Brasil: Few body 18
Marco Tomaselli
2006
Positive and Negative parity states in 18O
Brasil: Few body 18
Marco Tomaselli
2006
Comparison with Vlow-k potential: 18O
Brasil: Few body 18
Marco Tomaselli
2006
The EoM of the Three Nucleon Clusters
Brasil: Few body 18
Marco Tomaselli
2006
Three particle Dynamic model
Brasil: Few body 18
Marco Tomaselli
2006
Nuclear results for Li isotopes
Brasil: Few body 18
Marco Tomaselli
2006
Elastic proton scattering on 11Li
Brasil: Few body 18
Marco Tomaselli
2006
Summary of Charge Radii
Li -
Exp.[GSI]
rms R c
Exp.[8]
rms R c
6
7
8
9
11
2,55
2,46
2,37
2,30
2,47
2.55 (4)
2.37 (3)
Rc = charge radius
Exp.+Th.[1] Exp+Th[1]
rms R p
rms R c
2.32 (3)
2.27 (2)
2.26 (2)
2.18 (2)
2.88 (2)
2.46 (2)
2.40 (2)
Th.[2]
rms R p
2,045
1,941
1,946
1,986
Th.[3]
rms R p
Th.[4]
rms Rp
2,39
2,25
2,09
2,04
Th.[5]
rms R p
2,27
2,18
2,10
Th.[6]
rms R c
2,55
2,41
2,40
2,42
2,67
Exp+Th[7]
rms R c
2,235
Rp = point radius
References:
[1] I. Tanihata, Phys. Lett B 206,592 (1988)
Method:
Interaction Cross Sections with Glauber model,
HO distributions
[2] P. Navratil, PRC 57,3119 (1998)
Large-basis shell-model calculations
[3] S. Pieper, Annu.Rev.Nucl.Part.Sci. 51, 53 (2001)
Greens Function Monte Carlo AV18/IL2
[4] S. Pieper, PRC 66, 044310 (2002)
Greens Function Monte Carlo AV18/IL2
[5] Suzuki, Progr.Theo.Phys.Suppl. 146, 413 (2002)
Stochastic Variational Multicluster Method
on a correlated gaussian basis
[6] M. Tomaselli et al., Can. J. Phys. 80, 1347 (2002) Dynamic Correlation model
[7] Penionzhkevich, Nucl.Phys. A 616, 247 (1997)
coupled channel calculations, double-folding
optical potential, M3Y effective interaction
[8] C.W. de Jager, At.Dat.Nucl.Dat.Tab. 14, 479 (1974) Electron Scattering
Charge distributions for A=3 nuclei
Brasil: Few body 18
Marco Tomaselli
2006
Charge distribution: alpha particle
RMS (Bonn)=1.50 fm
RMS (Yale)=1.51 fm
Brasil: Few body 18
Marco Tomaselli
2006
Energy splitting and BE(E2;2+
transition for 16C
Brasil: Few body 18
Marco Tomaselli
0+)
2006
Cluster Factorization Theory I
Brasil: Few body 18
Marco Tomaselli
2006
Cluster Factorization Theory II
Brasil: Few body 18
Marco Tomaselli
2006
Cluster Factorization Theory III
Brasil: Few body 18
Marco Tomaselli
2006
Cluster Factorization Theory IV
Brasil: Few body 18
Marco Tomaselli
2006
Factorisation of the model CMWFs in terms of
cluster coefficients
The factorisation method is presently applied to reduce complex Feynman diagrams to simple form
Particle line
Brasil: Few body 18
Interaction between nucleons
Hole line
Marco Tomaselli
2006
Brasil: Few body 18
Marco Tomaselli
2006
Download

The Equation of Motion (EoM)-IV